1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_ONYXC_INT_H_
#define AV1_COMMON_ONYXC_INT_H_
#include "./aom_config.h"
#include "./av1_rtcd.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#if CONFIG_ANS
#include "aom_dsp/ans.h"
#endif
#include "av1/common/alloccommon.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/mv.h"
#include "av1/common/quant_common.h"
#if CONFIG_LOOP_RESTORATION
#include "av1/common/restoration.h"
#endif // CONFIG_LOOP_RESTORATION
#include "av1/common/tile_common.h"
#include "av1/common/odintrin.h"
#if CONFIG_PVQ
#include "av1/common/pvq.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define CDEF_MAX_STRENGTHS 16
#define REF_FRAMES_LOG2 3
#define REF_FRAMES (1 << REF_FRAMES_LOG2)
// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
// in parallel, 3 for scaled references on the encoder.
// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
// of framebuffers.
// TODO(jkoleszar): These 3 extra references could probably come from the
// normal reference pool.
#define FRAME_BUFFERS (REF_FRAMES + 7)
#if CONFIG_REFERENCE_BUFFER
/* Constant values while waiting for the sequence header */
#define FRAME_ID_NUMBERS_PRESENT_FLAG 1
#define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1
#define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1
#endif
#if CONFIG_EXT_REFS
#define FRAME_CONTEXTS_LOG2 3
#else
#define FRAME_CONTEXTS_LOG2 2
#endif
#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
#define NUM_PING_PONG_BUFFERS 2
typedef enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} REFERENCE_MODE;
typedef enum {
RESET_FRAME_CONTEXT_NONE = 0,
RESET_FRAME_CONTEXT_CURRENT = 1,
RESET_FRAME_CONTEXT_ALL = 2,
} RESET_FRAME_CONTEXT_MODE;
typedef enum {
/**
* Update frame context to values resulting from forward probability
* updates signaled in the frame header
*/
REFRESH_FRAME_CONTEXT_FORWARD,
/**
* Update frame context to values resulting from backward probability
* updates based on entropy/counts in the decoded frame
*/
REFRESH_FRAME_CONTEXT_BACKWARD,
} REFRESH_FRAME_CONTEXT_MODE;
typedef struct {
int_mv mv[2];
#if CONFIG_REF_MV
int_mv pred_mv[2];
#endif
MV_REFERENCE_FRAME ref_frame[2];
} MV_REF;
typedef struct {
int ref_count;
MV_REF *mvs;
int mi_rows;
int mi_cols;
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
#endif // CONFIG_GLOBAL_MOTION
aom_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
#if CONFIG_TEMPMV_SIGNALING
uint8_t intra_only;
#endif
// The Following variables will only be used in frame parallel decode.
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
// that no FrameWorker owns, or is decoding, this buffer.
AVxWorker *frame_worker_owner;
// row and col indicate which position frame has been decoded to in real
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
// when the frame is fully decoded.
int row;
int col;
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
typedef struct AV1Common {
struct aom_internal_error_info error;
aom_color_space_t color_space;
int color_range;
int width;
int height;
int render_width;
int render_height;
int last_width;
int last_height;
#if CONFIG_FRAME_SUPERRES
// The numerator of the superres scale, the denominator is fixed
uint8_t superres_scale_numerator;
int superres_width, superres_height;
#endif // CONFIG_FRAME_SUPERRES
// TODO(jkoleszar): this implies chroma ss right now, but could vary per
// plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
// support additional planes.
int subsampling_x;
int subsampling_y;
#if CONFIG_HIGHBITDEPTH
// Marks if we need to use 16bit frame buffers (1: yes, 0: no).
int use_highbitdepth;
#endif
YV12_BUFFER_CONFIG *frame_to_show;
RefCntBuffer *prev_frame;
// TODO(hkuang): Combine this with cur_buf in macroblockd.
RefCntBuffer *cur_frame;
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
// Prepare ref_frame_map for the next frame.
// Only used in frame parallel decode.
int next_ref_frame_map[REF_FRAMES];
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
// roll new_fb_idx into it.
