summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/cdef_block.c
blob: aaa32c950b752bc1460d294ffa7068a36cfb1413 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>
#include <stdlib.h>

#ifdef HAVE_CONFIG_H
#include "./config.h"
#endif

#include "./aom_dsp_rtcd.h"
#include "./av1_rtcd.h"
#include "./cdef.h"

/* Generated from gen_filter_tables.c. */
#if !CONFIG_CDEF_SINGLEPASS || CDEF_FULL
const int cdef_directions[8][3] = {
  { -1 * CDEF_BSTRIDE + 1, -2 * CDEF_BSTRIDE + 2, -3 * CDEF_BSTRIDE + 3 },
  { 0 * CDEF_BSTRIDE + 1, -1 * CDEF_BSTRIDE + 2, -1 * CDEF_BSTRIDE + 3 },
  { 0 * CDEF_BSTRIDE + 1, 0 * CDEF_BSTRIDE + 2, 0 * CDEF_BSTRIDE + 3 },
  { 0 * CDEF_BSTRIDE + 1, 1 * CDEF_BSTRIDE + 2, 1 * CDEF_BSTRIDE + 3 },
  { 1 * CDEF_BSTRIDE + 1, 2 * CDEF_BSTRIDE + 2, 3 * CDEF_BSTRIDE + 3 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 1, 3 * CDEF_BSTRIDE + 1 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 0, 3 * CDEF_BSTRIDE + 0 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE - 1, 3 * CDEF_BSTRIDE - 1 }
};
#else
const int cdef_directions[8][2] = {
  { -1 * CDEF_BSTRIDE + 1, -2 * CDEF_BSTRIDE + 2 },
  { 0 * CDEF_BSTRIDE + 1, -1 * CDEF_BSTRIDE + 2 },
  { 0 * CDEF_BSTRIDE + 1, 0 * CDEF_BSTRIDE + 2 },
  { 0 * CDEF_BSTRIDE + 1, 1 * CDEF_BSTRIDE + 2 },
  { 1 * CDEF_BSTRIDE + 1, 2 * CDEF_BSTRIDE + 2 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 1 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE + 0 },
  { 1 * CDEF_BSTRIDE + 0, 2 * CDEF_BSTRIDE - 1 }
};
#endif

/* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
   The search minimizes the weighted variance along all the lines in a
   particular direction, i.e. the squared error between the input and a
   "predicted" block where each pixel is replaced by the average along a line
   in a particular direction. Since each direction have the same sum(x^2) term,
   that term is never computed. See Section 2, step 2, of:
   http://jmvalin.ca/notes/intra_paint.pdf */
int cdef_find_dir_c(const uint16_t *img, int stride, int32_t *var,
                    int coeff_shift) {
  int i;
  int32_t cost[8] = { 0 };
  int partial[8][15] = { { 0 } };
  int32_t best_cost = 0;
  int best_dir = 0;
  /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
     The output is then 840 times larger, but we don't care for finding
     the max. */
  static const int div_table[] = { 0, 840, 420, 280, 210, 168, 140, 120, 105 };
  for (i = 0; i < 8; i++) {
    int j;
    for (j = 0; j < 8; j++) {
      int x;
      /* We subtract 128 here to reduce the maximum range of the squared
         partial sums. */
      x = (img[i * stride + j] >> coeff_shift) - 128;
      partial[0][i + j] += x;
      partial[1][i + j / 2] += x;
      partial[2][i] += x;
      partial[3][3 + i - j / 2] += x;
      partial[4][7 + i - j] += x;
      partial[5][3 - i / 2 + j] += x;
      partial[6][j] += x;
      partial[7][i / 2 + j] += x;
    }
  }
  for (i = 0; i < 8; i++) {
    cost[2] += partial[2][i] * partial[2][i];
    cost[6] += partial[6][i] * partial[6][i];
  }
  cost[2] *= div_table[8];
  cost[6] *= div_table[8];
  for (i = 0; i < 7; i++) {
    cost[0] += (partial[0][i] * partial[0][i] +
                partial[0][14 - i] * partial[0][14 - i]) *
               div_table[i + 1];
    cost[4] += (partial[4][i] * partial[4][i] +
                partial[4][14 - i] * partial[4][14 - i]) *
               div_table[i + 1];
  }
  cost[0] += partial[0][7] * partial[0][7] * div_table[8];
  cost[4] += partial[4][7] * partial[4][7] * div_table[8];
  for (i = 1; i < 8; i += 2) {
    int j;
    for (j = 0; j < 4 + 1; j++) {
      cost[i] += partial[i][3 + j] * partial[i][3 + j];
    }
    cost[i] *= div_table[8];
    for (j = 0; j < 4 - 1; j++) {
      cost[i] += (partial[i][j] * partial[i][j] +
                  partial[i][10 - j] * partial[i][10 - j]) *
                 div_table[2 * j + 2];
    }
  }
  for (i = 0; i < 8; i++) {
    if (cost[i] > best_cost) {
      best_cost = cost[i];
      best_dir = i;
    }
  }
  /* Difference between the optimal variance and the variance along the
     orthogonal direction. Again, the sum(x^2) terms cancel out. */
  *var = best_cost - cost[(best_dir + 4) & 7];
  /* We'd normally divide by 840, but dividing by 1024 is close enough
     for what we're going to do with this. */
  *var >>= 10;
  return best_dir;
}

