summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/tile_common.c
blob: 507a01265afbb3e67e265e789be8ae37053ef7fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/tile_common.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"

#if CONFIG_DEPENDENT_HORZTILES
void av1_tile_set_tg_boundary(TileInfo *tile, const AV1_COMMON *const cm,
                              int row, int col) {
  const int tg_start_row = cm->tile_group_start_row[row][col];
  const int tg_start_col = cm->tile_group_start_col[row][col];
  tile->tg_horz_boundary = ((row == tg_start_row && col >= tg_start_col) ||
                            (row == tg_start_row + 1 && col < tg_start_col));
#if CONFIG_MAX_TILE
  if (cm->tile_row_independent[row]) {
    tile->tg_horz_boundary = 1;  // this tile row is independent
  }
#endif
}
#endif
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
  av1_tile_set_row(tile, cm, row);
  av1_tile_set_col(tile, cm, col);
#if CONFIG_DEPENDENT_HORZTILES
  av1_tile_set_tg_boundary(tile, cm, row, col);
#endif
}

#if CONFIG_MAX_TILE

// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
  int k;
  for (k = 0; (blk_size << k) < target; k++) {
  }
  return k;
}

void av1_get_tile_limits(AV1_COMMON *const cm) {
  int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
  int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2;
  int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;

  cm->min_log2_tile_cols = tile_log2(MAX_TILE_WIDTH_SB, sb_cols);
  cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
  cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
  cm->min_log2_tiles = tile_log2(MAX_TILE_AREA_SB, sb_cols * sb_rows);
  cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols);
  // TODO(dominic.symes@arm.com):
  // Add in levelMinLog2Tiles as a lower limit when levels are defined
}

void av1_calculate_tile_cols(AV1_COMMON *const cm) {
  int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
  int sb_cols = mi_cols >> MAX_MIB_SIZE_LOG2;
  int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;
  int i;

  if (cm->uniform_tile_spacing_flag) {
    int start_sb;
    int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols);
    size_sb >>= cm->log2_tile_cols;
    assert(size_sb > 0);
    for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
      cm->tile_col_start_sb[i] = start_sb;
      start_sb += size_sb;
    }
    cm->tile_cols = i;
    cm->tile_col_start_sb[i] = sb_cols;
    cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0);
    cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows;
  } else {
    int max_tile_area_sb = (sb_rows * sb_cols);
    int max_tile_width_sb = 0;
    cm->log2_tile_cols = tile_log2(1, cm->tile_cols);
    for (i = 0; i < cm->tile_cols; i++) {
      int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
      max_tile_width_sb = AOMMAX(max_tile_width_sb, size_sb);
    }
    if (cm->min_log2_tiles) {
      max_tile_area_sb >>= (cm->min_log2_tiles + 1);
    }
    cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / max_tile_width_sb, 1);
  }
}

void av1_calculate_tile_rows(AV1_COMMON *const cm) {
  int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
  int sb_rows = mi_rows >> MAX_MIB_SIZE_LOG2;
  int start_sb, size_sb, i;

  if (cm->uniform_tile_spacing_flag) {
    size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows);
    size_sb >>= cm->log2_tile_rows;
    assert(size_sb > 0);
    for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
      cm->tile_row_start_sb[i] = start_sb;
      start_sb += size_sb;
    }
    cm->tile_rows = i;
    cm->tile_row_start_sb[i] = sb_rows;
  } else {
    cm->log2_tile_rows = tile_log2(1, cm->tile_rows);
  }

#if CONFIG_DEPENDENT_HORZTILES
  // Record which tile rows must be indpendent for parallelism
  for (i = 0, start_sb = 0; i < cm->tile_rows; i++) {
    cm->tile_row_independent[i] = 0;
    if (cm->tile_row_start_sb[i + 1] - start_sb > cm->max_tile_height_sb) {
      cm->tile_row_independent[i] = 1;
      start_sb = cm->tile_row_start_sb[i];
    }
  }
#endif
}

void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
  assert(row < cm->tile_rows);
  int mi_row_start = cm->tile_row_start_sb[row] << MAX_MIB_SIZE_LOG2;
  int mi_row_end = cm->tile_row_start_sb[row + 1] << MAX_MIB_SIZE_LOG2;
  tile->mi_row_start = mi_row_start;
  tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows);
}

void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
  assert(col < cm->tile_cols);
  int mi_col_start = cm->tile_col_start_sb[col] << MAX_MIB_SIZE_LOG2;
  int mi_col_end = cm->tile_col_start_sb[col + 1] << MAX_MIB_SIZE_LOG2;
  tile->mi_col_start = mi_col_start;
  tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols);
}

#else

void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
  tile->mi_row_start = row * cm->tile_height;
  tile->mi_row_end = AOMMIN(tile->mi_row_start + cm->tile_height, cm->mi_rows);
}

void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
  tile->mi_col_start = col * cm->tile_width;
  tile->mi_col_end = AOMMIN(tile->mi_col_start + cm->tile_width, cm->mi_cols);
}

