summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/alloccommon.c
blob: fd635686f1274e78fe29cfebbbe7aaa9a8841f9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
 *
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "./aom_config.h"
#include "aom_mem/aom_mem.h"

#include "av1/common/alloccommon.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/onyxc_int.h"

int av1_get_MBs(int width, int height) {
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
  const int mi_cols = aligned_width >> MI_SIZE_LOG2;
  const int mi_rows = aligned_height >> MI_SIZE_LOG2;

#if CONFIG_CB4X4
  const int mb_cols = (mi_cols + 2) >> 2;
  const int mb_rows = (mi_rows + 2) >> 2;
#else
  const int mb_cols = (mi_cols + 1) >> 1;
  const int mb_rows = (mi_rows + 1) >> 1;
#endif
  return mb_rows * mb_cols;
}

void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) {
  // Ensure that the decoded width and height are both multiples of
  // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
  // subsampling is used).
  // This simplifies the implementation of various experiments,
  // eg. cdef, which operates on units of 8x8 luma pixels.
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);

  cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
  cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
  cm->mi_stride = calc_mi_size(cm->mi_cols);

#if CONFIG_CB4X4
  cm->mb_cols = (cm->mi_cols + 2) >> 2;
  cm->mb_rows = (cm->mi_rows + 2) >> 2;
#else
  cm->mb_cols = (cm->mi_cols + 1) >> 1;
  cm->mb_rows = (cm->mi_rows + 1) >> 1;
#endif
  cm->MBs = cm->mb_rows * cm->mb_cols;
}

static int alloc_seg_map(AV1_COMMON *cm, int seg_map_size) {
  int i;

  for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
    cm->seg_map_array[i] = (uint8_t *)aom_calloc(seg_map_size, 1);
    if (cm->seg_map_array[i] == NULL) return 1;
  }
  cm->seg_map_alloc_size = seg_map_size;

  // Init the index.
  cm->seg_map_idx = 0;
  cm->prev_seg_map_idx = 1;

  cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
  if (!cm->frame_parallel_decode)
    cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];

  return 0;
}

static void free_seg_map(AV1_COMMON *cm) {
  int i;

  for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) {
    aom_free(cm->seg_map_array[i]);
    cm->seg_map_array[i] = NULL;
  }

  cm->current_frame_seg_map = NULL;

  if (!cm->frame_parallel_decode) {
    cm->last_frame_seg_map = NULL;
  }
  cm->seg_map_alloc_size = 0;
}

static void free_scratch_buffers(AV1_COMMON *cm) {
  (void)cm;
#if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
  for (int i = 0; i < 4; ++i) {
    if (cm->ncobmcaw_buf[i]) {
      aom_free(cm->ncobmcaw_buf[i]);
      cm->ncobmcaw_buf[i] = NULL;
    }
  }
#endif  // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
}

static int alloc_scratch_buffers(AV1_COMMON *cm) {
  (void)cm;
#if CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
  // If not allocated already, allocate
  if (!cm->ncobmcaw_buf[0] && !cm->ncobmcaw_buf[1] && !cm->ncobmcaw_buf[2] &&
      !cm->ncobmcaw_buf[3]) {
    for (int i = 0; i < 4; ++i) {
      CHECK_MEM_ERROR(
          cm, cm->ncobmcaw_buf[i],
          (uint8_t *)aom_memalign(
              16, (1 + CONFIG_HIGHBITDEPTH) * MAX_MB_PLANE * MAX_SB_SQUARE));
    }
  }
#endif  // CONFIG_NCOBMC && CONFIG_NCOBMC_ADAPT_WEIGHT
  return 0;
}

void av1_free_ref_frame_buffers(BufferPool *pool) {
  int i;

  for (i = 0; i < FRAME_BUFFERS; ++i) {
    if (pool->frame_bufs[i].ref_count > 0 &&
        pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
      pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
      pool->frame_bufs[i].ref_count = 0;
    }
    aom_free(pool->frame_bufs[i].mvs);
    pool->frame_bufs[i].mvs = NULL;
#if CONFIG_MFMV
    aom_free(pool->frame_bufs[i].tpl_mvs);
    pool->frame_bufs[i].tpl_mvs = NULL;
#endif
    aom_free_frame_buffer(&pool->frame_bufs[i].buf);
#if CONFIG_HASH_ME
    av1_hash_table_destroy(&pool->frame_bufs[i].hash_table);
#endif
  }
}

#if CONFIG_LOOP_RESTORATION
// Assumes cm->rst_info[p].restoration_tilesize is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
  int p;
#if CONFIG_FRAME_SUPERRES
  int width = cm->superres_upscaled_width;
  int height = cm->superres_upscaled_height;
#else
  int width = cm->width;
  int height = cm->height;
#endif  // CONFIG_FRAME_SUPERRES
  av1_alloc_restoration_struct(cm, &cm->rst_info[0], width, height);
  for (p = 1; p < MAX_MB_PLANE; ++p)
    av1_alloc_restoration_struct(cm, &cm->rst_info[p],
                                 ROUND_POWER_OF_TWO(width, cm->subsampling_x),
                                 ROUND_POWER_OF_TWO(height, cm->subsampling_y));
  aom_free(cm->rst_internal.tmpbuf);
  CHECK_MEM_ERROR(cm, cm->rst_internal.tmpbuf,
                  (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));

