1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#define MAX_BLOCK_WIDTH (MAX_SB_SIZE)
#define MAX_BLOCK_HEIGHT (MAX_SB_SIZE)
#define MAX_STEP (32)
void av1_convolve_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
int x, y;
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= filter_size / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->ref)
dst[x] = ROUND_POWER_OF_TWO(dst[x] + sum, 1);
else
dst[x] = sum;
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_convolve_vert_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
int x, y;
int filter_size = filter_params.taps;
assert(conv_params->round == CONVOLVE_OPT_ROUND);
src -= src_stride * (filter_size / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (y = 0; y < h; ++y) {
const uint8_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
sum = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
if (conv_params->ref)
dst[y * dst_stride] = ROUND_POWER_OF_TWO(dst[y * dst_stride] + sum, 1);
else
dst[y * dst_stride] = sum;
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void convolve_copy(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (conv_params->ref == 0) {
int r;
for (r = 0; r < h; ++r) {
memcpy(dst, src, w);
src += src_stride;
dst += dst_stride;
}
} else {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
dst[c] = clip_pixel(ROUND_POWER_OF_TWO(dst[c] + src[c], 1));
}
src += src_stride;
dst += dst_stride;
}
}
}
void av1_convolve_horiz_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (conv_params->ref == 0)
aom_convolve8_horiz(src, src_stride, dst, dst_stride, filter_x, x_step_q4,
NULL, -1, w, h);
else
aom_convolve8_avg_horiz(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
} else {
av1_convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
}
}
void av1_convolve_horiz_facade_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (conv_params->ref == 0)
aom_convolve8_horiz_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
else
aom_convolve8_avg_horiz_c(src, src_stride, dst, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h);
} else {
av1_convolve_horiz_c(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
}
}
void av1_convolve_vert_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (conv_params->ref == 0) {
aom_convolve8_vert(src, src_stride, dst, dst_stride, NULL, -1, filter_y,
y_step_q4, w, h);
} else {
aom_convolve8_avg_vert(src, src_stride, dst, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h);
}
} else {
av1_convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
}
}
void av1_convolve_vert_facade_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
assert(conv_params->round == CONVOLVE_OPT_ROUND);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (conv_params->ref == 0) {
aom_convolve8_vert_c(src, src_stride, dst, dst_stride, NULL, -1, filter_y,
y_step_q4, w, h);
} else {
aom_convolve8_avg_vert_c(src, src_stride, dst, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h);
}
} else {
av1_convolve_vert_c(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
}
}
#if CONFIG_CONVOLVE_ROUND
void av1_convolve_rounding(const int32_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h, int bits) {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
dst[r * dst_stride + c] =
clip_pixel(ROUND_POWER_OF_TWO_SIGNED(src[r * src_stride + c], bits));
}
}
}
void av1_convolve_2d(const uint8_t *src, int src_stride, CONV_BUF_TYPE *dst,
int dst_stride, int w, int h,
InterpFilterParams *filter_params_x,
InterpFilterParams *filter_params_y, const int subpel_x_q4,
const int subpel_y_q4, ConvolveParams *conv_params) {
int x, y, k;
CONV_BUF_TYPE im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
(void)conv_params;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_x, subpel_x_q4 & SUBPEL_MASK);
for (y = 0; y < im_h; ++y) {
for (x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 0;
for (k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
#if CONFIG_COMPOUND_ROUND
im_block[y * im_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO_SIGNED(sum, conv_params->round_0));
#else
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO_SIGNED(sum, conv_params->round_0);
#endif
}
}
// vertical filter
CONV_BUF_TYPE *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
*filter_params_y, subpel_y_q4 & SUBPEL_MASK);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
CONV_BUF_TYPE sum = 0;
for (k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
dst[y * dst_stride + x] +=
ROUND_POWER_OF_TWO_SIGNED(sum, conv_params->round_1);
}
}
}
static INLINE void transpose_uint8(uint8_t *dst, int dst_stride,
const uint8_t *src, int src_stride, int w,
int h) {
int r, c;
for (r = 0; r < h; ++r)
for (c = 0; c < w; ++c)
dst[c * (dst_stride) + r] = src[r * (src_stride) + c];
}
static INLINE void transpose_int32(int32_t *dst, int dst_stride,
const int32_t *src, int src_stride, int w,
int h) {
int r, c;
for (r = 0; r < h; ++r)
for (c = 0; c < w; ++c)
dst[c * (dst_stride) + r] = src[r * (src_stride) + c];
}
void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilter *interp_filter,
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst;
(void)dst_stride;
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * conv_params->ref]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * conv_params->ref]);
if (filter_params_x.interp_filter == MULTITAP_SHARP &&
filter_params_y.interp_filter == MULTITAP_SHARP) {
// Avoid two directions both using 12-tap filter.