#if CONFIG_CDEF_SINGLEPASS
#if CDEF_FULL
const int cdef_pri_taps[2][3] = { { 3, 2, 1 }, { 2, 2, 2 } };
const int cdef_sec_taps[2][2] = { { 3, 1 }, { 3, 1 } };
#else
const int cdef_pri_taps[2][2] = { { 4, 2 }, { 3, 3 } };
const int cdef_sec_taps[2][2] = { { 2, 1 }, { 2, 1 } };
#endif

/* Smooth in the direction detected. */
#if CDEF_CAP
void cdef_filter_block_c(uint8_t *dst8, uint16_t *dst16, int dstride,
                         const uint16_t *in, int pri_strength, int sec_strength,
                         int dir, int pri_damping, int sec_damping, int bsize,
                         UNUSED int max_unused)
#else
void cdef_filter_block_c(uint8_t *dst8, uint16_t *dst16, int dstride,
                         const uint16_t *in, int pri_strength, int sec_strength,
                         int dir, int pri_damping, int sec_damping, int bsize,
                         int max)
#endif
{
  int i, j, k;
  const int s = CDEF_BSTRIDE;
  const int *pri_taps = cdef_pri_taps[pri_strength & 1];
  const int *sec_taps = cdef_sec_taps[pri_strength & 1];
  for (i = 0; i < 4 << (bsize == BLOCK_8X8); i++) {
    for (j = 0; j < 4 << (bsize == BLOCK_8X8); j++) {
      int16_t sum = 0;
      int16_t y;
      int16_t x = in[i * s + j];
#if CDEF_CAP
      int max = x;
      int min = x;
#endif
#if CDEF_FULL
      for (k = 0; k < 3; k++)
#else
      for (k = 0; k < 2; k++)
#endif
      {
        int16_t p0 = in[i * s + j + cdef_directions[dir][k]];
        int16_t p1 = in[i * s + j - cdef_directions[dir][k]];
        sum += pri_taps[k] * constrain(p0 - x, pri_strength, pri_damping);
        sum += pri_taps[k] * constrain(p1 - x, pri_strength, pri_damping);
#if CDEF_CAP
        if (p0 != CDEF_VERY_LARGE) max = AOMMAX(p0, max);
        if (p1 != CDEF_VERY_LARGE) max = AOMMAX(p1, max);
        min = AOMMIN(p0, min);
        min = AOMMIN(p1, min);
#endif
#if CDEF_FULL
        if (k == 2) continue;
#endif
        int16_t s0 = in[i * s + j + cdef_directions[(dir + 2) & 7][k]];
        int16_t s1 = in[i * s + j - cdef_directions[(dir + 2) & 7][k]];
        int16_t s2 = in[i * s + j + cdef_directions[(dir + 6) & 7][k]];
        int16_t s3 = in[i * s + j - cdef_directions[(dir + 6) & 7][k]];
#if CDEF_CAP
        if (s0 != CDEF_VERY_LARGE) max = AOMMAX(s0, max);
        if (s1 != CDEF_VERY_LARGE) max = AOMMAX(s1, max);
        if (s2 != CDEF_VERY_LARGE) max = AOMMAX(s2, max);
        if (s3 != CDEF_VERY_LARGE) max = AOMMAX(s3, max);
        min = AOMMIN(s0, min);
        min = AOMMIN(s1, min);
        min = AOMMIN(s2, min);
        min = AOMMIN(s3, min);
#endif
        sum += sec_taps[k] * constrain(s0 - x, sec_strength, sec_damping);
        sum += sec_taps[k] * constrain(s1 - x, sec_strength, sec_damping);
        sum += sec_taps[k] * constrain(s2 - x, sec_strength, sec_damping);
        sum += sec_taps[k] * constrain(s3 - x, sec_strength, sec_damping);
      }
#if CDEF_CAP
      y = clamp((int16_t)x + ((8 + sum - (sum < 0)) >> 4), min, max);
#else
      y = clamp((int16_t)x + ((8 + sum - (sum < 0)) >> 4), 0, max);
#endif
      if (dst8)
        dst8[i * dstride + j] = (uint8_t)y;
      else
        dst16[i * dstride + j] = (uint16_t)y;
    }
  }
}

