summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/alloccommon.c
blob: 49902cc7d59d4605a43cf926d61595c5f02fb2e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 *
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "config/aom_config.h"

#include "aom_mem/aom_mem.h"

#include "av1/common/alloccommon.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/onyxc_int.h"

int av1_get_MBs(int width, int height) {
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
  const int mi_cols = aligned_width >> MI_SIZE_LOG2;
  const int mi_rows = aligned_height >> MI_SIZE_LOG2;

  const int mb_cols = (mi_cols + 2) >> 2;
  const int mb_rows = (mi_rows + 2) >> 2;
  return mb_rows * mb_cols;
}

#if LOOP_FILTER_BITMASK
static int alloc_loop_filter_mask(AV1_COMMON *cm) {
  aom_free(cm->lf.lfm);
  cm->lf.lfm = NULL;

  // Each lfm holds bit masks for all the 4x4 blocks in a max
  // 64x64 (128x128 for ext_partitions) region.  The stride
  // and rows are rounded up / truncated to a multiple of 16
  // (32 for ext_partition).
  cm->lf.lfm_stride = (cm->mi_cols + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2;
  cm->lf.lfm_num = ((cm->mi_rows + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2) *
                   cm->lf.lfm_stride;
  cm->lf.lfm =
      (LoopFilterMask *)aom_calloc(cm->lf.lfm_num, sizeof(*cm->lf.lfm));
  if (!cm->lf.lfm) return 1;

  unsigned int i;
  for (i = 0; i < cm->lf.lfm_num; ++i) av1_zero(cm->lf.lfm[i]);

  return 0;
}

static void free_loop_filter_mask(AV1_COMMON *cm) {
  if (cm->lf.lfm == NULL) return;

  aom_free(cm->lf.lfm);
  cm->lf.lfm = NULL;
  cm->lf.lfm_num = 0;
  cm->lf.lfm_stride = 0;
}
#endif

void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) {
  // Ensure that the decoded width and height are both multiples of
  // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
  // subsampling is used).
  // This simplifies the implementation of various experiments,
  // eg. cdef, which operates on units of 8x8 luma pixels.
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);

  cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
  cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
  cm->mi_stride = calc_mi_size(cm->mi_cols);

  cm->mb_cols = (cm->mi_cols + 2) >> 2;
  cm->mb_rows = (cm->mi_rows + 2) >> 2;
  cm->MBs = cm->mb_rows * cm->mb_cols;

#if LOOP_FILTER_BITMASK
  alloc_loop_filter_mask(cm);
#endif
}

void av1_free_ref_frame_buffers(BufferPool *pool) {
  int i;

  for (i = 0; i < FRAME_BUFFERS; ++i) {
    if (pool->frame_bufs[i].ref_count > 0 &&
        pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
      pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
      pool->frame_bufs[i].ref_count = 0;
    }
    aom_free(pool->frame_bufs[i].mvs);
    pool->frame_bufs[i].mvs = NULL;
    aom_free(pool->frame_bufs[i].seg_map);
    pool->frame_bufs[i].seg_map = NULL;
    aom_free_frame_buffer(&pool->frame_bufs[i].buf);
  }
}

// Assumes cm->rst_info[p].restoration_unit_size is already initialized
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
  const int num_planes = av1_num_planes(cm);
  for (int p = 0; p < num_planes; ++p)
    av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);

  if (cm->rst_tmpbuf == NULL) {
    CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
                    (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
  }

  if (cm->rlbs == NULL) {
    CHECK_MEM_ERROR(cm, cm->rlbs, aom_malloc(sizeof(RestorationLineBuffers)));
  }

  // For striped loop restoration, we divide each row of tiles into "stripes",
  // of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET
  // luma pixels to match the output from CDEF. We will need to store 2 *
  // RESTORATION_CTX_VERT lines of data for each stripe, and also need to be
  // able to quickly answer the question "Where is the <n>'th stripe for tile
  // row <m>?" To make that efficient, we generate the rst_last_stripe array.
  int num_stripes = 0;
  for (int i = 0; i < cm->tile_rows; ++i) {
    TileInfo tile_info;
    av1_tile_set_row(&tile_info, cm, i);
    const int mi_h = tile_info.mi_row_end - tile_info.mi_row_start;
    const int ext_h = RESTORATION_UNIT_OFFSET + (mi_h << MI_SIZE_LOG2);
    const int tile_stripes = (ext_h + 63) / 64;
    num_stripes += tile_stripes;
    cm->rst_end_stripe[i] = num_stripes;
  }

  // Now we need to allocate enough space to store the line buffers for the
  // stripes
  const int frame_w = cm->superres_upscaled_width;
  const int use_highbd = cm->use_highbitdepth ? 1 : 0;

  for (int p = 0; p < num_planes; ++p) {
    const int is_uv = p > 0;
    const int ss_x = is_uv && cm->subsampling_x;
    const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ;
    const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
    const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT
                         << use_highbd;
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;

    if (buf_size != boundaries->stripe_boundary_size ||
        boundaries->stripe_boundary_above == NULL ||
        boundaries->stripe_boundary_below == NULL) {
      aom_free(boundaries->stripe_boundary_above);
      aom_free(boundaries->stripe_boundary_below);

