1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"
#include "aom_scale/aom_scale.h"
#include "aom_scale/yv12config.h"
#include "aom_dsp/variance.h"
#include "av1/common/entropymv.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h" // av1_setup_dst_planes()
#include "av1/common/txb_common.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/dwt.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/reconinter_enc.h"
#define OUTPUT_FPF 0
#define ARF_STATS_OUTPUT 0
#define GROUP_ADAPTIVE_MAXQ 1
#define BOOST_BREAKOUT 12.5
#define BOOST_FACTOR 12.5
#define FACTOR_PT_LOW 0.70
#define FACTOR_PT_HIGH 0.90
#define FIRST_PASS_Q 10.0
#define GF_MAX_BOOST 90.0
#define INTRA_MODE_PENALTY 1024
#define KF_MIN_FRAME_BOOST 80.0
#define KF_MAX_FRAME_BOOST 128.0
#define MIN_ARF_GF_BOOST 240
#define MIN_DECAY_FACTOR 0.01
#define MIN_KF_BOOST 300
#define NEW_MV_MODE_PENALTY 32
#define DARK_THRESH 64
#define DEFAULT_GRP_WEIGHT 1.0
#define RC_FACTOR_MIN 0.75
#define RC_FACTOR_MAX 1.75
#define MIN_FWD_KF_INTERVAL 8
#define NCOUNT_INTRA_THRESH 8192
#define NCOUNT_INTRA_FACTOR 3
#define NCOUNT_FRAME_II_THRESH 5.0
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
#if ARF_STATS_OUTPUT
unsigned int arf_count = 0;
#endif
// Resets the first pass file to the given position using a relative seek from
// the current position.
static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
p->stats_in = position;
}
// Read frame stats at an offset from the current position.
static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
(offset < 0 && p->stats_in + offset < p->stats_in_start)) {
return NULL;
}
return &p->stats_in[offset];
}
static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
if (p->stats_in >= p->stats_in_end) return EOF;
*fps = *p->stats_in;
++p->stats_in;
return 1;
}
static void output_stats(FIRSTPASS_STATS *stats,
struct aom_codec_pkt_list *pktlist) {
struct aom_codec_cx_pkt pkt;
pkt.kind = AOM_CODEC_STATS_PKT;
pkt.data.twopass_stats.buf = stats;
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
aom_codec_pkt_list_add(pktlist, &pkt);
// TEMP debug code
#if OUTPUT_FPF
{
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile,
"%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
"%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
"%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
stats->frame, stats->weight, stats->intra_error, stats->coded_error,
stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
stats->count, stats->duration);
fclose(fpfile);
}
#endif
}
#if CONFIG_FP_MB_STATS
static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size,
struct aom_codec_pkt_list *pktlist) {
struct aom_codec_cx_pkt pkt;
pkt.kind = AOM_CODEC_FPMB_STATS_PKT;
pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats);
aom_codec_pkt_list_add(pktlist, &pkt);
}
#endif
static void zero_stats(FIRSTPASS_STATS *section) {
section->frame = 0.0;
section->weight = 0.0;
section->intra_error = 0.0;
section->frame_avg_wavelet_energy = 0.0;
section->coded_error = 0.0;
section->sr_coded_error = 0.0;
section->pcnt_inter = 0.0;
section->pcnt_motion = 0.0;
section->pcnt_second_ref = 0.0;
section->pcnt_neutral = 0.0;
section->intra_skip_pct = 0.0;
section->inactive_zone_rows = 0.0;
section->inactive_zone_cols = 0.0;
section->MVr = 0.0;
section->mvr_abs = 0.0;
section->MVc = 0.0;
section->mvc_abs = 0.0;
section->MVrv = 0.0;
section->MVcv = 0.0;
section->mv_in_out_count = 0.0;
section->new_mv_count = 0.0;
section->count = 0.0;
section->duration = 1.0;
}
static void accumulate_stats(FIRSTPASS_STATS *section,
const FIRSTPASS_STATS *frame) {
section->frame += frame->frame;
section->weight += frame->weight;
section->intra_error += frame->intra_error;
section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
section->coded_error += frame->coded_error;
section->sr_coded_error += frame->sr_coded_error;
section->pcnt_inter += frame->pcnt_inter;
section->pcnt_motion += frame->pcnt_motion;
section->pcnt_second_ref += frame->pcnt_second_ref;
section->pcnt_neutral += frame->pcnt_neutral;
section->intra_skip_pct += frame->intra_skip_pct;
section->inactive_zone_rows += frame->inactive_zone_rows;
section->inactive_zone_cols += frame->inactive_zone_cols;
section->MVr += frame->MVr;
section->mvr_abs += frame->mvr_abs;
section->MVc += frame->MVc;
section->mvc_abs += frame->mvc_abs;
section->MVrv += frame->MVrv;
section->MVcv += frame->MVcv;
section->mv_in_out_count += frame->mv_in_out_count;
section->new_mv_count += frame->new_mv_count;
section->count += frame->count;
section->duration += frame->duration;
}
static void subtract_stats(FIRSTPASS_STATS *section,
const FIRSTPASS_STATS *frame) {
section->frame -= frame->frame;
section->weight -= frame->weight;
section->intra_error -= frame->intra_error;
section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy;
section->coded_error -= frame->coded_error;
section->sr_coded_error -= frame->sr_coded_error;
section->pcnt_inter -= frame->pcnt_inter;
section->pcnt_motion -= frame->pcnt_motion;
section->pcnt_second_ref -= frame->pcnt_second_ref;
section->pcnt_neutral -= frame->pcnt_neutral;
section->intra_skip_pct -= frame->intra_skip_pct;
section->inactive_zone_rows -= frame->inactive_zone_rows;
section->inactive_zone_cols -= frame->inactive_zone_cols;
section->MVr -= frame->MVr;
section->mvr_abs -= frame->mvr_abs;
section->MVc -= frame->MVc;
section->mvc_abs -= frame->mvc_abs;
section->MVrv -= frame->MVrv;
section->MVcv -= frame->MVcv;
section->mv_in_out_count -= frame->mv_in_out_count;
section->new_mv_count -= frame->new_mv_count;
section->count -= frame->count;
section->duration -= frame->duration;
}
// Calculate the linear size relative to a baseline of 1080P
#define BASE_SIZE 2073600.0 // 1920x1080
static double get_linear_size_factor(const AV1_COMP *cpi) {
const double this_area = cpi->initial_width * cpi->initial_height;
return pow(this_area / BASE_SIZE, 0.5);
}
// Calculate an active area of the image that discounts formatting
// bars and partially discounts other 0 energy areas.
#define MIN_ACTIVE_AREA 0.5
#define MAX_ACTIVE_AREA 1.0
static double calculate_active_area(const AV1_COMP *cpi,
const FIRSTPASS_STATS *this_frame) {
double active_pct;
active_pct =
1.0 -
((this_frame->intra_skip_pct / 2) +
((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
}
// Calculate a modified Error used in distributing bits between easier and
// harder frames.
#define ACT_AREA_CORRECTION 0.5
static double calculate_modified_err(const AV1_COMP *cpi,
const TWO_PASS *twopass,
const AV1EncoderConfig *oxcf,
const FIRSTPASS_STATS *this_frame) {
const FIRSTPASS_STATS *const stats = &twopass->total_stats;
const double av_weight = stats->weight / stats->count;
const double av_err = (stats->coded_error * av_weight) / stats->count;
double modified_error =
av_err * pow(this_frame->coded_error * this_frame->weight /
DOUBLE_DIVIDE_CHECK(av_err),
oxcf->two_pass_vbrbias / 100.0);
// Correction for active area. Frames with a reduced active area
// (eg due to formatting bars) have a higher error per mb for the
// remaining active MBs. The correction here assumes that coding
// 0.5N blocks of complexity 2X is a little easier than coding N
// blocks of complexity X.
modified_error *=
pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
return fclamp(modified_error, twopass->modified_error_min,
twopass->modified_error_max);
}
// This function returns the maximum target rate per frame.
static int frame_max_bits(const RATE_CONTROL *rc,
const AV1EncoderConfig *oxcf) {
int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
(int64_t)oxcf->two_pass_vbrmax_section) /
100;
if (max_bits < 0)
max_bits = 0;
else if (max_bits > rc->max_frame_bandwidth)
max_bits = rc->max_frame_bandwidth;
return (int)max_bits;
}
void av1_init_first_pass(AV1_COMP *cpi) {
zero_stats(&cpi->twopass.total_stats);
}
void av1_end_first_pass(AV1_COMP *cpi) {
output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
}
static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
switch (bsize) {
case BLOCK_8X8: return aom_mse8x8;
case BLOCK_16X8: return aom_mse16x8;
case BLOCK_8X16: return aom_mse8x16;
default: return aom_mse16x16;
}
}
static unsigned int get_prediction_error(BLOCK_SIZE bsize,
const struct buf_2d *src,
const struct buf_2d *ref) {
unsigned int sse;
const aom_variance_fn_t fn = get_block_variance_fn(bsize);
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
return sse;
}
static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
int bd) {
switch (bd) {
default:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_8_mse8x8;
case BLOCK_16X8: return aom_highbd_8_mse16x8;
case BLOCK_8X16: return aom_highbd_8_mse8x16;
default: return aom_highbd_8_mse16x16;
}
break;
case 10:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_10_mse8x8;
case BLOCK_16X8: return aom_highbd_10_mse16x8;
case BLOCK_8X16: return aom_highbd_10_mse8x16;
default: return aom_highbd_10_mse16x16;
}
break;
case 12:
switch (bsize) {
case BLOCK_8X8: return aom_highbd_12_mse8x8;
case BLOCK_16X8: return aom_highbd_12_mse16x8;
case BLOCK_8X16: return aom_highbd_12_mse8x16;
default: return aom_highbd_12_mse16x16;
}
break;
}
}
static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
const struct buf_2d *src,
const struct buf_2d *ref,
int bd) {
unsigned int sse;
const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
return sse;
}
// Refine the motion search range according to the frame dimension
// for first pass test.
static int get_search_range(const AV1_COMP *cpi) {
int sr = 0;
const int dim = AOMMIN(cpi->initial_width, cpi->initial_height);
while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
return sr;
}
static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
const MV *ref_mv, MV *best_mv,
int *best_motion_err) {
MACROBLOCKD *const xd = &x->e_mbd;
MV tmp_mv = kZeroMv;
MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
int num00, tmp_err, n;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
int step_param = 3;
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
const int sr = get_search_range(cpi);
step_param += sr;
further_steps -= sr;
// Override the default variance function to use MSE.
v_fn_ptr.vf = get_block_variance_fn(bsize);
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
}
// Center the initial step/diamond search on best mv.
tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
step_param, x->sadperbit16, &num00,
&v_fn_ptr, ref_mv);
if (tmp_err < INT_MAX)
tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
*best_mv = tmp_mv;
}
// Carry out further step/diamond searches as necessary.
n = num00;
num00 = 0;
while (n < further_steps) {
++n;
if (num00) {
--num00;
} else {
tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
step_param + n, x->sadperbit16, &num00,
&v_fn_ptr, ref_mv);
if (tmp_err < INT_MAX)
tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
if (tmp_err < INT_MAX - new_mv_mode_penalty)
tmp_err += new_mv_mode_penalty;
if (tmp_err < *best_motion_err) {
*best_motion_err = tmp_err;
*best_mv = tmp_mv;
}
}
}
}
static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) {
if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] <
cm->mi_cols) {
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
cm->mi_rows
? BLOCK_16X16
: BLOCK_16X8;
} else {
return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
cm->mi_rows
? BLOCK_8X16
: BLOCK_8X8;
}
}
static int find_fp_qindex(aom_bit_depth_t bit_depth) {
int i;
for (i = 0; i < QINDEX_RANGE; ++i)
if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
if (i == QINDEX_RANGE) i--;
return i;
}
static void set_first_pass_params(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
if (!cpi->refresh_alt_ref_frame &&
(cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
cm->frame_type = KEY_FRAME;
} else {
cm->frame_type = INTER_FRAME;
}
// Do not use periodic key frames.