#else

/* Smooth in the direction detected. */
void cdef_direction_8x8_c(uint16_t *y, int ystride, const uint16_t *in,
                          int threshold, int dir, int damping) {
  int i;
  int j;
  int k;
  static const int taps[3] = { 3, 2, 1 };
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++) {
      int16_t sum;
      int16_t xx;
      int16_t yy;
      xx = in[i * CDEF_BSTRIDE + j];
      sum = 0;
      for (k = 0; k < 3; k++) {
        int16_t p0;
        int16_t p1;
        p0 = in[i * CDEF_BSTRIDE + j + cdef_directions[dir][k]] - xx;
        p1 = in[i * CDEF_BSTRIDE + j - cdef_directions[dir][k]] - xx;
        sum += taps[k] * constrain(p0, threshold, damping);
        sum += taps[k] * constrain(p1, threshold, damping);
      }
      sum = (sum + 8) >> 4;
      yy = xx + sum;
      y[i * ystride + j] = yy;
    }
  }
}

/* Smooth in the direction detected. */
void cdef_direction_4x4_c(uint16_t *y, int ystride, const uint16_t *in,
                          int threshold, int dir, int damping) {
  int i;
  int j;
  int k;
  static const int taps[2] = { 4, 1 };
  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      int16_t sum;
      int16_t xx;
      int16_t yy;
      xx = in[i * CDEF_BSTRIDE + j];
      sum = 0;
      for (k = 0; k < 2; k++) {
        int16_t p0;
        int16_t p1;
        p0 = in[i * CDEF_BSTRIDE + j + cdef_directions[dir][k]] - xx;
        p1 = in[i * CDEF_BSTRIDE + j - cdef_directions[dir][k]] - xx;
        sum += taps[k] * constrain(p0, threshold, damping);
        sum += taps[k] * constrain(p1, threshold, damping);
      }
      sum = (sum + 8) >> 4;
      yy = xx + sum;
      y[i * ystride + j] = yy;
    }
  }
}
#endif

/* Compute the primary filter strength for an 8x8 block based on the
   directional variance difference. A high variance difference means
   that we have a highly directional pattern (e.g. a high contrast
   edge), so we can apply more deringing. A low variance means that we
   either have a low contrast edge, or a non-directional texture, so
   we want to be careful not to blur. */
static INLINE int adjust_strength(int strength, int32_t var) {
  const int i = var >> 6 ? AOMMIN(get_msb(var >> 6), 12) : 0;
  /* We use the variance of 8x8 blocks to adjust the strength. */
  return var ? (strength * (4 + i) + 8) >> 4 : 0;
}