// Each Inter frame can reference INTER_REFS_PER_FRAME buffers
RefBuffer frame_refs[INTER_REFS_PER_FRAME];
int new_fb_idx;
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
FRAME_TYPE frame_type;
int show_frame;
int last_show_frame;
int show_existing_frame;
#if CONFIG_EXT_REFS
// Flag for a frame used as a reference - not written to the bitstream
int is_reference_frame;
#endif // CONFIG_EXT_REFS
// Flag signaling that the frame is encoded using only INTRA modes.
uint8_t intra_only;
uint8_t last_intra_only;
int allow_high_precision_mv;
#if CONFIG_PALETTE
int allow_screen_content_tools;
#endif // CONFIG_PALETTE
// Flag signaling which frame contexts should be reset to default values.
RESET_FRAME_CONTEXT_MODE reset_frame_context;
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
// MODE_INFO (8-pixel) units.
int MBs;
int mb_rows, mi_rows;
int mb_cols, mi_cols;
int mi_stride;
/* profile settings */
TX_MODE tx_mode;
int base_qindex;
int y_dc_delta_q;
int uv_dc_delta_q;
int uv_ac_delta_q;
int16_t y_dequant[MAX_SEGMENTS][2];
int16_t uv_dequant[MAX_SEGMENTS][2];
#if CONFIG_AOM_QM
// Global quant matrix tables
qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
// Local quant matrix tables for each frame
qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
// Encoder
qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
int using_qmatrix;
int min_qmlevel;
int max_qmlevel;
#endif
#if CONFIG_NEW_QUANT
dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
#endif
/* We allocate a MODE_INFO struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
int mi_alloc_size;
MODE_INFO *mip; /* Base of allocated array */
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
// TODO(agrange): Move prev_mi into encoder structure.
// prev_mip and prev_mi will only be allocated in encoder.
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
// Separate mi functions between encoder and decoder.
int (*alloc_mi)(struct AV1Common *cm, int mi_size);
void (*free_mi)(struct AV1Common *cm);
void (*setup_mi)(struct AV1Common *cm);
// Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
// area will be NULL.
MODE_INFO **mi_grid_base;
MODE_INFO **mi_grid_visible;
MODE_INFO **prev_mi_grid_base;
MODE_INFO **prev_mi_grid_visible;
// Whether to use previous frame's motion vectors for prediction.
int use_prev_frame_mvs;
// Persistent mb segment id map used in prediction.
int seg_map_idx;
int prev_seg_map_idx;
uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
uint8_t *last_frame_seg_map;
uint8_t *current_frame_seg_map;
int seg_map_alloc_size;
InterpFilter interp_filter;
loop_filter_info_n lf_info;
#if CONFIG_LOOP_RESTORATION
RestorationInfo rst_info[MAX_MB_PLANE];
RestorationInternal rst_internal;
#endif // CONFIG_LOOP_RESTORATION
// Flag signaling how frame contexts should be updated at the end of
// a frame decode
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */
struct loopfilter lf;
struct segmentation seg;
int frame_parallel_decode; // frame-based threading.
#if CONFIG_EXT_TX
int reduced_tx_set_used;
#endif // CONFIG_EXT_TX
// Context probabilities for reference frame prediction
#if CONFIG_EXT_REFS
MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
#else
MV_REFERENCE_FRAME comp_fixed_ref;
MV_REFERENCE_FRAME comp_var_ref[COMP_REFS];
#endif // CONFIG_EXT_REFS
REFERENCE_MODE reference_mode;
FRAME_CONTEXT *fc; /* this frame entropy */
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
unsigned int frame_context_idx; /* Context to use/update */
FRAME_COUNTS counts;
#if CONFIG_SUBFRAME_PROB_UPDATE
// The initial probabilities for a frame, before any subframe backward update,
// and after forward update.
av1_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES];
// Number of subframe backward updates already done
uint8_t coef_probs_update_idx;
// Signal if the backward update is subframe or end-of-frame
uint8_t partial_prob_update;
// Frame level flag to turn on/off subframe backward update
uint8_t do_subframe_update;
#endif // CONFIG_SUBFRAME_PROB_UPDATE
unsigned int current_video_frame;
BITSTREAM_PROFILE profile;
// AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
aom_bit_depth_t bit_depth;
aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
int error_resilient_mode;
#if !CONFIG_EXT_TILE
int log2_tile_cols, log2_tile_rows;
#endif // !CONFIG_EXT_TILE
int tile_cols, tile_rows;
int tile_width, tile_height; // In MI units
#if CONFIG_EXT_TILE
unsigned int tile_encoding_mode;
#endif // CONFIG_EXT_TILE
#if CONFIG_DEPENDENT_HORZTILES
int dependent_horz_tiles;
#if CONFIG_TILE_GROUPS
int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS];
int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS];
#endif
#endif
#if CONFIG_LOOPFILTERING_ACROSS_TILES
int loop_filter_across_tiles_enabled;
#endif // CONFIG_LOOPFILTERING_ACROSS_TILES
int byte_alignment;
int skip_loop_filter;
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
// Handles memory for the codec.