cpi->rc.frames_to_key = INT_MAX;
}
static double raw_motion_error_stdev(int *raw_motion_err_list,
int raw_motion_err_counts) {
int64_t sum_raw_err = 0;
double raw_err_avg = 0;
double raw_err_stdev = 0;
if (raw_motion_err_counts == 0) return 0;
int i;
for (i = 0; i < raw_motion_err_counts; i++) {
sum_raw_err += raw_motion_err_list[i];
}
raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
for (i = 0; i < raw_motion_err_counts; i++) {
raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
(raw_motion_err_list[i] - raw_err_avg);
}
// Calculate the standard deviation for the motion error of all the inter
// blocks of the 0,0 motion using the last source
// frame as the reference.
raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
return raw_err_stdev;
}
#define UL_INTRA_THRESH 50
#define INVALID_ROW -1
void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) {
int mb_row, mb_col;
MACROBLOCK *const x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = &cm->seq_params;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
TileInfo tile;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const PICK_MODE_CONTEXT *ctx =
&cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none;
int i;
int recon_yoffset, recon_uvoffset;
int64_t intra_error = 0;
int64_t frame_avg_wavelet_energy = 0;
int64_t coded_error = 0;
int64_t sr_coded_error = 0;
int sum_mvr = 0, sum_mvc = 0;
int sum_mvr_abs = 0, sum_mvc_abs = 0;
int64_t sum_mvrs = 0, sum_mvcs = 0;
int mvcount = 0;
int intercount = 0;
int second_ref_count = 0;
const int intrapenalty = INTRA_MODE_PENALTY;
double neutral_count;
int intra_skip_count = 0;
int image_data_start_row = INVALID_ROW;
int new_mv_count = 0;
int sum_in_vectors = 0;
MV lastmv = kZeroMv;
TWO_PASS *twopass = &cpi->twopass;
int recon_y_stride, recon_uv_stride, uv_mb_height;
YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
double intra_factor;
double brightness_factor;
BufferPool *const pool = cm->buffer_pool;
const int qindex = find_fp_qindex(seq_params->bit_depth);
const int mb_scale = mi_size_wide[BLOCK_16X16];
int *raw_motion_err_list;
int raw_motion_err_counts = 0;
CHECK_MEM_ERROR(
cm, raw_motion_err_list,
aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list)));
// First pass code requires valid last and new frame buffers.
assert(new_yv12 != NULL);
assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs);
}
#endif
aom_clear_system_state();
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
x->e_mbd.mi[0]->sb_type = BLOCK_16X16;
intra_factor = 0.0;
brightness_factor = 0.0;
neutral_count = 0.0;
set_first_pass_params(cpi);
av1_set_quantizer(cm, qindex);
av1_setup_block_planes(&x->e_mbd, seq_params->subsampling_x,
seq_params->subsampling_y, num_planes);
av1_setup_src_planes(x, cpi->source, 0, 0, num_planes);
av1_setup_dst_planes(xd->plane, seq_params->sb_size, new_yv12, 0, 0, 0,
num_planes);
if (!frame_is_intra_only(cm)) {
av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL, num_planes);
}
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
// Don't store luma on the fist pass since chroma is not computed
xd->cfl.store_y = 0;
av1_frame_init_quantizer(cpi);
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
av1_init_mv_probs(cm);
av1_init_lv_map(cm);
av1_initialize_rd_consts(cpi);
// Tiling is ignored in the first pass.
av1_tile_init(&tile, cm, 0, 0);
recon_y_stride = new_yv12->y_stride;
recon_uv_stride = new_yv12->uv_stride;
uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
MV best_ref_mv = kZeroMv;
// Reset above block coeffs.
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
// Set up limit values for motion vectors to prevent them extending
// outside the UMV borders.
x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
x->mv_limits.row_max =
((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
int this_error;
const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
double log_intra;
int level_sample;
#if CONFIG_FP_MB_STATS
const int mb_index = mb_row * cm->mb_cols + mb_col;
#endif
aom_clear_system_state();
const int idx_str = xd->mi_stride * mb_row * mb_scale + mb_col * mb_scale;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
xd->mi[0]->sb_type = bsize;
xd->mi[0]->ref_frame[0] = INTRA_FRAME;
set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize],
mb_col * mb_scale, mi_size_wide[bsize], cm->mi_rows,
cm->mi_cols);
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
// Do intra 16x16 prediction.
xd->mi[0]->segment_id = 0;
xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
xd->mi[0]->mode = DC_PRED;
xd->mi[0]->tx_size =
use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
av1_encode_intra_block_plane(cpi, x, bsize, 0, 0, mb_row * 2, mb_col * 2);
this_error = aom_get_mb_ss(x->plane[0].src_diff);
// Keep a record of blocks that have almost no intra error residual
// (i.e. are in effect completely flat and untextured in the intra
// domain). In natural videos this is uncommon, but it is much more
// common in animations, graphics and screen content, so may be used
// as a signal to detect these types of content.
if (this_error < UL_INTRA_THRESH) {
++intra_skip_count;
} else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
image_data_start_row = mb_row;
}
if (seq_params->use_highbitdepth) {
switch (seq_params->bit_depth) {
case AOM_BITS_8: break;
case AOM_BITS_10: this_error >>= 4; break;
case AOM_BITS_12: this_error >>= 8; break;
default:
assert(0 &&
"seq_params->bit_depth should be AOM_BITS_8, "
"AOM_BITS_10 or AOM_BITS_12");
return;
}
}
aom_clear_system_state();
log_intra = log(this_error + 1.0);
if (log_intra < 10.0)
intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
else
intra_factor += 1.0;
if (seq_params->use_highbitdepth)
level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
else
level_sample = x->plane[0].src.buf[0];
if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
else
brightness_factor += 1.0;
// Intrapenalty below deals with situations where the intra and inter
// error scores are very low (e.g. a plain black frame).
// We do not have special cases in first pass for 0,0 and nearest etc so
// all inter modes carry an overhead cost estimate for the mv.
// When the error score is very low this causes us to pick all or lots of
// INTRA modes and throw lots of key frames.
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
this_error += intrapenalty;
// Accumulate the intra error.
intra_error += (int64_t)this_error;
int stride = x->plane[0].src.stride;
uint8_t *buf = x->plane[0].src.buf;
for (int r8 = 0; r8 < 2; ++r8)
for (int c8 = 0; c8 < 2; ++c8) {
int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
frame_avg_wavelet_energy += av1_haar_ac_sad_8x8_uint8_input(
buf + c8 * 8 + r8 * 8 * stride, stride, hbd);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
// initialization
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
}
#endif
// Set up limit values for motion vectors to prevent them extending
// outside the UMV borders.
x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
x->mv_limits.col_max =
((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
if (!frame_is_intra_only(cm)) { // Do a motion search
int tmp_err, motion_error, raw_motion_error;
// Assume 0,0 motion with no mv overhead.
MV mv = kZeroMv, tmp_mv = kZeroMv;
struct buf_2d unscaled_last_source_buf_2d;
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
} else {
motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
}
// Compute the motion error of the 0,0 motion using the last source
// frame as the reference. Skip the further motion search on
// reconstructed frame if this error is small.
unscaled_last_source_buf_2d.buf =
cpi->unscaled_last_source->y_buffer + recon_yoffset;
unscaled_last_source_buf_2d.stride =
cpi->unscaled_last_source->y_stride;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
raw_motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
} else {
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&unscaled_last_source_buf_2d);
}
// TODO(pengchong): Replace the hard-coded threshold
if (raw_motion_error > 25) {
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
// If the current best reference mv is not centered on 0,0 then do a
// 0,0 based search as well.
if (!is_zero_mv(&best_ref_mv)) {
tmp_err = INT_MAX;
first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);
if (tmp_err < motion_error) {
motion_error = tmp_err;
mv = tmp_mv;
}
}
// Search in an older reference frame.
if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
// Assume 0,0 motion with no mv overhead.
int gf_motion_error;
xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
gf_motion_error = highbd_get_prediction_error(
bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
} else {
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
}
first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv,
&gf_motion_error);
if (gf_motion_error < motion_error && gf_motion_error < this_error)
++second_ref_count;
// Reset to last frame as reference buffer.
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
// In accumulating a score for the older reference frame take the
// best of the motion predicted score and the intra coded error
// (just as will be done for) accumulation of "coded_error" for
// the last frame.
if (gf_motion_error < this_error)
sr_coded_error += gf_motion_error;
else
sr_coded_error += this_error;
} else {
sr_coded_error += motion_error;
}
} else {
sr_coded_error += motion_error;
}
// Start by assuming that intra mode is best.
best_ref_mv.row = 0;
best_ref_mv.col = 0;
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
// intra predication statistics
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
if (this_error > FPMB_ERROR_LARGE_TH) {
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
} else if (this_error < FPMB_ERROR_SMALL_TH) {
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
}
}
#endif
if (motion_error <= this_error) {
aom_clear_system_state();
// Keep a count of cases where the inter and intra were very close
// and very low. This helps with scene cut detection for example in
// cropped clips with black bars at the sides or top and bottom.
if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
(this_error < (2 * intrapenalty))) {
neutral_count += 1.0;
// Also track cases where the intra is not much worse than the inter
// and use this in limiting the GF/arf group length.
} else if ((this_error > NCOUNT_INTRA_THRESH) &&
(this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
neutral_count +=
(double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
}
mv.row *= 8;
mv.col *= 8;
this_error = motion_error;
xd->mi[0]->mode = NEWMV;
xd->mi[0]->mv[0].as_mv = mv;
xd->mi[0]->tx_size = TX_4X4;
xd->mi[0]->ref_frame[0] = LAST_FRAME;
xd->mi[0]->ref_frame[1] = NONE_FRAME;
av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale,
mb_col * mb_scale, NULL, bsize);
av1_encode_sby_pass1(cm, x, bsize);
sum_mvr += mv.row;
sum_mvr_abs += abs(mv.row);
sum_mvc += mv.col;
sum_mvc_abs += abs(mv.col);
sum_mvrs += mv.row * mv.row;
sum_mvcs += mv.col * mv.col;
++intercount;
best_ref_mv = mv;
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
// inter predication statistics
cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
if (this_error > FPMB_ERROR_LARGE_TH) {
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_ERROR_LARGE_MASK;
} else if (this_error < FPMB_ERROR_SMALL_TH) {
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_ERROR_SMALL_MASK;
}
}
#endif
if (!is_zero_mv(&mv)) {
++mvcount;
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
cpi->twopass.frame_mb_stats_buf[mb_index] &=
~FPMB_MOTION_ZERO_MASK;
// check estimated motion direction
if (mv.col > 0 && mv.col >= abs(mv.row)) {
// right direction
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_MOTION_RIGHT_MASK;
} else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) {
// up direction
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_MOTION_UP_MASK;
} else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) {
// left direction
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_MOTION_LEFT_MASK;
} else {
// down direction
cpi->twopass.frame_mb_stats_buf[mb_index] |=
FPMB_MOTION_DOWN_MASK;
}
}
#endif
// Non-zero vector, was it different from the last non zero vector?
if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count;
lastmv = mv;
// Does the row vector point inwards or outwards?
if (mb_row < cm->mb_rows / 2) {
if (mv.row > 0)
--sum_in_vectors;
else if (mv.row < 0)
++sum_in_vectors;
} else if (mb_row > cm->mb_rows / 2) {
if (mv.row > 0)
++sum_in_vectors;
else if (mv.row < 0)
--sum_in_vectors;
}
// Does the col vector point inwards or outwards?
if (mb_col < cm->mb_cols / 2) {
if (mv.col > 0)
--sum_in_vectors;
else if (mv.col < 0)
++sum_in_vectors;
} else if (mb_col > cm->mb_cols / 2) {
if (mv.col > 0)
++sum_in_vectors;
else if (mv.col < 0)
--sum_in_vectors;
}
}
}
raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error;
} else {
sr_coded_error += (int64_t)this_error;
}
coded_error += (int64_t)this_error;
// Adjust to the next column of MBs.
x->plane[0].src.buf += 16;
x->plane[1].src.buf += uv_mb_height;
x->plane[2].src.buf += uv_mb_height;
recon_yoffset += 16;
recon_uvoffset += uv_mb_height;
}
// Adjust to the next row of MBs.