#if !CONFIG_CDEF_SINGLEPASS
void copy_8x8_16bit_to_16bit_c(uint16_t *dst, int dstride, const uint16_t *src,
                               int sstride) {
  int i, j;
  for (i = 0; i < 8; i++)
    for (j = 0; j < 8; j++) dst[i * dstride + j] = src[i * sstride + j];
}

void copy_4x4_16bit_to_16bit_c(uint16_t *dst, int dstride, const uint16_t *src,
                               int sstride) {
  int i, j;
  for (i = 0; i < 4; i++)
    for (j = 0; j < 4; j++) dst[i * dstride + j] = src[i * sstride + j];
}

static void copy_block_16bit_to_16bit(uint16_t *dst, int dstride, uint16_t *src,
                                      cdef_list *dlist, int cdef_count,
                                      int bsize) {
  int bi, bx, by;

  if (bsize == BLOCK_8X8) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_8x8_16bit_to_16bit(&dst[(by << 3) * dstride + (bx << 3)], dstride,
                              &src[bi << (3 + 3)], 8);
    }
  } else if (bsize == BLOCK_4X8) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_16bit(&dst[(by << 3) * dstride + (bx << 2)], dstride,
                              &src[bi << (3 + 2)], 4);
      copy_4x4_16bit_to_16bit(&dst[((by << 3) + 4) * dstride + (bx << 2)],
                              dstride, &src[(bi << (3 + 2)) + 4 * 4], 4);
    }
  } else if (bsize == BLOCK_8X4) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 3)], dstride,
                              &src[bi << (2 + 3)], 8);
      copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 3) + 4],
                              dstride, &src[(bi << (2 + 3)) + 4], 8);
    }
  } else {
    assert(bsize == BLOCK_4X4);
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_16bit(&dst[(by << 2) * dstride + (bx << 2)], dstride,
                              &src[bi << (2 + 2)], 4);
    }
  }
}

void copy_8x8_16bit_to_8bit_c(uint8_t *dst, int dstride, const uint16_t *src,
                              int sstride) {
  int i, j;
  for (i = 0; i < 8; i++)
    for (j = 0; j < 8; j++)
      dst[i * dstride + j] = (uint8_t)src[i * sstride + j];
}

void copy_4x4_16bit_to_8bit_c(uint8_t *dst, int dstride, const uint16_t *src,
                              int sstride) {
  int i, j;
  for (i = 0; i < 4; i++)
    for (j = 0; j < 4; j++)
      dst[i * dstride + j] = (uint8_t)src[i * sstride + j];
}

static void copy_block_16bit_to_8bit(uint8_t *dst, int dstride,
                                     const uint16_t *src, cdef_list *dlist,
                                     int cdef_count, int bsize) {
  int bi, bx, by;
  if (bsize == BLOCK_8X8) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_8x8_16bit_to_8bit(&dst[(by << 3) * dstride + (bx << 3)], dstride,
                             &src[bi << (3 + 3)], 8);
    }
  } else if (bsize == BLOCK_4X8) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_8bit(&dst[(by << 3) * dstride + (bx << 2)], dstride,
                             &src[bi << (3 + 2)], 4);
      copy_4x4_16bit_to_8bit(&dst[((by << 3) + 4) * dstride + (bx << 2)],
                             dstride, &src[(bi << (3 + 2)) + 4 * 4], 4);
    }
  } else if (bsize == BLOCK_8X4) {
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 3)], dstride,
                             &src[bi << (2 + 3)], 8);
      copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 3) + 4], dstride,
                             &src[(bi << (2 + 3)) + 4], 8);
    }
  } else {
    assert(bsize == BLOCK_4X4);
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      copy_4x4_16bit_to_8bit(&dst[(by << 2) * dstride + (bx << 2)], dstride,
                             &src[bi << (2 * 2)], 4);
    }
  }
}

int get_filter_skip(int level) {
  int filter_skip = level & 1;
  if (level == 1) filter_skip = 0;
  return filter_skip;
}