// This will reduce hardware implementation cost.
filter_params_y = av1_get_interp_filter_params(EIGHTTAP_SHARP);
}
#else
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(*interp_filter);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(*interp_filter);
#endif
if (filter_params_y.taps < filter_params_x.taps) {
uint8_t tr_src[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) *
(MAX_SB_SIZE + MAX_FILTER_TAP - 1)];
int tr_src_stride = MAX_SB_SIZE + MAX_FILTER_TAP - 1;
CONV_BUF_TYPE tr_dst[MAX_SB_SIZE * MAX_SB_SIZE];
int tr_dst_stride = MAX_SB_SIZE;
int fo_vert = filter_params_y.taps / 2 - 1;
int fo_horiz = filter_params_x.taps / 2 - 1;
transpose_uint8(tr_src, tr_src_stride,
src - fo_vert * src_stride - fo_horiz, src_stride,
w + filter_params_x.taps - 1, h + filter_params_y.taps - 1);
transpose_int32(tr_dst, tr_dst_stride, conv_params->dst,
conv_params->dst_stride, w, h);
// horizontal and vertical parameters are swapped because of the transpose
av1_convolve_2d(tr_src + fo_horiz * tr_src_stride + fo_vert, tr_src_stride,
tr_dst, tr_dst_stride, h, w, &filter_params_y,
&filter_params_x, subpel_y_q4, subpel_x_q4, conv_params);
transpose_int32(conv_params->dst, conv_params->dst_stride, tr_dst,
tr_dst_stride, h, w);
} else {
av1_convolve_2d(src, src_stride, conv_params->dst, conv_params->dst_stride,
w, h, &filter_params_x, &filter_params_y, subpel_x_q4,
subpel_y_q4, conv_params);
}
}
#endif // CONFIG_CONVOLVE_ROUND
typedef void (*ConvolveFunc)(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_q4, int step_q4,
ConvolveParams *conv_params);
static void convolve_helper(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4,
ConvolveParams *conv_params,
ConvolveFunc convolve_horiz,
ConvolveFunc convolve_vert) {
int ignore_horiz = x_step_q4 == 16 && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == 16 && subpel_y_q4 == 0;
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * conv_params->ref]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * conv_params->ref]);
InterpFilterParams filter_params;
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
assert(conv_params->round == CONVOLVE_OPT_ROUND);
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
convolve_copy(src, src_stride, dst, dst_stride, w, h, conv_params);
} else if (ignore_vert) {
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_horiz(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_x_q4, x_step_q4, conv_params);
} else if (ignore_horiz) {
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_vert(src, src_stride, dst, dst_stride, w, h, filter_params,
subpel_y_q4, y_step_q4, conv_params);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
#if CONFIG_DUAL_FILTER
if (interp_filter[0 + 2 * conv_params->ref] == MULTITAP_SHARP &&
interp_filter[1 + 2 * conv_params->ref] == MULTITAP_SHARP) {
// Avoid two directions both using 12-tap filter.
// This will reduce hardware implementation cost.
