1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = {
BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, BLOCK_128X128,
};
static void alloc_mode_context(AV1_COMMON *cm, int num_pix,
PICK_MODE_CONTEXT *ctx) {
const int num_planes = av1_num_planes(cm);
int i;
const int num_blk = num_pix / 16;
ctx->num_4x4_blk = num_blk;
CHECK_MEM_ERROR(cm, ctx->blk_skip, aom_calloc(num_blk, sizeof(uint8_t)));
for (i = 0; i < num_planes; ++i) {
CHECK_MEM_ERROR(cm, ctx->coeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->coeff[i])));
CHECK_MEM_ERROR(cm, ctx->qcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->dqcoeff[i],
aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i])));
CHECK_MEM_ERROR(cm, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
CHECK_MEM_ERROR(
cm, ctx->txb_entropy_ctx[i],
aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i])));
}
if (num_pix <= MAX_PALETTE_SQUARE) {
for (i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
}
}
}
static void free_mode_context(PICK_MODE_CONTEXT *ctx, const int num_planes) {
int i;
aom_free(ctx->blk_skip);
ctx->blk_skip = 0;
for (i = 0; i < num_planes; ++i) {
aom_free(ctx->coeff[i]);
ctx->coeff[i] = 0;
aom_free(ctx->qcoeff[i]);
ctx->qcoeff[i] = 0;
aom_free(ctx->dqcoeff[i]);
ctx->dqcoeff[i] = 0;
aom_free(ctx->eobs[i]);
ctx->eobs[i] = 0;
aom_free(ctx->txb_entropy_ctx[i]);
ctx->txb_entropy_ctx[i] = 0;
}
for (i = 0; i < 2; ++i) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = 0;
}
}
static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, int num_pix,
int is_leaf) {
alloc_mode_context(cm, num_pix, &tree->none);
if (is_leaf) return;
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0]);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[0]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1]);
alloc_mode_context(cm, num_pix / 2, &tree->vertical[1]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2]);
alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1]);
alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2]);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[0]);
alloc_mode_context(cm, num_pix / 4, &tree->verticala[1]);
alloc_mode_context(cm, num_pix / 2, &tree->verticala[2]);
alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0]);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1]);
alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2]);
for (int i = 0; i < 4; ++i) {
alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i]);
alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i]);
}
}
static void free_tree_contexts(PC_TREE *tree, const int num_planes) {
int i;
for (i = 0; i < 3; i++) {
free_mode_context(&tree->horizontala[i], num_planes);
free_mode_context(&tree->horizontalb[i], num_planes);
free_mode_context(&tree->verticala[i], num_planes);
free_mode_context(&tree->verticalb[i], num_planes);
}
for (i = 0; i < 4; ++i) {
free_mode_context(&tree->horizontal4[i], num_planes);
free_mode_context(&tree->vertical4[i], num_planes);
}
free_mode_context(&tree->none, num_planes);
free_mode_context(&tree->horizontal[0], num_planes);
free_mode_context(&tree->horizontal[1], num_planes);
free_mode_context(&tree->vertical[0], num_planes);
free_mode_context(&tree->vertical[1], num_planes);
}
// This function sets up a tree of contexts such that at each square
// partition level. There are contexts for none, horizontal, vertical, and
// split. Along with a block_size value and a selected block_size which
// represents the state of our search.
void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) {
int i, j;
const int tree_nodes_inc = 1024;
const int leaf_factor = 4;
const int leaf_nodes = 256 * leaf_factor;
const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1;
int pc_tree_index = 0;
PC_TREE *this_pc;
int square_index = 1;
int nodes;
aom_free(td->pc_tree);
CHECK_MEM_ERROR(cm, td->pc_tree,
aom_calloc(tree_nodes, sizeof(*td->pc_tree)));
this_pc = &td->pc_tree[0];
// Sets up all the leaf nodes in the tree.
for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
tree->block_size = square[0];
alloc_tree_contexts(cm, tree, 16, 1);
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (i = 0; i < nodes; ++i) {
PC_TREE *const tree = &td->pc_tree[pc_tree_index];
alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0);
tree->block_size = square[square_index];
for (j = 0; j < 4; j++) tree->split[j] = this_pc++;
++pc_tree_index;
}
++square_index;
}
// Set up the root node for the largest superblock size
i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2;
td->pc_root[i] = &td->pc_tree[tree_nodes - 1];
td->pc_root[i]->none.best_mode_index = 2;
// Set up the root nodes for the rest of the possible superblock sizes
while (--i >= 0) {
td->pc_root[i] = td->pc_root[i + 1]->split[0];
td->pc_root[i]->none.best_mode_index = 2;
}
}
void av1_free_pc_tree(ThreadData *td, const int num_planes) {
const int tree_nodes_inc = 1024;
const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1;
int i;
for (i = 0; i < tree_nodes; ++i)
free_tree_contexts(&td->pc_tree[i], num_planes);
aom_free(td->pc_tree);
td->pc_tree = NULL;
}
void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx,
PICK_MODE_CONTEXT *src_ctx) {
dst_ctx->mic = src_ctx->mic;
dst_ctx->mbmi_ext = src_ctx->mbmi_ext;
dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk;
dst_ctx->skip = src_ctx->skip;
dst_ctx->skippable = src_ctx->skippable;
dst_ctx->best_mode_index = src_ctx->best_mode_index;
memcpy(dst_ctx->blk_skip, src_ctx->blk_skip,
sizeof(uint8_t) * src_ctx->num_4x4_blk);
dst_ctx->hybrid_pred_diff = src_ctx->hybrid_pred_diff;
dst_ctx->comp_pred_diff = src_ctx->comp_pred_diff;
dst_ctx->single_pred_diff = src_ctx->single_pred_diff;
dst_ctx->rate = src_ctx->rate;
dst_ctx->dist = src_ctx->dist;
dst_ctx->rdcost = src_ctx->rdcost;
dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready;
memcpy(dst_ctx->pred_mv, src_ctx->pred_mv, sizeof(MV) * REF_FRAMES);
dst_ctx->pred_interp_filter = src_ctx->pred_interp_filter;
dst_ctx->partition = src_ctx->partition;
}
|