InternalFrameBufferList int_frame_buffers;
// External BufferPool passed from outside.
BufferPool *buffer_pool;
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
#if CONFIG_VAR_TX
TXFM_CONTEXT *above_txfm_context;
TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE];
#endif
int above_context_alloc_cols;
// scratch memory for intraonly/keyframe forward updates from default tables
// - this is intentionally not placed in FRAME_CONTEXT since it's reset upon
// each keyframe and not used afterwards
aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1];
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME];
#endif
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
int mib_size; // Size of the superblock in units of MI blocks
int mib_size_log2; // Log 2 of above.
#if CONFIG_CDEF
int cdef_dering_damping;
int cdef_clpf_damping;
int nb_cdef_strengths;
int cdef_strengths[CDEF_MAX_STRENGTHS];
int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
int cdef_bits;
#endif
#if CONFIG_DELTA_Q
int delta_q_present_flag;
// Resolution of delta quant
int delta_q_res;
#if CONFIG_EXT_DELTA_Q
int delta_lf_present_flag;
// Resolution of delta lf level
int delta_lf_res;
#endif
#endif
#if CONFIG_TILE_GROUPS
int num_tg;
#endif
#if CONFIG_REFERENCE_BUFFER
int current_frame_id;
int ref_frame_id[REF_FRAMES];
int valid_for_referencing[REF_FRAMES];
int refresh_mask;
int invalid_delta_frame_id_minus1;
#endif
#if CONFIG_ANS && ANS_MAX_SYMBOLS
int ans_window_size_log2;
#endif
} AV1_COMMON;
#if CONFIG_REFERENCE_BUFFER
/* Initial version of sequence header structure */
typedef struct SequenceHeader {
int frame_id_numbers_present_flag;
int frame_id_length_minus7;
int delta_frame_id_length_minus2;
} SequenceHeader;
#endif
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
static void lock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static void unlock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES) return NULL;
if (cm->ref_frame_map[index] < 0) return NULL;
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
}
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
const AV1_COMMON *const cm) {
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
}
static INLINE int get_free_fb(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0) break;
if (i != FRAME_BUFFERS) {
frame_bufs[i].ref_count = 1;
} else {
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
const int ref_index = *idx;
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
bufs[ref_index].ref_count--;
*idx = new_idx;
bufs[new_idx].ref_count++;
}
static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2);
}
static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2);
}
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
return cm->frame_type == KEY_FRAME || cm->intra_only;
}
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
#if CONFIG_PVQ
tran_low_t *pvq_ref_coeff,
#endif
#if CONFIG_CFL
CFL_CTX *cfl,
#endif
tran_low_t *dqcoeff) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
xd->plane[i].dqcoeff = dqcoeff;
#if CONFIG_PVQ
xd->plane[i].pvq_ref_coeff = pvq_ref_coeff;
#endif
#if CONFIG_CFL
xd->cfl = cfl;
cfl_init(cfl, cm, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
#endif
xd->above_context[i] = cm->above_context[i];
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq,
sizeof(cm->y_dequant_nuq));
#endif
} else {
memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix,
sizeof(cm->uv_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq,
sizeof(cm->uv_dequant_nuq));
#endif
}
xd->fc = cm->fc;
}
xd->above_seg_context = cm->above_seg_context;
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context;
#endif
xd->mi_stride = cm->mi_stride;
xd->error_info = &cm->error;
}
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
#if CONFIG_CHROMA_SUB8X8
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
// Offset the buffer pointer
if (pd->subsampling_y && (mi_row & 0x01)) mi_row -= 1;
if (pd->subsampling_x && (mi_col & 0x01)) mi_col -= 1;
}
#endif
int above_idx = mi_col * 2;
int left_idx = (mi_row * 2) & MAX_MIB_MASK_2;
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units.