filter_params_y = av1_get_interp_filter_params(EIGHTTAP_SHARP);
}
// we do filter with fewer taps first to reduce hardware implementation
// complexity
if (filter_params_y.taps < filter_params_x.taps) {
int intermediate_width;
int temp_stride = max_intermediate_size;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
filter_params = filter_params_y;
filter_size = filter_params_x.taps;
intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_vert(src - (filter_size / 2 - 1), src_stride, temp, temp_stride,
intermediate_width, h, filter_params, subpel_y_q4,
y_step_q4, &temp_conv_params);
filter_params = filter_params_x;
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_horiz(temp + (filter_size / 2 - 1), temp_stride, dst, dst_stride,
w, h, filter_params, subpel_x_q4, x_step_q4, conv_params);
} else
#endif // CONFIG_DUAL_FILTER
{
int intermediate_height;
int temp_stride = MAX_SB_SIZE;
ConvolveParams temp_conv_params;
temp_conv_params.ref = 0;
temp_conv_params.round = CONVOLVE_OPT_ROUND;
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
filter_size = filter_params_y.taps;
#else
filter_size = filter_params.taps;
#endif
intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_horiz(src - src_stride * (filter_size / 2 - 1), src_stride, temp,
temp_stride, w, intermediate_height, filter_params,
subpel_x_q4, x_step_q4, &temp_conv_params);
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
assert(filter_params.taps <= MAX_FILTER_TAP);
convolve_vert(temp + temp_stride * (filter_size / 2 - 1), temp_stride,
dst, dst_stride, w, h, filter_params, subpel_y_q4,
y_step_q4, conv_params);
}
}
}
void av1_convolve(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4, const int subpel_y_q4,
int y_step_q4, ConvolveParams *conv_params) {
convolve_helper(src, src_stride, dst, dst_stride, w, h, interp_filter,
subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, conv_params,
av1_convolve_horiz_facade, av1_convolve_vert_facade);
}
void av1_convolve_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4, const int subpel_y_q4,
int y_step_q4, ConvolveParams *conv_params) {
convolve_helper(src, src_stride, dst, dst_stride, w, h, interp_filter,
subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, conv_params,
av1_convolve_horiz_facade_c, av1_convolve_vert_facade_c);
}
void av1_lowbd_convolve_init_c(void) {
// A placeholder for SIMD initialization
return;
}
void av1_highbd_convolve_init_c(void) {
// A placeholder for SIMD initialization
return;
}
void av1_convolve_init(AV1_COMMON *cm) {
#if CONFIG_HIGHBITDEPTH
if (cm->use_highbitdepth)
av1_highbd_convolve_init();
else
av1_lowbd_convolve_init();
#else
(void)cm;
av1_lowbd_convolve_init();
#endif
return;
}
#if CONFIG_HIGHBITDEPTH
void av1_highbd_convolve_horiz_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4, int avg,
int bd) {
int x, y;
int filter_size = filter_params.taps;
src -= filter_size / 2 - 1;
for (y = 0; y < h; ++y) {
int x_q4 = subpel_x_q4;
for (x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params, x_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k) sum += src_x[k] * x_filter[k];
if (avg)
dst[x] = ROUND_POWER_OF_TWO(
dst[x] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
else
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
void av1_highbd_convolve_vert_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4, int avg,
int bd) {
int x, y;
int filter_size = filter_params.taps;
src -= src_stride * (filter_size / 2 - 1);
for (x = 0; x < w; ++x) {
int y_q4 = subpel_y_q4;
for (y = 0; y < h; ++y) {
const uint16_t *const src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params, y_q4 & SUBPEL_MASK);
int k, sum = 0;
for (k = 0; k < filter_size; ++k)
sum += src_y[k * src_stride] * y_filter[k];
if (avg) {
dst[y * dst_stride] = ROUND_POWER_OF_TWO(
dst[y * dst_stride] +
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd),
1);
} else {
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
}
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
static void highbd_convolve_copy(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
int avg, int bd) {
if (avg == 0) {
int r;
for (r = 0; r < h; ++r) {
memcpy(dst, src, w * sizeof(*src));
src += src_stride;
dst += dst_stride;
}
} else {
int r, c;
for (r = 0; r < h; ++r) {
for (c = 0; c < w; ++c) {
dst[c] = clip_pixel_highbd(ROUND_POWER_OF_TWO(dst[c] + src[c], 1), bd);
}
src += src_stride;
dst += dst_stride;
}
}
}
void av1_highbd_convolve_horiz_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_x_q4, int x_step_q4,
int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
if (avg == 0)
aom_highbd_convolve8_horiz(src8, src_stride, dst8, dst_stride, filter_x,
x_step_q4, NULL, -1, w, h, bd);