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
x->plane[1].src.buf +=
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
x->plane[2].src.buf +=
uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
aom_clear_system_state();
}
const double raw_err_stdev =
raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts);
aom_free(raw_motion_err_list);
// Clamp the image start to rows/2. This number of rows is discarded top
// and bottom as dead data so rows / 2 means the frame is blank.
if ((image_data_start_row > cm->mb_rows / 2) ||
(image_data_start_row == INVALID_ROW)) {
image_data_start_row = cm->mb_rows / 2;
}
// Exclude any image dead zone
if (image_data_start_row > 0) {
intra_skip_count =
AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
}
{
FIRSTPASS_STATS fps;
// The minimum error here insures some bit allocation to frames even
// in static regions. The allocation per MB declines for larger formats
// where the typical "real" energy per MB also falls.
// Initial estimate here uses sqrt(mbs) to define the min_err, where the
// number of mbs is proportional to the image area.
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
? cpi->initial_mbs
: cpi->common.MBs;
const double min_err = 200 * sqrt(num_mbs);
intra_factor = intra_factor / (double)num_mbs;
brightness_factor = brightness_factor / (double)num_mbs;
fps.weight = intra_factor * brightness_factor;
fps.frame = cm->current_video_frame;
fps.coded_error = (double)(coded_error >> 8) + min_err;
fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
fps.intra_error = (double)(intra_error >> 8) + min_err;
fps.frame_avg_wavelet_energy = (double)frame_avg_wavelet_energy;
fps.count = 1.0;
fps.pcnt_inter = (double)intercount / num_mbs;
fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
fps.pcnt_neutral = (double)neutral_count / num_mbs;
fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
fps.inactive_zone_rows = (double)image_data_start_row;
fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix
fps.raw_error_stdev = raw_err_stdev;
if (mvcount > 0) {
fps.MVr = (double)sum_mvr / mvcount;
fps.mvr_abs = (double)sum_mvr_abs / mvcount;
fps.MVc = (double)sum_mvc / mvcount;
fps.mvc_abs = (double)sum_mvc_abs / mvcount;
fps.MVrv =
((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
fps.MVcv =
((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
fps.new_mv_count = new_mv_count;
fps.pcnt_motion = (double)mvcount / num_mbs;
} else {
fps.MVr = 0.0;
fps.mvr_abs = 0.0;
fps.MVc = 0.0;
fps.mvc_abs = 0.0;
fps.MVrv = 0.0;
fps.MVcv = 0.0;
fps.mv_in_out_count = 0.0;
fps.new_mv_count = 0.0;
fps.pcnt_motion = 0.0;
}
// TODO(paulwilkins): Handle the case when duration is set to 0, or
// something less than the full time between subsequent values of
// cpi->source_time_stamp.
fps.duration = (double)(source->ts_end - source->ts_start);
// Don't want to do output stats with a stack variable!
twopass->this_frame_stats = fps;
output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
accumulate_stats(&twopass->total_stats, &fps);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs,
cpi->output_pkt_list);
}
#endif
}
// Copy the previous Last Frame back into gf and and arf buffers if
// the prediction is good enough... but also don't allow it to lag too far.
if ((twopass->sr_update_lag > 3) ||
((cm->current_video_frame > 0) &&
(twopass->this_frame_stats.pcnt_inter > 0.20) &&
((twopass->this_frame_stats.intra_error /
DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
if (gld_yv12 != NULL) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]);
}
twopass->sr_update_lag = 1;
} else {
++twopass->sr_update_lag;
}
aom_extend_frame_borders(new_yv12, num_planes);
// The frame we just compressed now becomes the last frame.
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]],
cm->new_fb_idx);
// Special case for the first frame. Copy into the GF buffer as a second
// reference.
if (cm->current_video_frame == 0 &&
cpi->ref_fb_idx[GOLDEN_FRAME - 1] != INVALID_IDX) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]);
}
// Use this to see what the first pass reconstruction looks like.
if (0) {
char filename[512];
FILE *recon_file;
snprintf(filename, sizeof(filename), "enc%04d.yuv",
(int)cm->current_video_frame);
if (cm->current_video_frame == 0)
recon_file = fopen(filename, "wb");
else
recon_file = fopen(filename, "ab");
(void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
fclose(recon_file);
}
++cm->current_video_frame;
}
static double calc_correction_factor(double err_per_mb, double err_divisor,
double pt_low, double pt_high, int q,
aom_bit_depth_t bit_depth) {
const double error_term = err_per_mb / err_divisor;
// Adjustment based on actual quantizer to power term.
const double power_term =
AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
// Calculate correction factor.
if (power_term < 1.0) assert(error_term >= 0.0);
return fclamp(pow(error_term, power_term), 0.05, 5.0);
}
#define ERR_DIVISOR 100.0
static int get_twopass_worst_quality(const AV1_COMP *cpi,
const double section_err,
double inactive_zone,
int section_target_bandwidth,
double group_weight_factor) {
const RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
if (section_target_bandwidth <= 0) {
return rc->worst_quality; // Highest value allowed
} else {
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
? cpi->initial_mbs
: cpi->common.MBs;
const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
const double av_err_per_mb = section_err / active_mbs;
const double speed_term = 1.0;
double ediv_size_correction;
const int target_norm_bits_per_mb =
(int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) /
active_mbs;
int q;
// Larger image formats are expected to be a little harder to code
// relatively given the same prediction error score. This in part at
// least relates to the increased size and hence coding overheads of
// motion vectors. Some account of this is made through adjustment of
// the error divisor.
ediv_size_correction =
AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi)));
if (ediv_size_correction < 1.0)
ediv_size_correction = -(1.0 / ediv_size_correction);
ediv_size_correction *= 4.0;
// Try and pick a max Q that will be high enough to encode the
// content at the given rate.
for (q = rc->best_quality; q < rc->worst_quality; ++q) {
const double factor = calc_correction_factor(
av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW,
FACTOR_PT_HIGH, q, cpi->common.seq_params.bit_depth);
const int bits_per_mb = av1_rc_bits_per_mb(
INTER_FRAME, q, factor * speed_term * group_weight_factor,
cpi->common.seq_params.bit_depth);
if (bits_per_mb <= target_norm_bits_per_mb) break;
}
// Restriction on active max q for constrained quality mode.
if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level);
return q;
}
}
static void setup_rf_level_maxq(AV1_COMP *cpi) {
int i;
RATE_CONTROL *const rc = &cpi->rc;
for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality);
rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality);
}
}
void av1_init_second_pass(AV1_COMP *cpi) {
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
TWO_PASS *const twopass = &cpi->twopass;
double frame_rate;
FIRSTPASS_STATS *stats;
zero_stats(&twopass->total_stats);
zero_stats(&twopass->total_left_stats);
if (!twopass->stats_in_end) return;
stats = &twopass->total_stats;
*stats = *twopass->stats_in_end;
twopass->total_left_stats = *stats;
frame_rate = 10000000.0 * stats->count / stats->duration;
// Each frame can have a different duration, as the frame rate in the source
// isn't guaranteed to be constant. The frame rate prior to the first frame
// encoded in the second pass is a guess. However, the sum duration is not.
// It is calculated based on the actual durations of all frames from the
// first pass.
av1_new_framerate(cpi, frame_rate);
twopass->bits_left =
(int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
// This variable monitors how far behind the second ref update is lagging.
twopass->sr_update_lag = 1;
// Scan the first pass file and calculate a modified total error based upon
// the bias/power function used to allocate bits.
{
const double avg_error =
stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
const FIRSTPASS_STATS *s = twopass->stats_in;
double modified_error_total = 0.0;
twopass->modified_error_min =
(avg_error * oxcf->two_pass_vbrmin_section) / 100;
twopass->modified_error_max =
(avg_error * oxcf->two_pass_vbrmax_section) / 100;
while (s < twopass->stats_in_end) {
modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
++s;
}
twopass->modified_error_left = modified_error_total;
}
// Reset the vbr bits off target counters
cpi->rc.vbr_bits_off_target = 0;
cpi->rc.vbr_bits_off_target_fast = 0;
cpi->rc.rate_error_estimate = 0;
// Static sequence monitor variables.
twopass->kf_zeromotion_pct = 100;
twopass->last_kfgroup_zeromotion_pct = 100;
if (oxcf->resize_mode != RESIZE_NONE) {
setup_rf_level_maxq(cpi);
}
}
#define SR_DIFF_PART 0.0015
#define MOTION_AMP_PART 0.003
#define INTRA_PART 0.005
#define DEFAULT_DECAY_LIMIT 0.75
#define LOW_SR_DIFF_TRHESH 0.1
#define SR_DIFF_MAX 128.0
static double get_sr_decay_rate(const AV1_COMP *cpi,
const FIRSTPASS_STATS *frame) {
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
: cpi->common.MBs;
double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs;
double sr_decay = 1.0;
double modified_pct_inter;
double modified_pcnt_intra;
const double motion_amplitude_factor =
frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
modified_pct_inter = frame->pcnt_inter;
if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
(double)NCOUNT_FRAME_II_THRESH) {
modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
}
modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX);
sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
(MOTION_AMP_PART * motion_amplitude_factor) -
(INTRA_PART * modified_pcnt_intra);
}
return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
}
// This function gives an estimate of how badly we believe the prediction
// quality is decaying from frame to frame.
static double get_zero_motion_factor(const AV1_COMP *cpi,
const FIRSTPASS_STATS *frame) {
const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
double sr_decay = get_sr_decay_rate(cpi, frame);
return AOMMIN(sr_decay, zero_motion_pct);
}
#define ZM_POWER_FACTOR 0.75
static double get_prediction_decay_rate(const AV1_COMP *cpi,
const FIRSTPASS_STATS *next_frame) {
const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
const double zero_motion_factor =
(0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
ZM_POWER_FACTOR));
return AOMMAX(zero_motion_factor,
(sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
}
// Function to test for a condition where a complex transition is followed
// by a static section. For example in slide shows where there is a fade
// between slides. This is to help with more optimal kf and gf positioning.
static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval,
int still_interval,
double loop_decay_rate,
double last_decay_rate) {
TWO_PASS *const twopass = &cpi->twopass;
RATE_CONTROL *const rc = &cpi->rc;
// Break clause to detect very still sections after motion
// For example a static image after a fade or other transition
// instead of a clean scene cut.
if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
last_decay_rate < 0.9) {
int j;
// Look ahead a few frames to see if static condition persists...
for (j = 0; j < still_interval; ++j) {
const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
if (stats >= twopass->stats_in_end) break;
if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
}
// Only if it does do we signal a transition to still.
return j == still_interval;
}
return 0;
}
// This function detects a flash through the high relative pcnt_second_ref
// score in the frame following a flash frame. The offset passed in should
// reflect this.
static int detect_flash(const TWO_PASS *twopass, int offset) {
const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
// What we are looking for here is a situation where there is a
// brief break in prediction (such as a flash) but subsequent frames
// are reasonably well predicted by an earlier (pre flash) frame.
// The recovery after a flash is indicated by a high pcnt_second_ref
// compared to pcnt_inter.
return next_frame != NULL &&
next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
next_frame->pcnt_second_ref >= 0.5;
}
// Update the motion related elements to the GF arf boost calculation.
static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
double *mv_in_out,
double *mv_in_out_accumulator,
double *abs_mv_in_out_accumulator,
double *mv_ratio_accumulator) {
const double pct = stats->pcnt_motion;
// Accumulate Motion In/Out of frame stats.
*mv_in_out = stats->mv_in_out_count * pct;
*mv_in_out_accumulator += *mv_in_out;
*abs_mv_in_out_accumulator += fabs(*mv_in_out);
// Accumulate a measure of how uniform (or conversely how random) the motion
// field is (a ratio of abs(mv) / mv).
if (pct > 0.05) {
const double mvr_ratio =
fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
const double mvc_ratio =
fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
*mv_ratio_accumulator +=
pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
*mv_ratio_accumulator +=
pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
}
}
#define BASELINE_ERR_PER_MB 1000.0
static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame,
double this_frame_mv_in_out, double max_boost) {
double frame_boost;
const double lq = av1_convert_qindex_to_q(
cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth);
const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
: cpi->common.MBs;
// Correct for any inactive region in the image
num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
// Underlying boost factor is based on inter error ratio.
frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
// Increase boost for frames where new data coming into frame (e.g. zoom out).