      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
                      (uint8_t *)aom_memalign(32, buf_size));
      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
                      (uint8_t *)aom_memalign(32, buf_size));

      boundaries->stripe_boundary_size = buf_size;
    }
    boundaries->stripe_boundary_stride = stride;
  }
}

void av1_free_restoration_buffers(AV1_COMMON *cm) {
  int p;
  for (p = 0; p < MAX_MB_PLANE; ++p)
    av1_free_restoration_struct(&cm->rst_info[p]);
  aom_free(cm->rst_tmpbuf);
  cm->rst_tmpbuf = NULL;
  aom_free(cm->rlbs);
  cm->rlbs = NULL;
  for (p = 0; p < MAX_MB_PLANE; ++p) {
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
    aom_free(boundaries->stripe_boundary_above);
    aom_free(boundaries->stripe_boundary_below);
    boundaries->stripe_boundary_above = NULL;
    boundaries->stripe_boundary_below = NULL;
  }

  aom_free_frame_buffer(&cm->rst_frame);
}

void av1_free_above_context_buffers(AV1_COMMON *cm,
                                    int num_free_above_contexts) {
  int i;
  const int num_planes = cm->num_allocated_above_context_planes;

  for (int tile_row = 0; tile_row < num_free_above_contexts; tile_row++) {
    for (i = 0; i < num_planes; i++) {
      aom_free(cm->above_context[i][tile_row]);
      cm->above_context[i][tile_row] = NULL;
    }
    aom_free(cm->above_seg_context[tile_row]);
    cm->above_seg_context[tile_row] = NULL;

    aom_free(cm->above_txfm_context[tile_row]);
    cm->above_txfm_context[tile_row] = NULL;
  }
  for (i = 0; i < num_planes; i++) {
    aom_free(cm->above_context[i]);
    cm->above_context[i] = NULL;
  }
  aom_free(cm->above_seg_context);
  cm->above_seg_context = NULL;

  aom_free(cm->above_txfm_context);
  cm->above_txfm_context = NULL;

  cm->num_allocated_above_contexts = 0;
  cm->num_allocated_above_context_mi_col = 0;
  cm->num_allocated_above_context_planes = 0;
}

void av1_free_context_buffers(AV1_COMMON *cm) {
  cm->free_mi(cm);

  av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts);

#if LOOP_FILTER_BITMASK
  free_loop_filter_mask(cm);
#endif
}

int av1_alloc_above_context_buffers(AV1_COMMON *cm,
                                    int num_alloc_above_contexts) {
  const int num_planes = av1_num_planes(cm);
  int plane_idx;
  const int aligned_mi_cols =
      ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);

  // Allocate above context buffers
  cm->num_allocated_above_contexts = num_alloc_above_contexts;
  cm->num_allocated_above_context_mi_col = aligned_mi_cols;
  cm->num_allocated_above_context_planes = num_planes;
  for (plane_idx = 0; plane_idx < num_planes; plane_idx++) {
    cm->above_context[plane_idx] = (ENTROPY_CONTEXT **)aom_calloc(
        num_alloc_above_contexts, sizeof(cm->above_context[0]));
    if (!cm->above_context[plane_idx]) return 1;
  }

  cm->above_seg_context = (PARTITION_CONTEXT **)aom_calloc(
      num_alloc_above_contexts, sizeof(cm->above_seg_context));
  if (!cm->above_seg_context) return 1;

  cm->above_txfm_context = (TXFM_CONTEXT **)aom_calloc(
      num_alloc_above_contexts, sizeof(cm->above_txfm_context));
  if (!cm->above_txfm_context) return 1;

  for (int tile_row = 0; tile_row < num_alloc_above_contexts; tile_row++) {
    for (plane_idx = 0; plane_idx < num_planes; plane_idx++) {
      cm->above_context[plane_idx][tile_row] = (ENTROPY_CONTEXT *)aom_calloc(
          aligned_mi_cols, sizeof(*cm->above_context[0][tile_row]));
      if (!cm->above_context[plane_idx][tile_row]) return 1;
    }

    cm->above_seg_context[tile_row] = (PARTITION_CONTEXT *)aom_calloc(
        aligned_mi_cols, sizeof(*cm->above_seg_context[tile_row]));
    if (!cm->above_seg_context[tile_row]) return 1;

    cm->above_txfm_context[tile_row] = (TXFM_CONTEXT *)aom_calloc(
        aligned_mi_cols, sizeof(*cm->above_txfm_context[tile_row]));
    if (!cm->above_txfm_context[tile_row]) return 1;
  }

  return 0;
}

int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
  int new_mi_size;

  av1_set_mb_mi(cm, width, height);
  new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
  if (cm->mi_alloc_size < new_mi_size) {
    cm->free_mi(cm);
    if (cm->alloc_mi(cm, new_mi_size)) goto fail;
  }

  return 0;

fail:
  // clear the mi_* values to force a realloc on resync
  av1_set_mb_mi(cm, 0, 0);
  av1_free_context_buffers(cm);
  return 1;
}

void av1_remove_common(AV1_COMMON *cm) {
  av1_free_context_buffers(cm);

  aom_free(cm->fc);
  cm->fc = NULL;
  aom_free(cm->frame_contexts);
  cm->frame_contexts = NULL;
}

void av1_init_context_buffers(AV1_COMMON *cm) { cm->setup_mi(cm); }