#if CONFIG_EXT_PARTITION
#define MIN_TILE_WIDTH_MAX_SB 2
#define MAX_TILE_WIDTH_MAX_SB 32
#else
#define MIN_TILE_WIDTH_MAX_SB 4
#define MAX_TILE_WIDTH_MAX_SB 64
#endif  // CONFIG_EXT_PARTITION

static int get_min_log2_tile_cols(int max_sb_cols) {
  int min_log2 = 0;
  while ((MAX_TILE_WIDTH_MAX_SB << min_log2) < max_sb_cols) ++min_log2;
  return min_log2;
}

static int get_max_log2_tile_cols(int max_sb_cols) {
  int max_log2 = 1;
  while ((max_sb_cols >> max_log2) >= MIN_TILE_WIDTH_MAX_SB) ++max_log2;
  return max_log2 - 1;
}

void av1_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols,
                         int *max_log2_tile_cols) {
  const int max_sb_cols =
      ALIGN_POWER_OF_TWO(mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
  *min_log2_tile_cols = get_min_log2_tile_cols(max_sb_cols);
  *max_log2_tile_cols = get_max_log2_tile_cols(max_sb_cols);
  assert(*min_log2_tile_cols <= *max_log2_tile_cols);
}
#endif  // CONFIG_MAX_TILE

void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) {
  MODE_INFO *mi = cm->mi;
  int col;
  for (col = 0; col < cm->mi_cols; ++col) {
    mi->mbmi.boundary_info |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY;
    mi += 1;
  }

  mi = cm->mi;
  int row;
  for (row = 0; row < cm->mi_rows; ++row) {
    mi->mbmi.boundary_info |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY;
    mi += cm->mi_stride;
  }

  mi = cm->mi + (cm->mi_rows - 1) * cm->mi_stride;
  for (col = 0; col < cm->mi_cols; ++col) {
    mi->mbmi.boundary_info |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY;
    mi += 1;
  }

  mi = cm->mi + cm->mi_cols - 1;
  for (row = 0; row < cm->mi_rows; ++row) {
    mi->mbmi.boundary_info |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY;
    mi += cm->mi_stride;
  }
}

int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) {
  // Round the frame up to a whole number of max superblocks
  mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2);

  // Divide by the signalled number of tiles, rounding up to the multiple of
  // the max superblock size. To do this, shift right (and round up) to get the
  // tile size in max super-blocks and then shift left again to convert it to
  // mi units.
  const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2;
  const int max_sb_tile_size =
      ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift;
  const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2;

  // The actual number of tiles is the ceiling of the frame size in mi units
  // divided by mi_size. This is at most 1 << log2_tile_num but might be
  // strictly less if max_sb_tile_size got rounded up significantly.
  if (ntiles) {
    *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size;
    assert(*ntiles <= (1 << log2_tile_num));
  }

  return mi_tile_size;
}

#if CONFIG_LOOPFILTERING_ACROSS_TILES
void av1_setup_across_tile_boundary_info(const AV1_COMMON *const cm,
                                         const TileInfo *const tile_info) {
  if (cm->tile_cols * cm->tile_rows > 1) {
    const int mi_row = tile_info->mi_row_start;
    const int mi_col = tile_info->mi_col_start;
    MODE_INFO *const mi_start = cm->mi + mi_row * cm->mi_stride + mi_col;
    assert(mi_start < cm->mip + cm->mi_alloc_size);
    MODE_INFO *mi = 0;
    const int row_diff = tile_info->mi_row_end - tile_info->mi_row_start;
    const int col_diff = tile_info->mi_col_end - tile_info->mi_col_start;
    int row, col;

#if CONFIG_DEPENDENT_HORZTILES
    if (!cm->dependent_horz_tiles || tile_info->tg_horz_boundary)
#endif  // CONFIG_DEPENDENT_HORZTILES
    {
      mi = mi_start;
      for (col = 0; col < col_diff; ++col) {
        mi->mbmi.boundary_info |= TILE_ABOVE_BOUNDARY;
        mi += 1;
      }
    }

    mi = mi_start;
    for (row = 0; row < row_diff; ++row) {
      mi->mbmi.boundary_info |= TILE_LEFT_BOUNDARY;
      mi += cm->mi_stride;
    }

    mi = mi_start + (row_diff - 1) * cm->mi_stride;

    // explicit bounds checking
    assert(mi + col_diff <= cm->mip + cm->mi_alloc_size);

    for (col = 0; col < col_diff; ++col) {
      mi->mbmi.boundary_info |= TILE_BOTTOM_BOUNDARY;
      mi += 1;
    }

    mi = mi_start + col_diff - 1;
    for (row = 0; row < row_diff; ++row) {
      mi->mbmi.boundary_info |= TILE_RIGHT_BOUNDARY;
      mi += cm->mi_stride;
    }
  }
}

int av1_disable_loopfilter_on_tile_boundary(const struct AV1Common *cm) {
  return (!cm->loop_filter_across_tiles_enabled &&
          (cm->tile_cols * cm->tile_rows > 1));
}
#endif  // CONFIG_LOOPFILTERING_ACROSS_TILES