// Slightly reduce boost if there is a net balance of motion out of the frame
// (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
if (this_frame_mv_in_out > 0.0)
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
// In the extreme case the boost is halved.
else
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
return AOMMIN(frame_boost, max_boost * boost_q_correction);
}
static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames,
int *f_boost, int *b_boost) {
TWO_PASS *const twopass = &cpi->twopass;
int i;
double boost_score = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
int arf_boost;
int flash_detected = 0;
// Search forward from the proposed arf/next gf position.
for (i = 0; i < f_frames; ++i) {
const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
if (this_frame == NULL) break;
// Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(
this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
// We want to discount the flash frame itself and the recovery
// frame that follows as both will have poor scores.
flash_detected = detect_flash(twopass, i + offset) ||
detect_flash(twopass, i + offset + 1);
// Accumulate the effect of prediction quality decay.
if (!flash_detected) {
decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
? MIN_DECAY_FACTOR
: decay_accumulator;
}
boost_score +=
decay_accumulator *
calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
}
*f_boost = (int)boost_score;
// Reset for backward looking loop.
boost_score = 0.0;
mv_ratio_accumulator = 0.0;
decay_accumulator = 1.0;
this_frame_mv_in_out = 0.0;
mv_in_out_accumulator = 0.0;
abs_mv_in_out_accumulator = 0.0;
// Search backward towards last gf position.
for (i = -1; i >= -b_frames; --i) {
const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
if (this_frame == NULL) break;
// Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(
this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
// We want to discount the the flash frame itself and the recovery
// frame that follows as both will have poor scores.
flash_detected = detect_flash(twopass, i + offset) ||
detect_flash(twopass, i + offset + 1);
// Cumulative effect of prediction quality decay.
if (!flash_detected) {
decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
? MIN_DECAY_FACTOR
: decay_accumulator;
}
boost_score +=
decay_accumulator *
calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
}
*b_boost = (int)boost_score;
arf_boost = (*f_boost + *b_boost);
if (arf_boost < ((b_frames + f_frames) * 20))
arf_boost = ((b_frames + f_frames) * 20);
arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST);
return arf_boost;
}
// Calculate a section intra ratio used in setting max loop filter.
static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
const FIRSTPASS_STATS *end,
int section_length) {
const FIRSTPASS_STATS *s = begin;
double intra_error = 0.0;
double coded_error = 0.0;
int i = 0;
while (s < end && i < section_length) {
intra_error += s->intra_error;
coded_error += s->coded_error;
++s;
++i;
}
return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
}
// Calculate the total bits to allocate in this GF/ARF group.
static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
double gf_group_err) {
const RATE_CONTROL *const rc = &cpi->rc;
const TWO_PASS *const twopass = &cpi->twopass;
const int max_bits = frame_max_bits(rc, &cpi->oxcf);
int64_t total_group_bits;
// Calculate the bits to be allocated to the group as a whole.
if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
total_group_bits = (int64_t)(twopass->kf_group_bits *
(gf_group_err / twopass->kf_group_error_left));
} else {
total_group_bits = 0;
}
// Clamp odd edge cases.
total_group_bits = (total_group_bits < 0)
? 0
: (total_group_bits > twopass->kf_group_bits)
? twopass->kf_group_bits
: total_group_bits;
// Clip based on user supplied data rate variability limit.
if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
return total_group_bits;
}
// Calculate the number bits extra to assign to boosted frames in a group.
static int calculate_boost_bits(int frame_count, int boost,
int64_t total_group_bits) {
int allocation_chunks;
// return 0 for invalid inputs (could arise e.g. through rounding errors)
if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
allocation_chunks = (frame_count * 100) + boost;
// Prevent overflow.
if (boost > 1023) {
int divisor = boost >> 10;
boost /= divisor;
allocation_chunks /= divisor;
}
// Calculate the number of extra bits for use in the boosted frame or frames.
return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
0);
}
#if USE_SYMM_MULTI_LAYER
// #define CHCEK_GF_PARAMETER
#ifdef CHCEK_GF_PARAMETER
void check_frame_params(GF_GROUP *const gf_group, int gf_interval,
int frame_nums) {
static const char *update_type_strings[] = {
"KF_UPDATE", "LF_UPDATE", "GF_UPDATE",
"ARF_UPDATE", "OVERLAY_UPDATE", "BRF_UPDATE",
"LAST_BIPRED_UPDATE", "BIPRED_UPDATE", "INTNL_OVERLAY_UPDATE",
"INTNL_ARF_UPDATE"
};
FILE *fid = fopen("GF_PARAMS.txt", "a");
fprintf(fid, "\n{%d}\n", gf_interval);
for (int i = 0; i <= frame_nums; ++i) {
fprintf(fid, "%s %d %d %d %d\n",
update_type_strings[gf_group->update_type[i]],
gf_group->arf_src_offset[i], gf_group->arf_pos_in_gf[i],
gf_group->arf_update_idx[i], gf_group->pyramid_level[i]);
}
fprintf(fid, "number of nodes in each level: \n");
for (int i = 0; i < MAX_PYRAMID_LVL; ++i) {
fprintf(fid, "lvl %d: %d ", i, gf_group->pyramid_lvl_nodes[i]);
}
fprintf(fid, "\n");
fclose(fid);
}
#endif // CHCEK_GF_PARAMETER
static int update_type_2_rf_level(FRAME_UPDATE_TYPE update_type) {
// Derive rf_level from update_type
switch (update_type) {
case LF_UPDATE: return INTER_NORMAL;
case ARF_UPDATE: return GF_ARF_STD;
case OVERLAY_UPDATE: return INTER_NORMAL;
case BRF_UPDATE: return GF_ARF_LOW;
case LAST_BIPRED_UPDATE: return INTER_NORMAL;
case BIPRED_UPDATE: return INTER_NORMAL;
case INTNL_ARF_UPDATE: return GF_ARF_LOW;
case INTNL_OVERLAY_UPDATE: return INTER_NORMAL;
default: return INTER_NORMAL;
}
}
static void set_multi_layer_params(GF_GROUP *const gf_group, int l, int r,
int *frame_ind, int arf_ind, int level) {
if (r - l < 4) {
while (++l < r) {
// leaf nodes, not a look-ahead frame
gf_group->update_type[*frame_ind] = LF_UPDATE;
gf_group->arf_src_offset[*frame_ind] = 0;
gf_group->arf_pos_in_gf[*frame_ind] = 0;
gf_group->arf_update_idx[*frame_ind] = arf_ind;
gf_group->pyramid_level[*frame_ind] = 0;
++gf_group->pyramid_lvl_nodes[0];
++(*frame_ind);
}
} else {
int m = (l + r) / 2;
int arf_pos_in_gf = *frame_ind;
gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE;
gf_group->arf_src_offset[*frame_ind] = m - l - 1;
gf_group->arf_pos_in_gf[*frame_ind] = 0;
gf_group->arf_update_idx[*frame_ind] = 1; // mark all internal ARF 1
gf_group->pyramid_level[*frame_ind] = level;
++gf_group->pyramid_lvl_nodes[level];
++(*frame_ind);
// set parameters for frames displayed before this frame
set_multi_layer_params(gf_group, l, m, frame_ind, 1, level - 1);
// for overlay frames, we need to record the position of its corresponding
// arf frames for bit allocation
gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE;
gf_group->arf_src_offset[*frame_ind] = 0;
gf_group->arf_pos_in_gf[*frame_ind] = arf_pos_in_gf;
gf_group->arf_update_idx[*frame_ind] = 1;
gf_group->pyramid_level[*frame_ind] = 0;
++(*frame_ind);
// set parameters for frames displayed after this frame
set_multi_layer_params(gf_group, m, r, frame_ind, arf_ind, level - 1);
}
}
static INLINE unsigned char get_pyramid_height(int pyramid_width) {
assert(pyramid_width <= 16 && pyramid_width >= 4 &&
"invalid gf interval for pyramid structure");
return pyramid_width > 12 ? 4 : (pyramid_width > 6 ? 3 : 2);
}
static int construct_multi_layer_gf_structure(GF_GROUP *const gf_group,
const int gf_interval) {
int frame_index = 0;
gf_group->pyramid_height = get_pyramid_height(gf_interval);
assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL);
av1_zero_array(gf_group->pyramid_lvl_nodes, MAX_PYRAMID_LVL);
// At the beginning of each GF group it will be a key or overlay frame,
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
gf_group->arf_src_offset[frame_index] = 0;
gf_group->arf_pos_in_gf[frame_index] = 0;
gf_group->arf_update_idx[frame_index] = 0;
gf_group->pyramid_level[frame_index] = 0;
++frame_index;
// ALT0
gf_group->update_type[frame_index] = ARF_UPDATE;
gf_group->arf_src_offset[frame_index] = gf_interval - 1;
gf_group->arf_pos_in_gf[frame_index] = 0;
gf_group->arf_update_idx[frame_index] = 0;
gf_group->pyramid_level[frame_index] = gf_group->pyramid_height;
++frame_index;
// set parameters for the rest of the frames
set_multi_layer_params(gf_group, 0, gf_interval, &frame_index, 0,
gf_group->pyramid_height - 1);
return frame_index;
}
void define_customized_gf_group_structure(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
const int key_frame = cpi->common.frame_type == KEY_FRAME;
assert(rc->baseline_gf_interval >= 4 &&
rc->baseline_gf_interval <= MAX_PYRAMID_SIZE);
const int gf_update_frames =
construct_multi_layer_gf_structure(gf_group, rc->baseline_gf_interval);
int frame_index;
cpi->num_extra_arfs = 0;
for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) {
// Set unused variables to default values
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
// Special handle for the first frame for assigning update_type
if (frame_index == 0) {
// For key frames the frame target rate is already set and it
// is also the golden frame.
if (key_frame) {
gf_group->update_type[frame_index] = KF_UPDATE;
continue;
}
if (rc->source_alt_ref_active) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
}
} else {
if (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
++cpi->num_extra_arfs;
}
// Assign rf level based on update type
gf_group->rf_level[frame_index] =
update_type_2_rf_level(gf_group->update_type[frame_index]);
}
// NOTE: We need to configure the frame at the end of the sequence + 1 that
// will be the start frame for the next group. Otherwise prior to the
// call to av1_rc_get_second_pass_params() the data will be undefined.
if (rc->source_alt_ref_pending) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_STD;
}
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
gf_group->arf_update_idx[frame_index] = 0;
// This value is only used for INTNL_OVERLAY_UPDATE
gf_group->arf_pos_in_gf[frame_index] = 0;
// This parameter is useless?
gf_group->arf_ref_idx[frame_index] = 0;
#ifdef CHCEK_GF_PARAMETER
check_frame_params(gf_group, rc->baseline_gf_interval, gf_update_frames);
#endif
}
// It is an example of how to define a GF stucture manually. The function will
// result in exactly the same GF group structure as
// define_customized_gf_group_structure() when rc->baseline_gf_interval == 4
#if USE_MANUAL_GF4_STRUCT
#define GF_INTERVAL_4 4
static const unsigned char gf4_multi_layer_params[][GF_FRAME_PARAMS] = {
{
// gf_group->index == 0 (Frame 0)
// It can also be KEY frame. Will assign the proper value
// in define_gf_group_structure
OVERLAY_UPDATE, // update_type (default value)
0, // arf_src_offset
0, // arf_pos_in_gf
0 // arf_update_idx
},
{
// gf_group->index == 1 (Frame 4)
ARF_UPDATE, // update_type
GF_INTERVAL_4 - 1, // arf_src_offset
0, // arf_pos_in_gf
0 // arf_update_idx
},
{
// gf_group->index == 2 (Frame 2)
INTNL_ARF_UPDATE, // update_type
(GF_INTERVAL_4 >> 1) - 1, // arf_src_offset
0, // arf_pos_in_gf
0 // arf_update_idx
},
{
// gf_group->index == 3 (Frame 1)
LAST_BIPRED_UPDATE, // update_type
0, // arf_src_offset
0, // arf_pos_in_gf
0 // arf_update_idx
},
{
// gf_group->index == 4 (Frame 2 - OVERLAY)
INTNL_OVERLAY_UPDATE, // update_type
0, // arf_src_offset
2, // arf_pos_in_gf
0 // arf_update_idx
},
{
// gf_group->index == 5 (Frame 3)
LF_UPDATE, // update_type
0, // arf_src_offset
0, // arf_pos_in_gf
1 // arf_update_idx
}
};
static int define_gf_group_structure_4(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
const int key_frame = cpi->common.frame_type == KEY_FRAME;
assert(rc->baseline_gf_interval == GF_INTERVAL_4);
const int gf_update_frames = rc->baseline_gf_interval + 2;
int frame_index;
for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) {
int param_idx = 0;
gf_group->bidir_pred_enabled[frame_index] = 0;
if (frame_index == 0) {
// gf_group->arf_src_offset[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
gf_group->bidir_pred_enabled[frame_index] = 0;
// For key frames the frame target rate is already set and it
// is also the golden frame.