return len + MAX_MIB_SIZE;
}
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
#if !CONFIG_CHROMA_2X2
xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
#endif
}
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh, int mi_col, int bw,
#if CONFIG_DEPENDENT_HORZTILES
int dependent_horz_tile_flag,
#endif // CONFIG_DEPENDENT_HORZTILES
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
#if CONFIG_DEPENDENT_HORZTILES
if (dependent_horz_tile_flag) {
#if CONFIG_TILE_GROUPS
xd->up_available = (mi_row > tile->mi_row_start) || !tile->tg_horz_boundary;
#else
xd->up_available = (mi_row > 0);
#endif // CONFIG_TILE_GROUPS
} else {
#endif // CONFIG_DEPENDENT_HORZTILES
// Are edges available for intra prediction?
xd->up_available = (mi_row > tile->mi_row_start);
#if CONFIG_DEPENDENT_HORZTILES
}
#endif // CONFIG_DEPENDENT_HORZTILES
xd->left_available = (mi_col > tile->mi_col_start);
#if CONFIG_CHROMA_SUB8X8
xd->chroma_up_available = xd->up_available;
xd->chroma_left_available = xd->left_available;
if (xd->plane[1].subsampling_x && bw < mi_size_wide[BLOCK_8X8])
xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
if (xd->plane[1].subsampling_y && bh < mi_size_high[BLOCK_8X8])
xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
#endif
if (xd->up_available) {
xd->above_mi = xd->mi[-xd->mi_stride];
// above_mi may be NULL in encoder's first pass.
xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
} else {
xd->above_mi = NULL;
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mi = xd->mi[-1];
// left_mi may be NULL in encoder's first pass.
xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
} else {
xd->left_mi = NULL;
xd->left_mbmi = NULL;
}
xd->n8_h = bh;
xd->n8_w = bw;
#if CONFIG_REF_MV
xd->is_sec_rect = 0;
if (xd->n8_w < xd->n8_h)
if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
if (xd->n8_w > xd->n8_h)
if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
#endif // CONFIG_REF_MV
}
static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm,
const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
return cm->kf_y_prob[above][left];
}
#if CONFIG_EC_MULTISYMBOL
static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
return tile_ctx->kf_y_cdf[above][left];
}
#endif
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
#if CONFIG_EXT_PARTITION_TYPES
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bh);
#else
// num_4x4_blocks_wide_lookup[bsize] / 2
const int bs = mi_size_wide[bsize];
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bs);
memset(left_ctx, partition_context_lookup[subsize].left, bs);
#endif // CONFIG_EXT_PARTITION_TYPES
}
#if CONFIG_CB4X4
static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
int subsampling_x, int subsampling_y) {
#if CONFIG_CHROMA_2X2
return 1;
#endif
#if CONFIG_CHROMA_SUB8X8
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
return ref_pos;
#else
int ref_pos = !(((mi_row & 0x01) && subsampling_y) ||
((mi_col & 0x01) && subsampling_x));
if (bsize >= BLOCK_8X8) ref_pos = 1;
return ref_pos;
#endif
}
static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
int subsampling_y) {
BLOCK_SIZE bs = bsize;
if (bs < BLOCK_8X8) {
if (subsampling_x == 1 && subsampling_y == 1)
bs = BLOCK_8X8;
else if (subsampling_x == 1)
bs = BLOCK_8X4;
else if (subsampling_y == 1)
bs = BLOCK_4X8;
}
return bs;
}
#endif
#if CONFIG_EXT_PARTITION_TYPES
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (bsize >= BLOCK_8X8) {
const int hbs = mi_size_wide[bsize] / 2;
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
switch (partition) {
case PARTITION_SPLIT:
if (bsize != BLOCK_8X8) break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
}
#endif // CONFIG_EXT_PARTITION_TYPES
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col,
#if CONFIG_UNPOISON_PARTITION_CTX
int has_rows, int has_cols,
#endif
BLOCK_SIZE bsize) {
#if CONFIG_UNPOISON_PARTITION_CTX
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// Minimum partition point is 8x8. Offset the bsl accordingly.
const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
assert(bsl >= 0);
if (has_rows && has_cols)
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
else if (has_rows && !has_cols)
return PARTITION_CONTEXTS_PRIMARY + bsl;
else if (!has_rows && has_cols)
return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl;
else
return PARTITION_CONTEXTS; // Bogus context, forced SPLIT
#else
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// Minimum partition point is 8x8. Offset the bsl accordingly.
const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
#endif
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_wide = block_size_wide[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
// Scale the width in the transform block unit.