void cdef_filter_fb(uint8_t *dst, int dstride, uint16_t *y, uint16_t *in,
                    int xdec, int ydec, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS],
                    int *dirinit, int var[CDEF_NBLOCKS][CDEF_NBLOCKS], int pli,
                    cdef_list *dlist, int cdef_count, int level,
                    int sec_strength, int sec_damping, int pri_damping,
                    int coeff_shift, int skip_dering, int hbd) {
#else

void cdef_filter_fb(uint8_t *dst8, uint16_t *dst16, int dstride, uint16_t *in,
                    int xdec, int ydec, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS],
                    int *dirinit, int var[CDEF_NBLOCKS][CDEF_NBLOCKS], int pli,
                    cdef_list *dlist, int cdef_count, int level,
                    int sec_strength, int pri_damping, int sec_damping,
                    int coeff_shift) {
#endif
  int bi;
  int bx;
  int by;
  int bsize, bsizex, bsizey;

#if CONFIG_CDEF_SINGLEPASS
  int pri_strength = (level >> 1) << coeff_shift;
  int filter_skip = level & 1;
  if (!pri_strength && !sec_strength && filter_skip) {
    pri_strength = 19 << coeff_shift;
    sec_strength = 7 << coeff_shift;
  }
#else
  int threshold = (level >> 1) << coeff_shift;
  int filter_skip = get_filter_skip(level);
  if (level == 1) threshold = 31 << coeff_shift;

  cdef_direction_func cdef_direction[] = { cdef_direction_4x4,
                                           cdef_direction_8x8 };
#endif
  sec_damping += coeff_shift - (pli != AOM_PLANE_Y);
  pri_damping += coeff_shift - (pli != AOM_PLANE_Y);
  bsize =
      ydec ? (xdec ? BLOCK_4X4 : BLOCK_8X4) : (xdec ? BLOCK_4X8 : BLOCK_8X8);
  bsizex = 3 - xdec;
  bsizey = 3 - ydec;
#if CONFIG_CDEF_SINGLEPASS
  if (dirinit && pri_strength == 0 && sec_strength == 0)
#else
  if (!skip_dering)
#endif
  {
#if CONFIG_CDEF_SINGLEPASS
    // If we're here, both primary and secondary strengths are 0, and
    // we still haven't written anything to y[] yet, so we just copy
    // the input to y[]. This is necessary only for av1_cdef_search()
    // and only av1_cdef_search() sets dirinit.
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
#else
    if (pli == 0) {
      if (!dirinit || !*dirinit) {
        for (bi = 0; bi < cdef_count; bi++) {
          by = dlist[bi].by;
          bx = dlist[bi].bx;
          dir[by][bx] = cdef_find_dir(&in[8 * by * CDEF_BSTRIDE + 8 * bx],
                                      CDEF_BSTRIDE, &var[by][bx], coeff_shift);
        }
        if (dirinit) *dirinit = 1;
      }
    }
    // Only run dering for non-zero threshold (which is always the case for
    // 4:2:2 or 4:4:0). If we don't dering, we still need to eventually write
    // something out in y[] later.
    if (threshold != 0) {
      assert(bsize == BLOCK_8X8 || bsize == BLOCK_4X4);
      for (bi = 0; bi < cdef_count; bi++) {
        int t = !filter_skip && dlist[bi].skip ? 0 : threshold;
        by = dlist[bi].by;
        bx = dlist[bi].bx;
        (cdef_direction[bsize == BLOCK_8X8])(
            &y[bi << (bsizex + bsizey)], 1 << bsizex,
            &in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
            pli ? t : adjust_strength(t, var[by][bx]), dir[by][bx],
            pri_damping);
      }
    }
  }

  if (sec_strength) {
    if (threshold && !skip_dering)
      copy_block_16bit_to_16bit(in, CDEF_BSTRIDE, y, dlist, cdef_count, bsize);
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
      int py = by << bsizey;
      int px = bx << bsizex;