if (key_frame) continue;
gf_group->update_type[frame_index] =
gf4_multi_layer_params[frame_index][param_idx++];
if (rc->source_alt_ref_active) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
}
param_idx++;
} else {
gf_group->update_type[frame_index] =
gf4_multi_layer_params[frame_index][param_idx++];
}
// setup other parameters
gf_group->rf_level[frame_index] =
update_type_2_rf_level(gf_group->update_type[frame_index]);
// == arf_src_offset ==
gf_group->arf_src_offset[frame_index] =
gf4_multi_layer_params[frame_index][param_idx++];
// == arf_pos_in_gf ==
gf_group->arf_pos_in_gf[frame_index] =
gf4_multi_layer_params[frame_index][param_idx++];
// == arf_update_idx ==
gf_group->brf_src_offset[frame_index] =
gf4_multi_layer_params[frame_index][param_idx];
}
// NOTE: We need to configure the frame at the end of the sequence + 1 that
// will be the start frame for the next group. Otherwise prior to the
// call to av1_rc_get_second_pass_params() the data will be undefined.
gf_group->arf_update_idx[frame_index] = 0;
gf_group->arf_ref_idx[frame_index] = 0;
if (rc->source_alt_ref_pending) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_STD;
}
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
// This value is only used for INTNL_OVERLAY_UPDATE
gf_group->arf_pos_in_gf[frame_index] = 0;
return gf_update_frames;
}
#endif // USE_MANUAL_GF4_STRUCT
#endif // USE_SYMM_MULTI_LAYER
static void define_gf_group_structure(AV1_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
#if USE_SYMM_MULTI_LAYER
const int valid_customized_gf_length =
rc->baseline_gf_interval >= 4 &&
rc->baseline_gf_interval <= MAX_PYRAMID_SIZE;
// used the new structure only if extra_arf is allowed
if (valid_customized_gf_length && rc->source_alt_ref_pending &&
cpi->extra_arf_allowed > 0) {
#if USE_MANUAL_GF4_STRUCT
if (rc->baseline_gf_interval == 4)
define_gf_group_structure_4(cpi);
else
#endif
define_customized_gf_group_structure(cpi);
cpi->new_bwdref_update_rule = 1;
return;
} else {
cpi->new_bwdref_update_rule = 0;
}
#endif
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
int i;
int frame_index = 0;
const int key_frame = cpi->common.frame_type == KEY_FRAME;
// The use of bi-predictive frames are only enabled when following 3
// conditions are met:
// (1) ALTREF is enabled;
// (2) The bi-predictive group interval is at least 2; and
// (3) The bi-predictive group interval is strictly smaller than the
// golden group interval.
const int is_bipred_enabled =
cpi->extra_arf_allowed && rc->source_alt_ref_pending &&
rc->bipred_group_interval &&
rc->bipred_group_interval <=
(rc->baseline_gf_interval - rc->source_alt_ref_pending);
int bipred_group_end = 0;
int bipred_frame_index = 0;
const unsigned char ext_arf_interval =
(unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1);
int which_arf = cpi->num_extra_arfs;
int subgroup_interval[MAX_EXT_ARFS + 1];
int is_sg_bipred_enabled = is_bipred_enabled;
int accumulative_subgroup_interval = 0;
// For key frames the frame target rate is already set and it
// is also the golden frame.
// === [frame_index == 0] ===
if (!key_frame) {
if (rc->source_alt_ref_active) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_STD;
}
gf_group->arf_update_idx[frame_index] = 0;
gf_group->arf_ref_idx[frame_index] = 0;
}
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
frame_index++;
bipred_frame_index++;
// === [frame_index == 1] ===
if (rc->source_alt_ref_pending) {
gf_group->update_type[frame_index] = ARF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_STD;
gf_group->arf_src_offset[frame_index] =
(unsigned char)(rc->baseline_gf_interval - 1);
gf_group->arf_update_idx[frame_index] = 0;
gf_group->arf_ref_idx[frame_index] = 0;
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
// NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames.
// Work out the ARFs' positions in this gf group
// NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display
// order (except for the original ARF). In the example of three ALT_REF's,
// We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0
// but code them in the following order:
// KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0
//
// arf_pos_for_ovrly[]: Position for OVERLAY
// arf_pos_in_gf[]: Position for ALTREF
cpi->arf_pos_for_ovrly[0] = frame_index + cpi->num_extra_arfs +
gf_group->arf_src_offset[frame_index] + 1;
for (i = 0; i < cpi->num_extra_arfs; ++i) {
cpi->arf_pos_for_ovrly[i + 1] =
frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2);
subgroup_interval[i] = cpi->arf_pos_for_ovrly[i] -
cpi->arf_pos_for_ovrly[i + 1] - (i == 0 ? 1 : 2);
}
subgroup_interval[cpi->num_extra_arfs] =
cpi->arf_pos_for_ovrly[cpi->num_extra_arfs] - frame_index -
(cpi->num_extra_arfs == 0 ? 1 : 2);
++frame_index;
// Insert an extra ARF
// === [frame_index == 2] ===
if (cpi->num_extra_arfs) {
gf_group->update_type[frame_index] = INTNL_ARF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_LOW;
gf_group->arf_src_offset[frame_index] = ext_arf_interval;
gf_group->arf_update_idx[frame_index] = which_arf;
gf_group->arf_ref_idx[frame_index] = 0;
++frame_index;
}
accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs];
}
for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
gf_group->arf_update_idx[frame_index] = which_arf;
gf_group->arf_ref_idx[frame_index] = which_arf;
// If we are going to have ARFs, check whether we can have BWDREF in this
// subgroup, and further, whether we can have ARF subgroup which contains
// the BWDREF subgroup but contained within the GF group:
//
// GF group --> ARF subgroup --> BWDREF subgroup
if (rc->source_alt_ref_pending) {
is_sg_bipred_enabled =
is_bipred_enabled &&
(subgroup_interval[which_arf] > rc->bipred_group_interval);
}
// NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive
// frame group interval is strictly smaller than that of the GOLDEN
// FRAME group interval.
// TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on.
if (is_sg_bipred_enabled && !bipred_group_end) {
const int cur_brf_src_offset = rc->bipred_group_interval - 1;
if (bipred_frame_index == 1) {
// --- BRF_UPDATE ---
gf_group->update_type[frame_index] = BRF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_LOW;
gf_group->brf_src_offset[frame_index] = cur_brf_src_offset;
} else if (bipred_frame_index == rc->bipred_group_interval) {
// --- LAST_BIPRED_UPDATE ---
gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
gf_group->brf_src_offset[frame_index] = 0;
// Reset the bi-predictive frame index.
bipred_frame_index = 0;
} else {
// --- BIPRED_UPDATE ---
gf_group->update_type[frame_index] = BIPRED_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
gf_group->brf_src_offset[frame_index] = 0;
}
gf_group->bidir_pred_enabled[frame_index] = 1;
bipred_frame_index++;
// Check whether the next bi-predictive frame group would entirely be
// included within the current golden frame group.
// In addition, we need to avoid coding a BRF right before an ARF.
if (bipred_frame_index == 1 &&
(i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) {
bipred_group_end = 1;
}
} else {
gf_group->update_type[frame_index] = LF_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
}
++frame_index;
// Check if we need to update the ARF.
if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 &&
frame_index > cpi->arf_pos_for_ovrly[which_arf]) {
--which_arf;
accumulative_subgroup_interval += subgroup_interval[which_arf] + 1;
// Meet the new subgroup; Reset the bipred_group_end flag.
bipred_group_end = 0;
// Insert another extra ARF after the overlay frame
if (which_arf) {
gf_group->update_type[frame_index] = INTNL_ARF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_LOW;
gf_group->arf_src_offset[frame_index] = ext_arf_interval;
gf_group->arf_update_idx[frame_index] = which_arf;
gf_group->arf_ref_idx[frame_index] = 0;
++frame_index;
}
}
}
// NOTE: We need to configure the frame at the end of the sequence + 1 that
// will be the start frame for the next group. Otherwise prior to the
// call to av1_rc_get_second_pass_params() the data will be undefined.
gf_group->arf_update_idx[frame_index] = 0;
gf_group->arf_ref_idx[frame_index] = 0;
if (rc->source_alt_ref_pending) {
gf_group->update_type[frame_index] = OVERLAY_UPDATE;
gf_group->rf_level[frame_index] = INTER_NORMAL;
cpi->arf_pos_in_gf[0] = 1;
if (cpi->num_extra_arfs) {
// Overwrite the update_type for extra-ARF's corresponding internal
// OVERLAY's: Change from LF_UPDATE to INTNL_OVERLAY_UPDATE.
for (i = cpi->num_extra_arfs; i > 0; --i) {
cpi->arf_pos_in_gf[i] =
(i == cpi->num_extra_arfs ? 2 : cpi->arf_pos_for_ovrly[i + 1] + 1);
gf_group->update_type[cpi->arf_pos_for_ovrly[i]] = INTNL_OVERLAY_UPDATE;
gf_group->rf_level[cpi->arf_pos_for_ovrly[i]] = INTER_NORMAL;
}
}
} else {
gf_group->update_type[frame_index] = GF_UPDATE;
gf_group->rf_level[frame_index] = GF_ARF_STD;
}
gf_group->bidir_pred_enabled[frame_index] = 0;
gf_group->brf_src_offset[frame_index] = 0;
}
#if USE_SYMM_MULTI_LAYER
#define LEAF_REDUCTION_FACTOR 0.75f
#define LVL_3_BOOST_FACTOR 0.8f
#define LVL_2_BOOST_FACTOR 0.3f
static float_t lvl_budget_factor[MAX_PYRAMID_LVL - 1][MAX_PYRAMID_LVL - 1] = {
{ 1, 0, 0 },
{ LVL_3_BOOST_FACTOR, 0, 0 }, // Leaking budget works better
{ LVL_3_BOOST_FACTOR, (1 - LVL_3_BOOST_FACTOR) * LVL_2_BOOST_FACTOR,
(1 - LVL_3_BOOST_FACTOR) * (1 - LVL_2_BOOST_FACTOR) }
};
#endif // USE_SYMM_MULTI_LAYER
static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits,
double group_error, int gf_arf_bits) {
RATE_CONTROL *const rc = &cpi->rc;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
FIRSTPASS_STATS frame_stats;
int i;
int frame_index = 0;
int target_frame_size;
int key_frame;
const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
int64_t total_group_bits = gf_group_bits;
double modified_err = 0.0;
double err_fraction;
int ext_arf_boost[MAX_EXT_ARFS];
define_gf_group_structure(cpi);
av1_zero_array(ext_arf_boost, MAX_EXT_ARFS);
key_frame = cpi->common.frame_type == KEY_FRAME;
// For key frames the frame target rate is already set and it
// is also the golden frame.
// === [frame_index == 0] ===
if (!key_frame) {
if (rc->source_alt_ref_active)
gf_group->bit_allocation[frame_index] = 0;
else
gf_group->bit_allocation[frame_index] = gf_arf_bits;
// Step over the golden frame / overlay frame
if (EOF == input_stats(twopass, &frame_stats)) return;
}
// Deduct the boost bits for arf (or gf if it is not a key frame)
// from the group total.
if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
frame_index++;
// Store the bits to spend on the ARF if there is one.
