summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/highbd_quantize_intrin_avx2.c
blob: 2bbf15ef27a5024b6a76f86efbdb94227b10fe9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (c) 2017, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>

#include "./aom_dsp_rtcd.h"
#include "aom/aom_integer.h"

static INLINE void init_one_qp(const __m128i *p, __m256i *qp) {
  const __m128i sign = _mm_srai_epi16(*p, 15);
  const __m128i dc = _mm_unpacklo_epi16(*p, sign);
  const __m128i ac = _mm_unpackhi_epi16(*p, sign);
  *qp = _mm256_insertf128_si256(_mm256_castsi128_si256(dc), ac, 1);
}

static INLINE void update_qp(__m256i *qp) {
  int i;
  for (i = 0; i < 5; ++i) {
    qp[i] = _mm256_permute2x128_si256(qp[i], qp[i], 0x11);
  }
}

static INLINE void init_qp(const int16_t *zbin_ptr, const int16_t *round_ptr,
                           const int16_t *quant_ptr, const int16_t *dequant_ptr,
                           const int16_t *quant_shift_ptr, __m256i *qp) {
  const __m128i zbin = _mm_loadu_si128((const __m128i *)zbin_ptr);
  const __m128i round = _mm_loadu_si128((const __m128i *)round_ptr);
  const __m128i quant = _mm_loadu_si128((const __m128i *)quant_ptr);
  const __m128i dequant = _mm_loadu_si128((const __m128i *)dequant_ptr);
  const __m128i quant_shift = _mm_loadu_si128((const __m128i *)quant_shift_ptr);
  init_one_qp(&zbin, &qp[0]);
  init_one_qp(&round, &qp[1]);
  init_one_qp(&quant, &qp[2]);
  init_one_qp(&dequant, &qp[3]);
  init_one_qp(&quant_shift, &qp[4]);
}

// Note:
// *x is vector multiplied by *y which is 16 int32_t parallel multiplication
// and right shift 16.  The output, 16 int32_t is save in *p.
static INLINE void mm256_mul_shift_epi32(const __m256i *x, const __m256i *y,
                                         __m256i *p) {
  __m256i prod_lo = _mm256_mul_epi32(*x, *y);
  __m256i prod_hi = _mm256_srli_epi64(*x, 32);
  const __m256i mult_hi = _mm256_srli_epi64(*y, 32);
  prod_hi = _mm256_mul_epi32(prod_hi, mult_hi);

  prod_lo = _mm256_srli_epi64(prod_lo, 16);
  const __m256i mask = _mm256_set_epi32(0, -1, 0, -1, 0, -1, 0, -1);
  prod_lo = _mm256_and_si256(prod_lo, mask);
  prod_hi = _mm256_srli_epi64(prod_hi, 16);

  prod_hi = _mm256_slli_epi64(prod_hi, 32);
  *p = _mm256_or_si256(prod_lo, prod_hi);
}

static INLINE void quantize(const __m256i *qp, __m256i *c,
                            const int16_t *iscan_ptr, tran_low_t *qcoeff,
                            tran_low_t *dqcoeff, __m256i *eob) {
  const __m256i abs = _mm256_abs_epi32(*c);
  const __m256i flag1 = _mm256_cmpgt_epi32(abs, qp[0]);
  __m256i flag2 = _mm256_cmpeq_epi32(abs, qp[0]);
  flag2 = _mm256_or_si256(flag1, flag2);
  const int32_t nzflag = _mm256_movemask_epi8(flag2);

  if (LIKELY(nzflag)) {
    __m256i q = _mm256_add_epi32(abs, qp[1]);
    __m256i tmp;
    mm256_mul_shift_epi32(&q, &qp[2], &tmp);
    q = _mm256_add_epi32(tmp, q);

    mm256_mul_shift_epi32(&q, &qp[4], &q);
    __m256i dq = _mm256_mullo_epi32(q, qp[3]);

    q = _mm256_sign_epi32(q, *c);
    dq = _mm256_sign_epi32(dq, *c);
    q = _mm256_and_si256(q, flag2);
    dq = _mm256_and_si256(dq, flag2);

    _mm256_storeu_si256((__m256i *)qcoeff, q);
    _mm256_storeu_si256((__m256i *)dqcoeff, dq);

    const __m128i isc = _mm_loadu_si128((const __m128i *)iscan_ptr);
    const __m128i zr = _mm_setzero_si128();
    const __m128i lo = _mm_unpacklo_epi16(isc, zr);
    const __m128i hi = _mm_unpackhi_epi16(isc, zr);
    const __m256i iscan =
        _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);

    const __m256i zero = _mm256_setzero_si256();
    const __m256i zc = _mm256_cmpeq_epi32(dq, zero);
    const __m256i nz = _mm256_cmpeq_epi32(zc, zero);
    __m256i cur_eob = _mm256_sub_epi32(iscan, nz);
    cur_eob = _mm256_and_si256(cur_eob, nz);
    *eob = _mm256_max_epi32(cur_eob, *eob);
  } else {
    const __m256i zero = _mm256_setzero_si256();
    _mm256_storeu_si256((__m256i *)qcoeff, zero);
    _mm256_storeu_si256((__m256i *)dqcoeff, zero);
  }
}

void aom_highbd_quantize_b_avx2(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                                int skip_block, const int16_t *zbin_ptr,
                                const int16_t *round_ptr,
                                const int16_t *quant_ptr,
                                const int16_t *quant_shift_ptr,
                                tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                                const int16_t *dequant_ptr, uint16_t *eob_ptr,
                                const int16_t *scan, const int16_t *iscan) {
  (void)scan;
  const unsigned int step = 8;

  if (LIKELY(!skip_block)) {
    __m256i qp[5], coeff;
    init_qp(zbin_ptr, round_ptr, quant_ptr, dequant_ptr, quant_shift_ptr, qp);
    coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr);

    __m256i eob = _mm256_setzero_si256();
    quantize(qp, &coeff, iscan, qcoeff_ptr, dqcoeff_ptr, &eob);

    coeff_ptr += step;
    qcoeff_ptr += step;
    dqcoeff_ptr += step;
    iscan += step;
    n_coeffs -= step;

    update_qp(qp);

    while (n_coeffs > 0) {
      coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr);
      quantize(qp, &coeff, iscan, qcoeff_ptr, dqcoeff_ptr, &eob);

      coeff_ptr += step;
      qcoeff_ptr += step;
      dqcoeff_ptr += step;
      iscan += step;
      n_coeffs -= step;
    }
    {
      __m256i eob_s;
      eob_s = _mm256_shuffle_epi32(eob, 0xe);
      eob = _mm256_max_epi16(eob, eob_s);
      eob_s = _mm256_shufflelo_epi16(eob, 0xe);
      eob = _mm256_max_epi16(eob, eob_s);
      eob_s = _mm256_shufflelo_epi16(eob, 1);
      eob = _mm256_max_epi16(eob, eob_s);
      const __m128i final_eob = _mm_max_epi16(_mm256_castsi256_si128(eob),
                                              _mm256_extractf128_si256(eob, 1));
      *eob_ptr = _mm_extract_epi16(final_eob, 0);
    }
  } else {
    do {
      const __m256i zero = _mm256_setzero_si256();
      _mm256_storeu_si256((__m256i *)qcoeff_ptr, zero);
      _mm256_storeu_si256((__m256i *)dqcoeff_ptr, zero);
      qcoeff_ptr += step;
      dqcoeff_ptr += step;
      n_coeffs -= step;
    } while (n_coeffs > 0);
    *eob_ptr = 0;
  }
}