1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/entropymode.h"
#include "av1/common/thread_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_MULTITHREAD
static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
const int kMaxTryLocks = 4000;
int locked = 0;
int i;
for (i = 0; i < kMaxTryLocks; ++i) {
if (!pthread_mutex_trylock(mutex)) {
locked = 1;
break;
}
}
if (!locked) pthread_mutex_lock(mutex);
}
#endif // CONFIG_MULTITHREAD
static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1];
mutex_lock(mutex);
while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
pthread_cond_wait(&lf_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)lf_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
const int sb_cols) {
#if CONFIG_MULTITHREAD
const int nsync = lf_sync->sync_range;
int cur;
// Only signal when there are enough filtered SB for next row to run.
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync;
}
if (sig) {
mutex_lock(&lf_sync->mutex_[r]);
lf_sync->cur_sb_col[r] = cur;
pthread_cond_signal(&lf_sync->cond_[r]);
pthread_mutex_unlock(&lf_sync->mutex_[r]);
}
#else
(void)lf_sync;
(void)r;
(void)c;
(void)sb_cols;
#endif // CONFIG_MULTITHREAD
}
#if !CONFIG_EXT_PARTITION_TYPES
static INLINE enum lf_path get_loop_filter_path(
int y_only, struct macroblockd_plane planes[MAX_MB_PLANE]) {
if (y_only)
return LF_PATH_444;
else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
return LF_PATH_420;
else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
return LF_PATH_444;
else
return LF_PATH_SLOW;
}
static INLINE void loop_filter_block_plane_ver(
AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane,
MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path,
LOOP_FILTER_MASK *lfm) {
if (plane == 0) {
av1_filter_block_plane_ss00_ver(cm, &planes[0], mi_row, lfm);
} else {
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss11_ver(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
av1_filter_block_plane_ss00_ver(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_ver(cm, &planes[plane], mi, mi_row,
mi_col);
break;
}
}
}
static INLINE void loop_filter_block_plane_hor(
AV1_COMMON *cm, struct macroblockd_plane planes[MAX_MB_PLANE], int plane,
MODE_INFO **mi, int mi_row, int mi_col, enum lf_path path,
LOOP_FILTER_MASK *lfm) {
if (plane == 0) {
av1_filter_block_plane_ss00_hor(cm, &planes[0], mi_row, lfm);
} else {
switch (path) {
case LF_PATH_420:
av1_filter_block_plane_ss11_hor(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_444:
av1_filter_block_plane_ss00_hor(cm, &planes[plane], mi_row, lfm);
break;
case LF_PATH_SLOW:
av1_filter_block_plane_non420_hor(cm, &planes[plane], mi, mi_row,
mi_col);
break;
}
}
}
#endif
// Row-based multi-threaded loopfilter hook
#if CONFIG_PARALLEL_DEBLOCKING
static int loop_filter_ver_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
LOOP_FILTER_MASK lfm;
int plane;
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col);
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane)
av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col);
#else
for (plane = 0; plane < num_planes; ++plane)
loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
#endif
}
}
return 1;
}
static int loop_filter_hor_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
const int sb_cols =
mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
const int r = mi_row >> lf_data->cm->mib_size_log2;
const int c = mi_col >> lf_data->cm->mib_size_log2;
LOOP_FILTER_MASK lfm;
int plane;
// TODO(wenhao.zhang@intel.com): For better parallelization, reorder
// the outer loop to column-based and remove the synchronizations here.
sync_read(lf_sync, r, c);
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col);
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane)
av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col);
#else
for (plane = 0; plane < num_planes; ++plane)
loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
#endif
sync_write(lf_sync, r, c, sb_cols);
}
}
return 1;
}
#else // CONFIG_PARALLEL_DEBLOCKING
static int loop_filter_row_worker(AV1LfSync *const lf_sync,
LFWorkerData *const lf_data) {
const int num_planes = lf_data->y_only ? 1 : MAX_MB_PLANE;
const int sb_cols =
mi_cols_aligned_to_sb(lf_data->cm) >> lf_data->cm->mib_size_log2;
int mi_row, mi_col;
#if !CONFIG_EXT_PARTITION_TYPES
enum lf_path path = get_loop_filter_path(lf_data->y_only, lf_data->planes);
#endif // !CONFIG_EXT_PARTITION_TYPES
#if CONFIG_EXT_PARTITION
printf(
"STOPPING: This code has not been modified to work with the "
"extended coding unit size experiment");
exit(EXIT_FAILURE);
#endif // CONFIG_EXT_PARTITION
for (mi_row = lf_data->start; mi_row < lf_data->stop;
mi_row += lf_sync->num_workers * lf_data->cm->mib_size) {
MODE_INFO **const mi =
lf_data->cm->mi_grid_visible + mi_row * lf_data->cm->mi_stride;
for (mi_col = 0; mi_col < lf_data->cm->mi_cols;
mi_col += lf_data->cm->mib_size) {
const int r = mi_row >> lf_data->cm->mib_size_log2;
const int c = mi_col >> lf_data->cm->mib_size_log2;
#if !CONFIG_EXT_PARTITION_TYPES
LOOP_FILTER_MASK lfm;
#endif
int plane;
sync_read(lf_sync, r, c);
av1_setup_dst_planes(lf_data->planes, lf_data->cm->sb_size,
lf_data->frame_buffer, mi_row, mi_col);
#if CONFIG_EXT_PARTITION_TYPES
for (plane = 0; plane < num_planes; ++plane) {
av1_filter_block_plane_non420_ver(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col);
av1_filter_block_plane_non420_hor(lf_data->cm, &lf_data->planes[plane],
mi + mi_col, mi_row, mi_col);
}
#else
av1_setup_mask(lf_data->cm, mi_row, mi_col, mi + mi_col,
lf_data->cm->mi_stride, &lfm);
for (plane = 0; plane < num_planes; ++plane) {
loop_filter_block_plane_ver(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
loop_filter_block_plane_hor(lf_data->cm, lf_data->planes, plane,
mi + mi_col, mi_row, mi_col, path, &lfm);
}
#endif // CONFIG_EXT_PARTITION_TYPES
sync_write(lf_sync, r, c, sb_cols);
}
}
return 1;
}
#endif // CONFIG_PARALLEL_DEBLOCKING
static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int start, int stop, int y_only,
AVxWorker *workers, int nworkers,
AV1LfSync *lf_sync) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Number of superblock rows and cols
const int sb_rows = mi_rows_aligned_to_sb(cm) >> cm->mib_size_log2;
// Decoder may allocate more threads than number of tiles based on user's
// input.