#if CONFIG_STRIPED_LOOP_RESTORATION
  // Allocate internal storage for the loop restoration stripe boundary lines
  for (p = 0; p < MAX_MB_PLANE; ++p) {
    int w = p == 0 ? width : ROUND_POWER_OF_TWO(width, cm->subsampling_x);
    int align_bits = 5;  // align for efficiency
    int stride = ALIGN_POWER_OF_TWO(w, align_bits);
    int num_stripes = (height + 63) / 64;
    // for each processing stripe: 2 lines above, 2 below
    int buf_size = num_stripes * 2 * stride;
    uint8_t *above_buf, *below_buf;

    aom_free(cm->rst_internal.stripe_boundary_above[p]);
    aom_free(cm->rst_internal.stripe_boundary_below[p]);

#if CONFIG_HIGHBITDEPTH
    if (cm->use_highbitdepth) buf_size = buf_size * 2;
#endif
    CHECK_MEM_ERROR(cm, above_buf,
                    (uint8_t *)aom_memalign(1 << align_bits, buf_size));
    CHECK_MEM_ERROR(cm, below_buf,
                    (uint8_t *)aom_memalign(1 << align_bits, buf_size));
    cm->rst_internal.stripe_boundary_above[p] = above_buf;
    cm->rst_internal.stripe_boundary_below[p] = below_buf;
    cm->rst_internal.stripe_boundary_stride[p] = stride;
  }
#endif  // CONFIG_STRIPED_LOOP_RESTORATION
}

void av1_free_restoration_buffers(AV1_COMMON *cm) {
  int p;
  for (p = 0; p < MAX_MB_PLANE; ++p)
    av1_free_restoration_struct(&cm->rst_info[p]);
  aom_free(cm->rst_internal.tmpbuf);
  cm->rst_internal.tmpbuf = NULL;
}
#endif  // CONFIG_LOOP_RESTORATION

void av1_free_context_buffers(AV1_COMMON *cm) {
  int i;
  cm->free_mi(cm);
  free_seg_map(cm);
  free_scratch_buffers(cm);
  for (i = 0; i < MAX_MB_PLANE; i++) {
    aom_free(cm->above_context[i]);
    cm->above_context[i] = NULL;
  }
  aom_free(cm->above_seg_context);
  cm->above_seg_context = NULL;
  cm->above_context_alloc_cols = 0;
#if CONFIG_VAR_TX
  aom_free(cm->above_txfm_context);
  cm->above_txfm_context = NULL;

  for (i = 0; i < MAX_MB_PLANE; ++i) {
    aom_free(cm->top_txfm_context[i]);
    cm->top_txfm_context[i] = NULL;
  }
#endif
}

int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
  int new_mi_size;

  av1_set_mb_mi(cm, width, height);
  new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
  if (cm->mi_alloc_size < new_mi_size) {
    cm->free_mi(cm);
    if (cm->alloc_mi(cm, new_mi_size)) goto fail;
  }

  if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) {
    // Create the segmentation map structure and set to 0.
    free_seg_map(cm);
    if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail;
  }
  if (alloc_scratch_buffers(cm)) goto fail;

  if (cm->above_context_alloc_cols < cm->mi_cols) {
    // TODO(geza.lore): These are bigger than they need to be.
    // cm->tile_width would be enough but it complicates indexing a
    // little elsewhere.
    const int aligned_mi_cols =
        ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
    int i;

    for (i = 0; i < MAX_MB_PLANE; i++) {
      aom_free(cm->above_context[i]);
      cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc(
          aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]),
          sizeof(*cm->above_context[0]));
      if (!cm->above_context[i]) goto fail;
    }

    aom_free(cm->above_seg_context);
    cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc(
        aligned_mi_cols, sizeof(*cm->above_seg_context));
    if (!cm->above_seg_context) goto fail;

#if CONFIG_VAR_TX
    aom_free(cm->above_txfm_context);
    cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc(
        aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context));
    if (!cm->above_txfm_context) goto fail;

    for (i = 0; i < MAX_MB_PLANE; ++i) {
      aom_free(cm->top_txfm_context[i]);
      cm->top_txfm_context[i] =
          (TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2,
                                     sizeof(*cm->top_txfm_context[0]));
      if (!cm->top_txfm_context[i]) goto fail;
    }
#endif

    cm->above_context_alloc_cols = aligned_mi_cols;
  }

  return 0;

fail:
  // clear the mi_* values to force a realloc on resync
  av1_set_mb_mi(cm, 0, 0);
  av1_free_context_buffers(cm);
  return 1;
}

void av1_remove_common(AV1_COMMON *cm) {
  av1_free_context_buffers(cm);

  aom_free(cm->fc);
  cm->fc = NULL;
  aom_free(cm->frame_contexts);
  cm->frame_contexts = NULL;
}

void av1_init_context_buffers(AV1_COMMON *cm) {
  cm->setup_mi(cm);
  if (cm->last_frame_seg_map && !cm->frame_parallel_decode)
    memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols);
}

void av1_swap_current_and_last_seg_map(AV1_COMMON *cm) {
  // Swap indices.
  const int tmp = cm->seg_map_idx;
  cm->seg_map_idx = cm->prev_seg_map_idx;
  cm->prev_seg_map_idx = tmp;

  cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx];
  cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx];
}