summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/tile_common.c
blob: 1b413487f098013ef65a22d93d1c61ff9fee5f3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"

void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
  av1_tile_set_row(tile, cm, row);
  av1_tile_set_col(tile, cm, col);
}

// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
  int k;
  for (k = 0; (blk_size << k) < target; k++) {
  }
  return k;
}

void av1_get_tile_limits(AV1_COMMON *const cm) {
  int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
  int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
  int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;

  int sb_size_log2 = cm->seq_params.mib_size_log2 + MI_SIZE_LOG2;
  cm->max_tile_width_sb = MAX_TILE_WIDTH >> sb_size_log2;
  int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2);

  cm->min_log2_tile_cols = tile_log2(cm->max_tile_width_sb, sb_cols);
  cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
  cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
  cm->min_log2_tiles = tile_log2(max_tile_area_sb, sb_cols * sb_rows);
  cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols);
}

void av1_calculate_tile_cols(AV1_COMMON *const cm) {
  int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
  int sb_cols = mi_cols >> cm->seq_params.mib_size_log2;
  int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
  int i;

  if (cm->uniform_tile_spacing_flag) {
    int start_sb;
    int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols);
    size_sb >>= cm->log2_tile_cols;
    assert(size_sb > 0);
    for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
      cm->tile_col_start_sb[i] = start_sb;
      start_sb += size_sb;
    }
    cm->tile_cols = i;
    cm->tile_col_start_sb[i] = sb_cols;
    cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0);
    cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows;

    cm->tile_width = size_sb << cm->seq_params.mib_size_log2;
    cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
  } else {
    int max_tile_area_sb = (sb_rows * sb_cols);
    int widest_tile_sb = 1;
    cm->log2_tile_cols = tile_log2(1, cm->tile_cols);
    for (i = 0; i < cm->tile_cols; i++) {
      int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
      widest_tile_sb = AOMMAX(widest_tile_sb, size_sb);
    }
    if (cm->min_log2_tiles) {
      max_tile_area_sb >>= (cm->min_log2_tiles + 1);
    }
    cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1);
  }
}

void av1_calculate_tile_rows(AV1_COMMON *const cm) {
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
  int sb_rows = mi_rows >> cm->seq_params.mib_size_log2;
  int start_sb, size_sb, i;

  if (cm->uniform_tile_spacing_flag) {
    size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows);
    size_sb >>= cm->log2_tile_rows;
    assert(size_sb > 0);
    for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
      cm->tile_row_start_sb[i] = start_sb;
      start_sb += size_sb;
    }
    cm->tile_rows = i;
    cm->tile_row_start_sb[i] = sb_rows;

    cm->tile_height = size_sb << cm->seq_params.mib_size_log2;
    cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
  } else {
    cm->log2_tile_rows = tile_log2(1, cm->tile_rows);
  }
}

void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
  assert(row < cm->tile_rows);
  int mi_row_start = cm->tile_row_start_sb[row] << cm->seq_params.mib_size_log2;
  int mi_row_end = cm->tile_row_start_sb[row + 1]
                   << cm->seq_params.mib_size_log2;
  tile->tile_row = row;
  tile->mi_row_start = mi_row_start;
  tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows);
  assert(tile->mi_row_end > tile->mi_row_start);
}

void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
  assert(col < cm->tile_cols);
  int mi_col_start = cm->tile_col_start_sb[col] << cm->seq_params.mib_size_log2;
  int mi_col_end = cm->tile_col_start_sb[col + 1]
                   << cm->seq_params.mib_size_log2;
  tile->tile_col = col;
  tile->mi_col_start = mi_col_start;
  tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols);
  assert(tile->mi_col_end > tile->mi_col_start);
}

int av1_get_sb_rows_in_tile(AV1_COMMON *cm, TileInfo tile) {
  int mi_rows_aligned_to_sb = ALIGN_POWER_OF_TWO(
      tile.mi_row_end - tile.mi_row_start, cm->seq_params.mib_size_log2);
  int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2;

  return sb_rows;
}

int av1_get_sb_cols_in_tile(AV1_COMMON *cm, TileInfo tile) {
  int mi_cols_aligned_to_sb = ALIGN_POWER_OF_TWO(
      tile.mi_col_end - tile.mi_col_start, cm->seq_params.mib_size_log2);
  int sb_cols = mi_cols_aligned_to_sb >> cm->seq_params.mib_size_log2;

  return sb_cols;
}

int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) {
  // Round the frame up to a whole number of max superblocks
  mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2);

  // Divide by the signalled number of tiles, rounding up to the multiple of
  // the max superblock size. To do this, shift right (and round up) to get the
  // tile size in max super-blocks and then shift left again to convert it to
  // mi units.
  const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2;
  const int max_sb_tile_size =
      ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift;
  const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2;

  // The actual number of tiles is the ceiling of the frame size in mi units
  // divided by mi_size. This is at most 1 << log2_tile_num but might be
  // strictly less if max_sb_tile_size got rounded up significantly.
  if (ntiles) {
    *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size;
    assert(*ntiles <= (1 << log2_tile_num));
  }

  return mi_tile_size;
}

AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm,
                               int is_uv) {
  AV1PixelRect r;

  // Calculate position in the Y plane
  r.left = tile_info->mi_col_start * MI_SIZE;
  r.right = tile_info->mi_col_end * MI_SIZE;
  r.top = tile_info->mi_row_start * MI_SIZE;
  r.bottom = tile_info->mi_row_end * MI_SIZE;

  // If upscaling is enabled, the tile limits need scaling to match the
  // upscaled frame where the restoration units live. To do this, scale up the
  // top-left and bottom-right of the tile.
  if (av1_superres_scaled(cm)) {
    av1_calculate_unscaled_superres_size(&r.left, &r.top,
                                         cm->superres_scale_denominator);
    av1_calculate_unscaled_superres_size(&r.right, &r.bottom,
                                         cm->superres_scale_denominator);
  }

  const int frame_w = cm->superres_upscaled_width;
  const int frame_h = cm->superres_upscaled_height;

  // Make sure we don't fall off the bottom-right of the frame.
  r.right = AOMMIN(r.right, frame_w);
  r.bottom = AOMMIN(r.bottom, frame_h);

  // Convert to coordinates in the appropriate plane
  const int ss_x = is_uv && cm->seq_params.subsampling_x;
  const int ss_y = is_uv && cm->seq_params.subsampling_y;

  r.left = ROUND_POWER_OF_TWO(r.left, ss_x);
  r.right = ROUND_POWER_OF_TWO(r.right, ss_x);
  r.top = ROUND_POWER_OF_TWO(r.top, ss_y);
  r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y);

  return r;
}