const int tile_cols = cm->tile_cols;
const int num_workers = AOMMIN(nworkers, tile_cols);
int i;
#if CONFIG_EXT_PARTITION
printf(
"STOPPING: This code has not been modified to work with the "
"extended coding unit size experiment");
exit(EXIT_FAILURE);
#endif // CONFIG_EXT_PARTITION
if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
num_workers > lf_sync->num_workers) {
av1_loop_filter_dealloc(lf_sync);
av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
}
// Set up loopfilter thread data.
// The decoder is capping num_workers because it has been observed that using
// more threads on the loopfilter than there are cores will hurt performance
// on Android. This is because the system will only schedule the tile decode
// workers on cores equal to the number of tile columns. Then if the decoder
// tries to use more threads for the loopfilter, it will hurt performance
// because of contention. If the multithreading code changes in the future
// then the number of workers used by the loopfilter should be revisited.
#if CONFIG_PARALLEL_DEBLOCKING
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
// Filter all the vertical edges in the whole frame
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_ver_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
// Filter all the horizontal edges in the whole frame
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_hor_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
#else // CONFIG_PARALLEL_DEBLOCKING
// Initialize cur_sb_col to -1 for all SB rows.
memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
for (i = 0; i < num_workers; ++i) {
AVxWorker *const worker = &workers[i];
LFWorkerData *const lf_data = &lf_sync->lfdata[i];
worker->hook = (AVxWorkerHook)loop_filter_row_worker;
worker->data1 = lf_sync;
worker->data2 = lf_data;
// Loopfilter data
av1_loop_filter_data_reset(lf_data, frame, cm, planes);
lf_data->start = start + i * cm->mib_size;
lf_data->stop = stop;
lf_data->y_only = y_only;
// Start loopfiltering
if (i == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait till all rows are finished
for (i = 0; i < num_workers; ++i) {
winterface->sync(&workers[i]);
}
#endif // CONFIG_PARALLEL_DEBLOCKING
}
void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
struct macroblockd_plane planes[MAX_MB_PLANE],
int frame_filter_level, int y_only,
int partial_frame, AVxWorker *workers,
int num_workers, AV1LfSync *lf_sync) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (!frame_filter_level) return;
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
av1_loop_filter_frame_init(cm, frame_filter_level);
loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, y_only,
workers, num_workers, lf_sync);
}
// Set up nsync by width.
static INLINE int get_sync_range(int width) {
// nsync numbers are picked by testing. For example, for 4k
// video, using 4 gives best performance.
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
}
// Allocate memory for lf row synchronization
void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
int width, int num_workers) {
lf_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, lf_sync->mutex_,
aom_malloc(sizeof(*lf_sync->mutex_) * rows));
if (lf_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&lf_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, lf_sync->cond_,
aom_malloc(sizeof(*lf_sync->cond_) * rows));
if (lf_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&lf_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, lf_sync->lfdata,
aom_malloc(num_workers * sizeof(*lf_sync->lfdata)));
lf_sync->num_workers = num_workers;
CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col,
aom_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
// Set up nsync.
lf_sync->sync_range = get_sync_range(width);
}
// Deallocate lf synchronization related mutex and data
void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
if (lf_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (lf_sync->mutex_ != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_mutex_destroy(&lf_sync->mutex_[i]);
}
aom_free(lf_sync->mutex_);
}
if (lf_sync->cond_ != NULL) {
for (i = 0; i < lf_sync->rows; ++i) {
pthread_cond_destroy(&lf_sync->cond_[i]);
}
aom_free(lf_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(lf_sync->lfdata);
aom_free(lf_sync->cur_sb_col);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*lf_sync);
}
}
// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
FRAME_COUNTS *counts) {
unsigned int *const acc = (unsigned int *)acc_counts;
const unsigned int *const cnt = (unsigned int *)counts;
const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);
unsigned int i;
for (i = 0; i < n_counts; i++) acc[i] += cnt[i];
}
|