else
aom_highbd_convolve8_avg_horiz(src8, src_stride, dst8, dst_stride,
filter_x, x_step_q4, NULL, -1, w, h, bd);
} else {
av1_highbd_convolve_horiz(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, avg, bd);
}
}
void av1_highbd_convolve_vert_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w,
int h,
const InterpFilterParams filter_params,
const int subpel_y_q4, int y_step_q4,
int avg, int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
if (filter_params.taps == SUBPEL_TAPS) {
const int16_t *filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
if (avg == 0) {
aom_highbd_convolve8_vert(src8, src_stride, dst8, dst_stride, NULL, -1,
filter_y, y_step_q4, w, h, bd);
} else {
aom_highbd_convolve8_avg_vert(src8, src_stride, dst8, dst_stride, NULL,
-1, filter_y, y_step_q4, w, h, bd);
}
} else {
av1_highbd_convolve_vert(src, src_stride, dst, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4, avg, bd);
}
}
void av1_highbd_convolve(const uint8_t *src8, int src_stride, uint8_t *dst8,
int dst_stride, int w, int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
const int subpel_x_q4, int x_step_q4,
const int subpel_y_q4, int y_step_q4, int ref_idx,
int bd) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
int ignore_horiz = x_step_q4 == 16 && subpel_x_q4 == 0;
int ignore_vert = y_step_q4 == 16 && subpel_y_q4 == 0;
assert(w <= MAX_BLOCK_WIDTH);
assert(h <= MAX_BLOCK_HEIGHT);
assert(y_step_q4 <= MAX_STEP);
assert(x_step_q4 <= MAX_STEP);
if (ignore_horiz && ignore_vert) {
highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h, ref_idx, bd);
} else if (ignore_vert) {
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
av1_highbd_convolve_horiz_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4,
ref_idx, bd);
} else if (ignore_horiz) {
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
#else
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
av1_highbd_convolve_vert_facade(src8, src_stride, dst8, dst_stride, w, h,
filter_params, subpel_y_q4, y_step_q4,
ref_idx, bd);
} else {
// temp's size is set to a 256 aligned value to facilitate SIMD
// implementation. The value is greater than (maximum possible intermediate
// height or width) * MAX_SB_SIZE
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
uint8_t *temp8 = CONVERT_TO_BYTEPTR(temp);
int max_intermediate_size = ((MAX_SB_SIZE * 2 + 16) + 16);
int filter_size;
InterpFilterParams filter_params;
#if CONFIG_DUAL_FILTER
InterpFilterParams filter_params_x =
av1_get_interp_filter_params(interp_filter[1 + 2 * ref_idx]);
InterpFilterParams filter_params_y =
av1_get_interp_filter_params(interp_filter[0 + 2 * ref_idx]);
if (interp_filter[0 + 2 * ref_idx] == MULTITAP_SHARP &&
interp_filter[1 + 2 * ref_idx] == MULTITAP_SHARP) {
// Avoid two directions both using 12-tap filter.
// This will reduce hardware implementation cost.
filter_params_y = av1_get_interp_filter_params(EIGHTTAP_SHARP);
}
#endif
#if CONFIG_DUAL_FILTER
if (filter_params_y.taps < filter_params_x.taps) {
int intermediate_width;
int temp_stride = max_intermediate_size;
filter_params = filter_params_y;
filter_size = filter_params_x.taps;
intermediate_width =
(((w - 1) * x_step_q4 + subpel_x_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_width <= max_intermediate_size);
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_vert_facade(
src8 - (filter_size / 2 - 1), src_stride, temp8, temp_stride,
intermediate_width, h, filter_params, subpel_y_q4, y_step_q4, 0, bd);
filter_params = filter_params_x;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_horiz_facade(
temp8 + (filter_size / 2 - 1), temp_stride, dst8, dst_stride, w, h,
filter_params, subpel_x_q4, x_step_q4, ref_idx, bd);
} else
#endif // CONFIG_DUAL_FILTER
{
int intermediate_height;
int temp_stride = MAX_SB_SIZE;
#if CONFIG_DUAL_FILTER
filter_params = filter_params_x;
filter_size = filter_params_y.taps;
#else
filter_params = av1_get_interp_filter_params(interp_filter);
filter_size = filter_params.taps;
#endif
intermediate_height =
(((h - 1) * y_step_q4 + subpel_y_q4) >> SUBPEL_BITS) + filter_size;
assert(intermediate_height <= max_intermediate_size);
(void)max_intermediate_size;
av1_highbd_convolve_horiz_facade(
src8 - src_stride * (filter_size / 2 - 1), src_stride, temp8,
temp_stride, w, intermediate_height, filter_params, subpel_x_q4,
x_step_q4, 0, bd);
#if CONFIG_DUAL_FILTER
filter_params = filter_params_y;
#endif
filter_size = filter_params.taps;
assert(filter_params.taps <= MAX_FILTER_TAP);
av1_highbd_convolve_vert_facade(
temp8 + temp_stride * (filter_size / 2 - 1), temp_stride, dst8,
dst_stride, w, h, filter_params, subpel_y_q4, y_step_q4, ref_idx, bd);
}
}
}
#endif // CONFIG_HIGHBITDEPTH
|