// === [frame_index == 1] ===
if (rc->source_alt_ref_pending) {
gf_group->bit_allocation[frame_index] = gf_arf_bits;
++frame_index;
// Skip all the extra-ARF's right after ARF at the starting segment of
// the current GF group.
if (cpi->num_extra_arfs) {
while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
++frame_index;
}
}
// Allocate bits to the other frames in the group.
for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
if (EOF == input_stats(twopass, &frame_stats)) break;
modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
if (group_error > 0)
err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
else
err_fraction = 0.0;
target_frame_size = (int)((double)total_group_bits * err_fraction);
target_frame_size =
clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits));
if (gf_group->update_type[frame_index] == BRF_UPDATE) {
// Boost up the allocated bits on BWDREF_FRAME
gf_group->bit_allocation[frame_index] =
target_frame_size + (target_frame_size >> 2);
} else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) {
// Press down the allocated bits on LAST_BIPRED_UPDATE frames
gf_group->bit_allocation[frame_index] =
target_frame_size - (target_frame_size >> 1);
} else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) {
// TODO(zoeliu): To investigate whether the allocated bits on
// BIPRED_UPDATE frames need to be further adjusted.
gf_group->bit_allocation[frame_index] = target_frame_size;
#if USE_SYMM_MULTI_LAYER
} else if (cpi->new_bwdref_update_rule &&
gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) {
assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL &&
gf_group->pyramid_height >= 0 &&
"non-valid height for a pyramid structure");
int arf_pos = gf_group->arf_pos_in_gf[frame_index];
gf_group->bit_allocation[frame_index] = 0;
gf_group->bit_allocation[arf_pos] = target_frame_size;
#if MULTI_LVL_BOOST_VBR_CQ
const int pyr_h = gf_group->pyramid_height - 2;
const int this_lvl = gf_group->pyramid_level[arf_pos];
const int dist2top = gf_group->pyramid_height - 1 - this_lvl;
const float_t budget =
LEAF_REDUCTION_FACTOR * gf_group->pyramid_lvl_nodes[0];
const float_t lvl_boost = budget * lvl_budget_factor[pyr_h][dist2top] /
gf_group->pyramid_lvl_nodes[this_lvl];
gf_group->bit_allocation[arf_pos] += (int)(target_frame_size * lvl_boost);
#endif // MULTI_LVL_BOOST_VBR_CQ
#endif // USE_SYMM_MULTI_LAYER
} else {
assert(gf_group->update_type[frame_index] == LF_UPDATE ||
gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE);
gf_group->bit_allocation[frame_index] = target_frame_size;
#if MULTI_LVL_BOOST_VBR_CQ
if (cpi->new_bwdref_update_rule) {
gf_group->bit_allocation[frame_index] -=
(int)(target_frame_size * LEAF_REDUCTION_FACTOR);
}
#endif // MULTI_LVL_BOOST_VBR_CQ
}
++frame_index;
// Skip all the extra-ARF's.
if (cpi->num_extra_arfs) {
while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
++frame_index;
}
}
#if USE_SYMM_MULTI_LAYER
if (cpi->new_bwdref_update_rule == 0 && rc->source_alt_ref_pending) {
#else
if (rc->source_alt_ref_pending) {
#endif
if (cpi->num_extra_arfs) {
// NOTE: For bit allocation, move the allocated bits associated with
// INTNL_OVERLAY_UPDATE to the corresponding INTNL_ARF_UPDATE.
// i > 0 for extra-ARF's and i == 0 for ARF:
// arf_pos_for_ovrly[i]: Position for INTNL_OVERLAY_UPDATE
// arf_pos_in_gf[i]: Position for INTNL_ARF_UPDATE
for (i = cpi->num_extra_arfs; i > 0; --i) {
assert(gf_group->update_type[cpi->arf_pos_for_ovrly[i]] ==
INTNL_OVERLAY_UPDATE);
// Encoder's choice:
// Set show_existing_frame == 1 for all extra-ARF's, and hence
// allocate zero bit for both all internal OVERLAY frames.
gf_group->bit_allocation[cpi->arf_pos_in_gf[i]] =
gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]];
gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]] = 0;
}
}
}
}
// Analyse and define a gf/arf group.
static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
AV1EncoderConfig *const oxcf = &cpi->oxcf;
TWO_PASS *const twopass = &cpi->twopass;
FIRSTPASS_STATS next_frame;
const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
int i;
double boost_score = 0.0;
#if !CONFIG_FIX_GF_LENGTH
double old_boost_score = 0.0;
double mv_ratio_accumulator_thresh;
int active_max_gf_interval;
int active_min_gf_interval;
#endif
double gf_group_err = 0.0;
#if GROUP_ADAPTIVE_MAXQ
double gf_group_raw_error = 0.0;
#endif
double gf_group_skip_pct = 0.0;
double gf_group_inactive_zone_rows = 0.0;
double gf_first_frame_err = 0.0;
double mod_frame_err = 0.0;
double mv_ratio_accumulator = 0.0;
double decay_accumulator = 1.0;
double zero_motion_accumulator = 1.0;
double loop_decay_rate = 1.00;
double last_loop_decay_rate = 1.00;
double this_frame_mv_in_out = 0.0;
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
unsigned int allow_alt_ref = is_altref_enabled(cpi);
int f_boost = 0;
int b_boost = 0;
int flash_detected;
int64_t gf_group_bits;
double gf_group_error_left;
int gf_arf_bits;
const int is_key_frame = frame_is_intra_only(cm);
const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
cpi->extra_arf_allowed = 1;
// Reset the GF group data structures unless this is a key
// frame in which case it will already have been done.
if (is_key_frame == 0) {
av1_zero(twopass->gf_group);
}
aom_clear_system_state();
av1_zero(next_frame);
// Load stats for the current frame.
mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
// Note the error of the frame at the start of the group. This will be
// the GF frame error if we code a normal gf.
gf_first_frame_err = mod_frame_err;
// If this is a key frame or the overlay from a previous arf then
// the error score / cost of this frame has already been accounted for.
if (arf_active_or_kf) {
gf_group_err -= gf_first_frame_err;
#if GROUP_ADAPTIVE_MAXQ
gf_group_raw_error -= this_frame->coded_error;
#endif
gf_group_skip_pct -= this_frame->intra_skip_pct;
gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
}
#if !CONFIG_FIX_GF_LENGTH
// Motion breakout threshold for loop below depends on image size.
mv_ratio_accumulator_thresh =
(cpi->initial_height + cpi->initial_width) / 4.0;
// Set a maximum and minimum interval for the GF group.
// If the image appears almost completely static we can extend beyond this.
{
int int_max_q = (int)(av1_convert_qindex_to_q(
twopass->active_worst_quality, cpi->common.seq_params.bit_depth));
int int_lbq = (int)(av1_convert_qindex_to_q(
rc->last_boosted_qindex, cpi->common.seq_params.bit_depth));
active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200);
if (active_min_gf_interval > rc->max_gf_interval)
active_min_gf_interval = rc->max_gf_interval;
// The value chosen depends on the active Q range. At low Q we have
// bits to spare and are better with a smaller interval and smaller boost.
// At high Q when there are few bits to spare we are better with a longer
// interval to spread the cost of the GF.
active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6));
// We have: active_min_gf_interval <= rc->max_gf_interval
if (active_max_gf_interval < active_min_gf_interval)
active_max_gf_interval = active_min_gf_interval;
else if (active_max_gf_interval > rc->max_gf_interval)
active_max_gf_interval = rc->max_gf_interval;
}
#endif // !CONFIG_FIX_GF_LENGTH
double avg_sr_coded_error = 0;
double avg_raw_err_stdev = 0;
int non_zero_stdev_count = 0;
i = 0;
while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
++i;
// Accumulate error score of frames in this gf group.
mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
gf_group_err += mod_frame_err;
#if GROUP_ADAPTIVE_MAXQ
gf_group_raw_error += this_frame->coded_error;
#endif
gf_group_skip_pct += this_frame->intra_skip_pct;
gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
if (EOF == input_stats(twopass, &next_frame)) break;
// Test for the case where there is a brief flash but the prediction
// quality back to an earlier frame is then restored.
flash_detected = detect_flash(twopass, 0);
// Update the motion related elements to the boost calculation.
accumulate_frame_motion_stats(
&next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
&abs_mv_in_out_accumulator, &mv_ratio_accumulator);
// sum up the metric values of current gf group
avg_sr_coded_error += next_frame.sr_coded_error;
if (fabs(next_frame.raw_error_stdev) > 0.000001) {
non_zero_stdev_count++;
avg_raw_err_stdev += next_frame.raw_error_stdev;
}
// Accumulate the effect of prediction quality decay.
if (!flash_detected) {
last_loop_decay_rate = loop_decay_rate;
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
decay_accumulator = decay_accumulator * loop_decay_rate;
// Monitor for static sections.
zero_motion_accumulator = AOMMIN(
zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
// Break clause to detect very still sections after motion. For example,
// a static image after a fade or other transition.
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
last_loop_decay_rate)) {
allow_alt_ref = 0;
break;
}
}
// Calculate a boost number for this frame.
boost_score +=
decay_accumulator *
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST);
#if CONFIG_FIX_GF_LENGTH
if (i == (FIXED_GF_LENGTH + 1)) break;
#else
// Skip breaking condition for CONFIG_FIX_GF_LENGTH
// Break out conditions.
if (
// Break at active_max_gf_interval unless almost totally static.
(i >= (active_max_gf_interval + arf_active_or_kf) &&
zero_motion_accumulator < 0.995) ||
(
// Don't break out with a very short interval.
(i >= active_min_gf_interval + arf_active_or_kf) &&
(!flash_detected) &&
((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
(abs_mv_in_out_accumulator > 3.0) ||
(mv_in_out_accumulator < -2.0) ||
((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
// If GF group interval is < 12, we force it to be 8. Otherwise,
// if it is >= 12, we keep it as is.
// NOTE: 'i' is 1 more than the GF group interval candidate that is being
// checked.
if (i == (8 + 1) || i >= (12 + 1)) {
boost_score = old_boost_score;
break;
}
}
old_boost_score = boost_score;
#endif // CONFIG_FIX_GF_LENGTH
*this_frame = next_frame;
}
twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
// Was the group length constrained by the requirement for a new KF?
rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
: cpi->common.MBs;
assert(num_mbs > 0);
if (i) avg_sr_coded_error /= i;
if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count;
// Disable extra altrefs and backward refs for "still" gf group:
// zero_motion_accumulator: minimum percentage of (0,0) motion;
// avg_sr_coded_error: average of the SSE per pixel of each frame;
// avg_raw_err_stdev: average of the standard deviation of (0,0)
// motion error per block of each frame.
const int disable_bwd_extarf =
(zero_motion_accumulator > MIN_ZERO_MOTION &&
avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR &&
avg_raw_err_stdev < MAX_RAW_ERR_VAR);
if (disable_bwd_extarf) cpi->extra_arf_allowed = 0;
#define REDUCE_GF_LENGTH_THRESH 4
#define REDUCE_GF_LENGTH_TO_KEY_THRESH 9
#define REDUCE_GF_LENGTH_BY 1
int alt_offset = 0;
#if REDUCE_LAST_GF_LENGTH
// TODO(weitinglin): The length reduction stretagy is tweaking using AOM_Q
// mode, and hurting the performance of VBR mode. We need to investigate how
// to adjust GF length for other modes.
int allow_gf_length_reduction =
cpi->oxcf.rc_mode == AOM_Q || cpi->extra_arf_allowed == 0;
// We are going to have an alt ref, but we don't have do adjustment for
// lossless mode
if (allow_alt_ref && allow_gf_length_reduction &&
(i < cpi->oxcf.lag_in_frames) && (i >= rc->min_gf_interval) &&
!is_lossless_requested(&cpi->oxcf)) {
// adjust length of this gf group if one of the following condition met
// 1: only one overlay frame left and this gf is too long
// 2: next gf group is too short to have arf compared to the current gf
// maximum length of next gf group
const int next_gf_len = rc->frames_to_key - i;
const int single_overlay_left =
next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH;
// the next gf is probably going to have a ARF but it will be shorter than
// this gf
const int unbalanced_gf =
i > REDUCE_GF_LENGTH_TO_KEY_THRESH &&
next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH &&
next_gf_len + 1 >= rc->min_gf_interval;
if (single_overlay_left || unbalanced_gf) {
// Note: Tried roll_back = DIVIDE_AND_ROUND(i, 8), but is does not work
// better in the current setting
const int roll_back = REDUCE_GF_LENGTH_BY;
alt_offset = -roll_back;
i -= roll_back;
}
}
#endif
// Should we use the alternate reference frame.
if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
(i >= rc->min_gf_interval)) {
// Calculate the boost for alt ref.
rc->gfu_boost =
calc_arf_boost(cpi, alt_offset, (i - 1), (i - 1), &f_boost, &b_boost);
rc->source_alt_ref_pending = 1;
// do not replace ARFs with overlay frames, and keep it as GOLDEN_REF
cpi->preserve_arf_as_gld = 1;
} else {
rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST);
rc->source_alt_ref_pending = 0;
cpi->preserve_arf_as_gld = 0;
}
// Set the interval until the next gf.