return max_blocks_wide >> tx_size_wide_log2[0];
}
static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane) {
int max_blocks_high = block_size_high[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
// Scale the width in the transform block unit.
return max_blocks_high >> tx_size_wide_log2[0];
}
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
int mi_col_start, int mi_col_end) {
const int width = mi_col_end - mi_col_start;
const int aligned_width = ALIGN_POWER_OF_TWO(width, cm->mib_size_log2);
const int offset_y = 2 * mi_col_start;
const int width_y = 2 * aligned_width;
const int offset_uv = offset_y >> cm->subsampling_x;
const int width_uv = width_y >> cm->subsampling_x;
av1_zero_array(cm->above_context[0] + offset_y, width_y);
av1_zero_array(cm->above_context[1] + offset_uv, width_uv);
av1_zero_array(cm->above_context[2] + offset_uv, width_uv);
av1_zero_array(cm->above_seg_context + mi_col_start, aligned_width);
#if CONFIG_VAR_TX
av1_zero_array(cm->above_txfm_context + mi_col_start, aligned_width);
#endif // CONFIG_VAR_TX
}
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
av1_zero(xd->left_context);
av1_zero(xd->left_seg_context);
#if CONFIG_VAR_TX
av1_zero(xd->left_txfm_context_buffer);
#endif
}
#if CONFIG_VAR_TX
static INLINE TX_SIZE get_min_tx_size(TX_SIZE tx_size) {
if (tx_size >= TX_SIZES_ALL) assert(0);
return txsize_sqr_map[tx_size];
}
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
int i;
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
}
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip,
const MACROBLOCKD *xd) {
uint8_t bw = tx_size_wide[tx_size];
uint8_t bh = tx_size_high[tx_size];
if (skip) {
bw = n8_w * MI_SIZE;
bh = n8_h * MI_SIZE;
}
set_txfm_ctx(xd->above_txfm_context, bw, n8_w);
set_txfm_ctx(xd->left_txfm_context, bh, n8_h);
}
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
TX_SIZE tx_size, TX_SIZE txb_size) {
BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
uint8_t txw = tx_size_wide[tx_size];
uint8_t txh = tx_size_high[tx_size];
int i;
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
}
static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
BLOCK_SIZE bsize, TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
TX_SIZE max_tx_size = max_txsize_lookup[bsize];
int category = TXFM_PARTITION_CONTEXTS - 1;
// dummy return, not used by others.
if (tx_size <= TX_4X4) return 0;
switch (AOMMAX(block_size_wide[bsize], block_size_high[bsize])) {
#if CONFIG_EXT_PARTITION
case 128:
#endif
case 64:
case 32: max_tx_size = TX_32X32; break;
case 16: max_tx_size = TX_16X16; break;
case 8: max_tx_size = TX_8X8; break;
default: assert(0);
}
if (max_tx_size >= TX_8X8) {
category = (tx_size != max_tx_size && max_tx_size > TX_8X8) +
(TX_SIZES - 1 - max_tx_size) * 2;
}
if (category == TXFM_PARTITION_CONTEXTS - 1) return category;
return category * 3 + above + left;
}
#endif
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
return PARTITION_INVALID;
} else {
const int offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + offset;
const MB_MODE_INFO *const mbmi = &mi[0]->mbmi;
const int bsl = b_width_log2_lookup[bsize];
const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type];
#if !CONFIG_EXT_PARTITION_TYPES
return partition;
#else
const int hbs = mi_size_wide[bsize] / 2;
assert(cm->mi_grid_visible[offset] == &cm->mi[offset]);
if (partition != PARTITION_NONE && bsize > BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A);
const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A);
const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi;
const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi;
if (mbmi->sb_type == h) {
return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B;
} else if (mbmi->sb_type == v) {
return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B;
} else if (mbmi_below->sb_type == h) {
return PARTITION_HORZ_A;
} else if (mbmi_right->sb_type == v) {
return PARTITION_VERT_A;
} else {
return PARTITION_SPLIT;
}
}
return partition;
#endif // !CONFIG_EXT_PARTITION_TYPES
}
}
static INLINE void set_sb_size(AV1_COMMON *const cm, BLOCK_SIZE sb_size) {
cm->sb_size = sb_size;
cm->mib_size = mi_size_wide[cm->sb_size];
#if CONFIG_CB4X4
cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size];
#else
cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size];
#endif
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_ONYXC_INT_H_
|