      if (!filter_skip && dlist[bi].skip) continue;
      if (!dst || hbd) {
        // 16 bit destination if high bitdepth or 8 bit destination not given
        (!threshold || (dir[by][bx] < 4 && dir[by][bx]) ? aom_clpf_block_hbd
                                                        : aom_clpf_hblock_hbd)(
            dst ? (uint16_t *)dst + py * dstride + px
                : &y[bi << (bsizex + bsizey)],
            in + py * CDEF_BSTRIDE + px, dst && hbd ? dstride : 1 << bsizex,
            CDEF_BSTRIDE, 1 << bsizex, 1 << bsizey, sec_strength << coeff_shift,
            sec_damping);
      } else {
        // Do clpf and write the result to an 8 bit destination
        (!threshold || (dir[by][bx] < 4 && dir[by][bx]) ? aom_clpf_block
                                                        : aom_clpf_hblock)(
            dst + py * dstride + px, in + py * CDEF_BSTRIDE + px, dstride,
            CDEF_BSTRIDE, 1 << bsizex, 1 << bsizey, sec_strength << coeff_shift,
            sec_damping);
      }
    }
  } else if (threshold != 0) {
    // No clpf, so copy instead
    if (hbd) {
      copy_block_16bit_to_16bit((uint16_t *)dst, dstride, y, dlist, cdef_count,
                                bsize);
    } else {
      copy_block_16bit_to_8bit(dst, dstride, y, dlist, cdef_count, bsize);
    }
  } else if (dirinit) {
    // If we're here, both dering and clpf are off, and we still haven't written
    // anything to y[] yet, so we just copy the input to y[]. This is necessary
    // only for av1_cdef_search() and only av1_cdef_search() sets dirinit.
    for (bi = 0; bi < cdef_count; bi++) {
      by = dlist[bi].by;
      bx = dlist[bi].bx;
#endif
      int iy, ix;
      // TODO(stemidts/jmvalin): SIMD optimisations
      for (iy = 0; iy < 1 << bsizey; iy++)
        for (ix = 0; ix < 1 << bsizex; ix++)
#if CONFIG_CDEF_SINGLEPASS
          dst16[(bi << (bsizex + bsizey)) + (iy << bsizex) + ix] =
#else
          y[(bi << (bsizex + bsizey)) + (iy << bsizex) + ix] =
#endif
              in[((by << bsizey) + iy) * CDEF_BSTRIDE + (bx << bsizex) + ix];
    }
#if CONFIG_CDEF_SINGLEPASS
    return;
#endif
  }

#if CONFIG_CDEF_SINGLEPASS
  if (pli == 0) {
    if (!dirinit || !*dirinit) {
      for (bi = 0; bi < cdef_count; bi++) {
        by = dlist[bi].by;
        bx = dlist[bi].bx;
        dir[by][bx] = cdef_find_dir(&in[8 * by * CDEF_BSTRIDE + 8 * bx],
                                    CDEF_BSTRIDE, &var[by][bx], coeff_shift);
      }
      if (dirinit) *dirinit = 1;
    }
  }

  assert(bsize == BLOCK_8X8 || bsize == BLOCK_4X4);
  for (bi = 0; bi < cdef_count; bi++) {
    int t = !filter_skip && dlist[bi].skip ? 0 : pri_strength;
    int s = !filter_skip && dlist[bi].skip ? 0 : sec_strength;
    by = dlist[bi].by;
    bx = dlist[bi].bx;
    if (dst8)
      cdef_filter_block(
          &dst8[(by << bsizey) * dstride + (bx << bsizex)], NULL, dstride,
          &in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
          (pli ? t : adjust_strength(t, var[by][bx])), s, t ? dir[by][bx] : 0,
          pri_damping, sec_damping, bsize, (256 << coeff_shift) - 1);
    else
      cdef_filter_block(
          NULL,
          &dst16[dirinit ? bi << (bsizex + bsizey)
                         : (by << bsizey) * dstride + (bx << bsizex)],
          dirinit ? 1 << bsizex : dstride,
          &in[(by * CDEF_BSTRIDE << bsizey) + (bx << bsizex)],
          (pli ? t : adjust_strength(t, var[by][bx])), s, t ? dir[by][bx] : 0,
          pri_damping, sec_damping, bsize, (256 << coeff_shift) - 1);
  }
#endif
}