// If forward keyframes are enabled, ensure the final gf group obeys the
// MIN_FWD_KF_INTERVAL.
if (cpi->oxcf.fwd_kf_enabled &&
((twopass->stats_in - i + rc->frames_to_key) < twopass->stats_in_end)) {
if (i == rc->frames_to_key) {
rc->baseline_gf_interval = i;
// if the last gf group will be smaller than MIN_FWD_KF_INTERVAL
} else if ((rc->frames_to_key - i <
AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) &&
(rc->frames_to_key != i)) {
// if possible, merge the last two gf groups
if (rc->frames_to_key <= MAX_PYRAMID_SIZE) {
rc->baseline_gf_interval = rc->frames_to_key;
// if merging the last two gf groups creates a group that is too long,
// split them and force the last gf group to be the MIN_FWD_KF_INTERVAL
} else {
rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL;
}
} else {
rc->baseline_gf_interval =
i - (is_key_frame || rc->source_alt_ref_pending);
}
} else {
rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
}
#if REDUCE_LAST_ALT_BOOST
#define LAST_ALR_BOOST_FACTOR 0.2f
rc->arf_boost_factor = 1.0;
if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) {
// Reduce the boost of altref in the last gf group
if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY ||
rc->frames_to_key - i == 0) {
rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR;
}
}
#endif
if (!cpi->extra_arf_allowed) {
cpi->num_extra_arfs = 0;
} else {
#if USE_SYMM_MULTI_LAYER
if (rc->baseline_gf_interval == 4 && rc->source_alt_ref_pending)
cpi->num_extra_arfs = 1;
else
cpi->num_extra_arfs = get_number_of_extra_arfs(
rc->baseline_gf_interval, rc->source_alt_ref_pending);
#else
// Compute how many extra alt_refs we can have
cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval,
rc->source_alt_ref_pending);
#endif // USE_SYMM_MULTI_LAYER
}
#if !USE_SYMM_MULTI_LAYER
// Currently at maximum two extra ARFs' are allowed
assert(cpi->num_extra_arfs <= MAX_EXT_ARFS);
#endif
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
rc->bipred_group_interval = BFG_INTERVAL;
// The minimum bi-predictive frame group interval is 2.
if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0;
// Reset the file position.
reset_fpf_position(twopass, start_pos);
// Calculate the bits to be allocated to the gf/arf group as a whole
gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
#if GROUP_ADAPTIVE_MAXQ
// Calculate an estimate of the maxq needed for the group.
// We are more agressive about correcting for sections
// where there could be significant overshoot than for easier
// sections where we do not wish to risk creating an overshoot
// of the allocated bit budget.
if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) {
const int vbr_group_bits_per_frame =
(int)(gf_group_bits / rc->baseline_gf_interval);
const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
const double group_av_skip_pct =
gf_group_skip_pct / rc->baseline_gf_interval;
const double group_av_inactive_zone =
((gf_group_inactive_zone_rows * 2) /
(rc->baseline_gf_interval * (double)cm->mb_rows));
int tmp_q;
// rc factor is a weight factor that corrects for local rate control drift.
double rc_factor = 1.0;
if (rc->rate_error_estimate > 0) {
rc_factor = AOMMAX(RC_FACTOR_MIN,
(double)(100 - rc->rate_error_estimate) / 100.0);
} else {
rc_factor = AOMMIN(RC_FACTOR_MAX,
(double)(100 - rc->rate_error_estimate) / 100.0);
}
tmp_q = get_twopass_worst_quality(
cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor);
twopass->active_worst_quality =
AOMMAX(tmp_q, twopass->active_worst_quality >> 1);
}
#endif
// Calculate the extra bits to be used for boosted frame(s)
gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
gf_group_bits);
// Adjust KF group bits and error remaining.
twopass->kf_group_error_left -= (int64_t)gf_group_err;
// If this is an arf update we want to remove the score for the overlay
// frame at the end which will usually be very cheap to code.
// The overlay frame has already, in effect, been coded so we want to spread
// the remaining bits among the other frames.
// For normal GFs remove the score for the GF itself unless this is
// also a key frame in which case it has already been accounted for.
if (rc->source_alt_ref_pending) {
gf_group_error_left = gf_group_err - mod_frame_err;
} else if (is_key_frame == 0) {
gf_group_error_left = gf_group_err - gf_first_frame_err;
} else {
gf_group_error_left = gf_group_err;
}
// Allocate bits to each of the frames in the GF group.
allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
// Reset the file position.
reset_fpf_position(twopass, start_pos);
// Calculate a section intra ratio used in setting max loop filter.
if (cpi->common.frame_type != KEY_FRAME) {
twopass->section_intra_rating = calculate_section_intra_ratio(
start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
}
}
// Threshold for use of the lagging second reference frame. High second ref
// usage may point to a transient event like a flash or occlusion rather than
// a real scene cut.
#define SECOND_REF_USEAGE_THRESH 0.1
// Minimum % intra coding observed in first pass (1.0 = 100%)
#define MIN_INTRA_LEVEL 0.25
// Minimum ratio between the % of intra coding and inter coding in the first
// pass after discounting neutral blocks (discounting neutral blocks in this
// way helps catch scene cuts in clips with very flat areas or letter box
// format clips with image padding.
#define INTRA_VS_INTER_THRESH 2.0
// Hard threshold where the first pass chooses intra for almost all blocks.
// In such a case even if the frame is not a scene cut coding a key frame
// may be a good option.
#define VERY_LOW_INTER_THRESH 0.05
// Maximum threshold for the relative ratio of intra error score vs best
// inter error score.
#define KF_II_ERR_THRESHOLD 2.5
// In real scene cuts there is almost always a sharp change in the intra
// or inter error score.
#define ERR_CHANGE_THRESHOLD 0.4
// For real scene cuts we expect an improvment in the intra inter error
// ratio in the next frame.
#define II_IMPROVEMENT_THRESHOLD 3.5
#define KF_II_MAX 128.0
static int test_candidate_kf(TWO_PASS *twopass,
const FIRSTPASS_STATS *last_frame,
const FIRSTPASS_STATS *this_frame,
const FIRSTPASS_STATS *next_frame) {
int is_viable_kf = 0;
double pcnt_intra = 1.0 - this_frame->pcnt_inter;
double modified_pcnt_inter =
this_frame->pcnt_inter - this_frame->pcnt_neutral;
// Does the frame satisfy the primary criteria of a key frame?
// See above for an explanation of the test criteria.
// If so, then examine how well it predicts subsequent frames.
if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
(next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
((pcnt_intra > MIN_INTRA_LEVEL) &&
(pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
((this_frame->intra_error /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
KF_II_ERR_THRESHOLD) &&
((fabs(last_frame->coded_error - this_frame->coded_error) /
DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
ERR_CHANGE_THRESHOLD) ||
(fabs(last_frame->intra_error - this_frame->intra_error) /
DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
ERR_CHANGE_THRESHOLD) ||
((next_frame->intra_error /
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
II_IMPROVEMENT_THRESHOLD))))) {
int i;
const FIRSTPASS_STATS *start_pos = twopass->stats_in;
FIRSTPASS_STATS local_next_frame = *next_frame;
double boost_score = 0.0;
double old_boost_score = 0.0;
double decay_accumulator = 1.0;
// Examine how well the key frame predicts subsequent frames.
for (i = 0; i < 16; ++i) {
double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
// Cumulative effect of decay in prediction quality.
if (local_next_frame.pcnt_inter > 0.85)
decay_accumulator *= local_next_frame.pcnt_inter;
else
decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
// Keep a running total.
boost_score += (decay_accumulator * next_iiratio);
// Test various breakout clauses.
if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
(((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
0.20) &&
(next_iiratio < 3.0)) ||
((boost_score - old_boost_score) < 3.0) ||
(local_next_frame.intra_error < 200)) {
break;
}
old_boost_score = boost_score;
// Get the next frame details
if (EOF == input_stats(twopass, &local_next_frame)) break;
}
// If there is tolerable prediction for at least the next 3 frames then
// break out else discard this potential key frame and move on
if (boost_score > 30.0 && (i > 3)) {
is_viable_kf = 1;
} else {
// Reset the file position
reset_fpf_position(twopass, start_pos);
is_viable_kf = 0;
}
}
return is_viable_kf;
}
#define FRAMES_TO_CHECK_DECAY 8
static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
int i, j;
RATE_CONTROL *const rc = &cpi->rc;
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const FIRSTPASS_STATS first_frame = *this_frame;
const FIRSTPASS_STATS *const start_position = twopass->stats_in;
FIRSTPASS_STATS next_frame;
FIRSTPASS_STATS last_frame;
int kf_bits = 0;
int loop_decay_counter = 0;
double decay_accumulator = 1.0;
double av_decay_accumulator = 0.0;
double zero_motion_accumulator = 1.0;
double boost_score = 0.0;
double kf_mod_err = 0.0;
double kf_group_err = 0.0;
double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
av1_zero(next_frame);
cpi->common.frame_type = KEY_FRAME;
// Reset the GF group data structures.
av1_zero(*gf_group);
// Is this a forced key frame by interval.
rc->this_key_frame_forced = rc->next_key_frame_forced;
// Clear the alt ref active flag and last group multi arf flags as they
// can never be set for a key frame.
rc->source_alt_ref_active = 0;
// KF is always a GF so clear frames till next gf counter.
rc->frames_till_gf_update_due = 0;
rc->frames_to_key = 1;
twopass->kf_group_bits = 0; // Total bits available to kf group
twopass->kf_group_error_left = 0; // Group modified error score.
kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
// Initialize the decay rates for the recent frames to check
for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
// Find the next keyframe.
i = 0;
while (twopass->stats_in < twopass->stats_in_end &&
rc->frames_to_key < cpi->oxcf.key_freq) {
// Accumulate kf group error.
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
// Load the next frame's stats.
last_frame = *this_frame;
input_stats(twopass, this_frame);
// Provided that we are not at the end of the file...
if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
double loop_decay_rate;
// Check for a scene cut.
if (test_candidate_kf(twopass, &last_frame, this_frame,
twopass->stats_in))
break;
// How fast is the prediction quality decaying?
loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
// We want to know something about the recent past... rather than
// as used elsewhere where we are concerned with decay in prediction
// quality since the last GF or KF.
recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
decay_accumulator = 1.0;
for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
decay_accumulator *= recent_loop_decay[j];
// Special check for transition or high motion followed by a
// static scene.
if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
loop_decay_rate, decay_accumulator))
break;
// Step on to the next frame.
++rc->frames_to_key;
// If we don't have a real key frame within the next two
// key_freq intervals then break out of the loop.
if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
} else {
++rc->frames_to_key;
}
++i;
}
// If there is a max kf interval set by the user we must obey it.
// We already breakout of the loop above at 2x max.
// This code centers the extra kf if the actual natural interval
// is between 1x and 2x.
if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
FIRSTPASS_STATS tmp_frame = first_frame;
rc->frames_to_key /= 2;
// Reset to the start of the group.
reset_fpf_position(twopass, start_position);
kf_group_err = 0.0;
// Rescan to get the correct error data for the forced kf group.
for (i = 0; i < rc->frames_to_key; ++i) {
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
input_stats(twopass, &tmp_frame);
}
rc->next_key_frame_forced = 1;
} else if (twopass->stats_in == twopass->stats_in_end ||
rc->frames_to_key >= cpi->oxcf.key_freq) {
rc->next_key_frame_forced = 1;
} else {
rc->next_key_frame_forced = 0;
}
// Special case for the last key frame of the file.
if (twopass->stats_in >= twopass->stats_in_end) {
// Accumulate kf group error.
kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
}
// Calculate the number of bits that should be assigned to the kf group.
if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
// Maximum number of bits for a single normal frame (not key frame).
const int max_bits = frame_max_bits(rc, &cpi->oxcf);
// Maximum number of bits allocated to the key frame group.
int64_t max_grp_bits;
// Default allocation based on bits left and relative
// complexity of the section.
twopass->kf_group_bits = (int64_t)(
twopass->bits_left * (kf_group_err / twopass->modified_error_left));
// Clip based on maximum per frame rate defined by the user.
max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
if (twopass->kf_group_bits > max_grp_bits)
twopass->kf_group_bits = max_grp_bits;
} else {
twopass->kf_group_bits = 0;
}
twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
// Reset the first pass file position.
reset_fpf_position(twopass, start_position);
// Scan through the kf group collating various stats used to determine
// how many bits to spend on it.
decay_accumulator = 1.0;
boost_score = 0.0;
const double kf_max_boost =
cpi->oxcf.rc_mode == AOM_Q
? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST),
KF_MAX_FRAME_BOOST)
: KF_MAX_FRAME_BOOST;
for (i = 0; i < (rc->frames_to_key - 1); ++i) {
if (EOF == input_stats(twopass, &next_frame)) break;
// Monitor for static sections.
zero_motion_accumulator = AOMMIN(zero_motion_accumulator,
get_zero_motion_factor(cpi, &next_frame));
// Not all frames in the group are necessarily used in calculating boost.
if ((i <= rc->max_gf_interval) ||
((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
const double frame_boost =
calc_frame_boost(cpi, this_frame, 0, kf_max_boost);
// How fast is prediction quality decaying.
if (!detect_flash(twopass, 0)) {
const double loop_decay_rate =
get_prediction_decay_rate(cpi, &next_frame);
decay_accumulator *= loop_decay_rate;
decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR);
av_decay_accumulator += decay_accumulator;
++loop_decay_counter;
}
boost_score += (decay_accumulator * frame_boost);
}
}
if (loop_decay_counter > 0)
av_decay_accumulator /= (double)loop_decay_counter;
reset_fpf_position(twopass, start_position);
// Store the zero motion percentage
twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
// Calculate a section intra ratio used in setting max loop filter.
twopass->section_intra_rating = calculate_section_intra_ratio(
start_position, twopass->stats_in_end, rc->frames_to_key);
// Apply various clamps for min and max boost
rc->kf_boost = (int)(av_decay_accumulator * boost_score);
rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3));
rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST);
// Work out how many bits to allocate for the key frame itself.
kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
twopass->kf_group_bits);
// printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost,
// kf_bits, twopass->kf_zeromotion_pct);
// Work out the fraction of the kf group bits reserved for the inter frames
// within the group after discounting the bits for the kf itself.
if (twopass->kf_group_bits) {
twopass->kfgroup_inter_fraction =
(double)(twopass->kf_group_bits - kf_bits) /
(double)twopass->kf_group_bits;
} else {
twopass->kfgroup_inter_fraction = 1.0;
}
twopass->kf_group_bits -= kf_bits;
// Save the bits to spend on the key frame.
gf_group->bit_allocation[0] = kf_bits;
gf_group->update_type[0] = KF_UPDATE;
gf_group->rf_level[0] = KF_STD;
// Note the total error score of the kf group minus the key frame itself.
twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
// Adjust the count of total modified error left.
// The count of bits left is adjusted elsewhere based on real coded frame
// sizes.
twopass->modified_error_left -= kf_group_err;
}
// Define the reference buffers that will be updated post encode.
static void configure_buffer_updates(AV1_COMP *cpi) {
TWO_PASS *const twopass = &cpi->twopass;
// NOTE(weitinglin): Should we define another function to take care of
// cpi->rc.is_$Source_Type to make this function as it is in the comment?
cpi->rc.is_src_frame_alt_ref = 0;
cpi->rc.is_bwd_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 0;
cpi->rc.is_bipred_frame = 0;
cpi->rc.is_src_frame_ext_arf = 0;
switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
case KF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_alt2_ref_frame = 1;
cpi->refresh_alt_ref_frame = 1;
break;
case LF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
break;
case GF_UPDATE:
// TODO(zoeliu): To further investigate whether 'refresh_last_frame' is
// needed.
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
break;
case OVERLAY_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 1;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
break;
case ARF_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
// NOTE: BWDREF does not get updated along with ALTREF_FRAME.
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 1;
break;
case BRF_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bwd_ref_frame = 1;
break;
case LAST_BIPRED_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 1;
break;
case BIPRED_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bipred_frame = 1;
break;
case INTNL_OVERLAY_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
cpi->rc.is_src_frame_ext_arf = 1;
break;
case INTNL_ARF_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
#if USE_SYMM_MULTI_LAYER
if (cpi->new_bwdref_update_rule == 1) {
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_alt2_ref_frame = 0;
} else {
#endif
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 1;
#if USE_SYMM_MULTI_LAYER
}
#endif
cpi->refresh_alt_ref_frame = 0;
break;
default: assert(0); break;
}
}
void av1_configure_buffer_updates_firstpass(AV1_COMP *cpi,
FRAME_UPDATE_TYPE update_type) {
RATE_CONTROL *rc = &cpi->rc;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 0;
switch (update_type) {
case ARF_UPDATE:
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
rc->is_src_frame_alt_ref = 0;
break;
case INTNL_ARF_UPDATE:
cpi->refresh_alt2_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_src_frame_alt_ref = 0;
rc->is_src_frame_ext_arf = 0;
break;
case BIPRED_UPDATE:
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt2_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 1;
break;
default: break;
}
}
static int is_skippable_frame(const AV1_COMP *cpi) {
// If the current frame does not have non-zero motion vector detected in the
// first pass, and so do its previous and forward frames, then this frame
// can be skipped for partition check, and the partition size is assigned
// according to the variance
const TWO_PASS *const twopass = &cpi->twopass;
return (!frame_is_intra_only(&cpi->common) &&
twopass->stats_in - 2 > twopass->stats_in_start &&
twopass->stats_in < twopass->stats_in_end &&
(twopass->stats_in - 1)->pcnt_inter -
(twopass->stats_in - 1)->pcnt_motion ==
1 &&
(twopass->stats_in - 2)->pcnt_inter -
(twopass->stats_in - 2)->pcnt_motion ==
1 &&
twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
}
void av1_rc_get_second_pass_params(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
TWO_PASS *const twopass = &cpi->twopass;
GF_GROUP *const gf_group = &twopass->gf_group;
int frames_left;
FIRSTPASS_STATS this_frame;
int target_rate;
frames_left = (int)(twopass->total_stats.count - cm->current_video_frame);
if (!twopass->stats_in) return;
// If this is an arf frame then we dont want to read the stats file or
// advance the input pointer as we already have what we need.
if (gf_group->update_type[gf_group->index] == ARF_UPDATE ||
gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
configure_buffer_updates(cpi);
target_rate = gf_group->bit_allocation[gf_group->index];
target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
rc->base_frame_target = target_rate;
if (cpi->no_show_kf) {
assert(gf_group->update_type[gf_group->index] == ARF_UPDATE);
cm->frame_type = KEY_FRAME;
} else {
cm->frame_type = INTER_FRAME;
}
// Do the firstpass stats indicate that this frame is skippable for the
// partition search?
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
}
return;
}
aom_clear_system_state();
if (cpi->oxcf.rc_mode == AOM_Q) {
twopass->active_worst_quality = cpi->oxcf.cq_level;
} else if (cm->current_video_frame == 0) {
// Special case code for first frame.
const int section_target_bandwidth =
(int)(twopass->bits_left / frames_left);
const double section_length = twopass->total_left_stats.count;
const double section_error =
twopass->total_left_stats.coded_error / section_length;
const double section_intra_skip =
twopass->total_left_stats.intra_skip_pct / section_length;
const double section_inactive_zone =
(twopass->total_left_stats.inactive_zone_rows * 2) /
((double)cm->mb_rows * section_length);
const int tmp_q = get_twopass_worst_quality(
cpi, section_error, section_intra_skip + section_inactive_zone,
section_target_bandwidth, DEFAULT_GRP_WEIGHT);
twopass->active_worst_quality = tmp_q;
twopass->baseline_active_worst_quality = tmp_q;
rc->ni_av_qi = tmp_q;
rc->last_q[INTER_FRAME] = tmp_q;
rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth);
rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
}
av1_zero(this_frame);
if (EOF == input_stats(twopass, &this_frame)) return;
// Set the frame content type flag.
if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
else
twopass->fr_content_type = FC_NORMAL;
// Keyframe and section processing.
if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
FIRSTPASS_STATS this_frame_copy;
this_frame_copy = this_frame;
// Define next KF group and assign bits to it.
find_next_key_frame(cpi, &this_frame);
this_frame = this_frame_copy;
} else {
cm->frame_type = INTER_FRAME;
}
// Define a new GF/ARF group. (Should always enter here for key frames).
if (rc->frames_till_gf_update_due == 0) {
define_gf_group(cpi, &this_frame);
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
#if ARF_STATS_OUTPUT
{
FILE *fpfile;
fpfile = fopen("arf.stt", "a");
++arf_count;
fprintf(fpfile, "%10d %10d %10d %10d %10d\n", cm->current_video_frame,
rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
rc->gfu_boost);
fclose(fpfile);
}
#endif
}
configure_buffer_updates(cpi);
// Do the firstpass stats indicate that this frame is skippable for the
// partition search?
if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
}
target_rate = gf_group->bit_allocation[gf_group->index];
if (cpi->common.frame_type == KEY_FRAME)
target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate);
else
target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
rc->base_frame_target = target_rate;
{
const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
? cpi->initial_mbs
: cpi->common.MBs;
// The multiplication by 256 reverses a scaling factor of (>> 8)
// applied when combining MB error values for the frame.
twopass->mb_av_energy = log((this_frame.intra_error / num_mbs) + 1.0);
twopass->frame_avg_haar_energy =
log((this_frame.frame_avg_wavelet_energy / num_mbs) + 1.0);
}
// Update the total stats remaining structure.
subtract_stats(&twopass->total_left_stats, &this_frame);
}
#define MINQ_ADJ_LIMIT 48
#define MINQ_ADJ_LIMIT_CQ 20
#define HIGH_UNDERSHOOT_RATIO 2
void av1_twopass_postencode_update(AV1_COMP *cpi) {
TWO_PASS *const twopass = &cpi->twopass;
RATE_CONTROL *const rc = &cpi->rc;
const int bits_used = rc->base_frame_target;
// VBR correction is done through rc->vbr_bits_off_target. Based on the
// sign of this value, a limited % adjustment is made to the target rate
// of subsequent frames, to try and push it back towards 0. This method
// is designed to prevent extreme behaviour at the end of a clip
// or group of frames.
rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0);
// Calculate the pct rc error.
if (rc->total_actual_bits) {
rc->rate_error_estimate =
(int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
} else {
rc->rate_error_estimate = 0;
}
if (cpi->common.frame_type != KEY_FRAME) {
twopass->kf_group_bits -= bits_used;
twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
}
twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
// If the rate control is drifting consider adjustment to min or maxq.
if ((cpi->oxcf.rc_mode != AOM_Q) &&
(cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
!cpi->rc.is_src_frame_alt_ref) {
const int maxq_adj_limit =
rc->worst_quality - twopass->active_worst_quality;
const int minq_adj_limit =
(cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
// Undershoot.
if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
--twopass->extend_maxq;
if (rc->rolling_target_bits >= rc->rolling_actual_bits)
++twopass->extend_minq;
// Overshoot.
} else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
--twopass->extend_minq;
if (rc->rolling_target_bits < rc->rolling_actual_bits)
++twopass->extend_maxq;
} else {
// Adjustment for extreme local overshoot.
if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
++twopass->extend_maxq;
// Unwind undershoot or overshoot adjustment.
if (rc->rolling_target_bits < rc->rolling_actual_bits)
--twopass->extend_minq;
else if (rc->rolling_target_bits > rc->rolling_actual_bits)
--twopass->extend_maxq;
}
twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
// If there is a big and undexpected undershoot then feed the extra
// bits back in quickly. One situation where this may happen is if a
// frame is unexpectedly almost perfectly predicted by the ARF or GF
// but not very well predcited by the previous frame.
if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
if (rc->projected_frame_size < fast_extra_thresh) {
rc->vbr_bits_off_target_fast +=
fast_extra_thresh - rc->projected_frame_size;
rc->vbr_bits_off_target_fast =
AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
// Fast adaptation of minQ if necessary to use up the extra bits.
if (rc->avg_frame_bandwidth) {
twopass->extend_minq_fast =
(int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
}
twopass->extend_minq_fast = AOMMIN(
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
} else if (rc->vbr_bits_off_target_fast) {
twopass->extend_minq_fast = AOMMIN(
twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
} else {
twopass->extend_minq_fast = 0;
}
}
}
}
|