summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/ssim.c
blob: 141bf01c74b061e84e93c4deb0f59d4d830210c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <math.h>
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/ssim.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"

void aom_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
                            uint32_t *sum_s, uint32_t *sum_r,
                            uint32_t *sum_sq_s, uint32_t *sum_sq_r,
                            uint32_t *sum_sxr) {
  int i, j;
  for (i = 0; i < 16; i++, s += sp, r += rp) {
    for (j = 0; j < 16; j++) {
      *sum_s += s[j];
      *sum_r += r[j];
      *sum_sq_s += s[j] * s[j];
      *sum_sq_r += r[j] * r[j];
      *sum_sxr += s[j] * r[j];
    }
  }
}
void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
                          uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
                          uint32_t *sum_sq_r, uint32_t *sum_sxr) {
  int i, j;
  for (i = 0; i < 8; i++, s += sp, r += rp) {
    for (j = 0; j < 8; j++) {
      *sum_s += s[j];
      *sum_r += r[j];
      *sum_sq_s += s[j] * s[j];
      *sum_sq_r += r[j] * r[j];
      *sum_sxr += s[j] * r[j];
    }
  }
}

#if CONFIG_HIGHBITDEPTH
void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
                                 int rp, uint32_t *sum_s, uint32_t *sum_r,
                                 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
                                 uint32_t *sum_sxr) {
  int i, j;
  for (i = 0; i < 8; i++, s += sp, r += rp) {
    for (j = 0; j < 8; j++) {
      *sum_s += s[j];
      *sum_r += r[j];
      *sum_sq_s += s[j] * s[j];
      *sum_sq_r += r[j] * r[j];
      *sum_sxr += s[j] * r[j];
    }
  }
}
#endif  // CONFIG_HIGHBITDEPTH

static const int64_t cc1 = 26634;        // (64^2*(.01*255)^2
static const int64_t cc2 = 239708;       // (64^2*(.03*255)^2
static const int64_t cc1_10 = 428658;    // (64^2*(.01*1023)^2
static const int64_t cc2_10 = 3857925;   // (64^2*(.03*1023)^2
static const int64_t cc1_12 = 6868593;   // (64^2*(.01*4095)^2
static const int64_t cc2_12 = 61817334;  // (64^2*(.03*4095)^2

static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
                         uint32_t sum_sq_r, uint32_t sum_sxr, int count,
                         uint32_t bd) {
  int64_t ssim_n, ssim_d;
  int64_t c1, c2;
  if (bd == 8) {
    // scale the constants by number of pixels
    c1 = (cc1 * count * count) >> 12;
    c2 = (cc2 * count * count) >> 12;
  } else if (bd == 10) {
    c1 = (cc1_10 * count * count) >> 12;
    c2 = (cc2_10 * count * count) >> 12;
  } else if (bd == 12) {
    c1 = (cc1_12 * count * count) >> 12;
    c2 = (cc2_12 * count * count) >> 12;
  } else {
    c1 = c2 = 0;
    assert(0);
  }

  ssim_n = (2 * sum_s * sum_r + c1) *
           ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);

  ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
           ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
            (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);

  return ssim_n * 1.0 / ssim_d;
}

static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
  uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
  aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
                     &sum_sxr);
  return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
}

#if CONFIG_HIGHBITDEPTH
static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
                              int rp, uint32_t bd, uint32_t shift) {
  uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
  aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
                            &sum_sxr);
  return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
                    sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
}
#endif  // CONFIG_HIGHBITDEPTH

// We are using a 8x8 moving window with starting location of each 8x8 window
// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
// block boundaries to penalize blocking artifacts.
static double aom_ssim2(const uint8_t *img1, const uint8_t *img2,
                        int stride_img1, int stride_img2, int width,
                        int height) {
  int i, j;
  int samples = 0;
  double ssim_total = 0;

  // sample point start with each 4x4 location
  for (i = 0; i <= height - 8;
       i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    for (j = 0; j <= width - 8; j += 4) {
      double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
      ssim_total += v;
      samples++;
    }
  }
  ssim_total /= samples;
  return ssim_total;
}

#if CONFIG_HIGHBITDEPTH
static double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
                               int stride_img1, int stride_img2, int width,
                               int height, uint32_t bd, uint32_t shift) {
  int i, j;
  int samples = 0;
  double ssim_total = 0;

  // sample point start with each 4x4 location
  for (i = 0; i <= height - 8;
       i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    for (j = 0; j <= width - 8; j += 4) {
      double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
                                 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
                                 shift);
      ssim_total += v;
      samples++;
    }
  }
  ssim_total /= samples;
  return ssim_total;
}
#endif  // CONFIG_HIGHBITDEPTH

double aom_calc_ssim(const YV12_BUFFER_CONFIG *source,
                     const YV12_BUFFER_CONFIG *dest, double *weight) {
  double a, b, c;
  double ssimv;

  a = aom_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
                dest->y_stride, source->y_crop_width, source->y_crop_height);

  b = aom_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
                dest->uv_stride, source->uv_crop_width, source->uv_crop_height);

  c = aom_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
                dest->uv_stride, source->uv_crop_width, source->uv_crop_height);

  ssimv = a * .8 + .1 * (b + c);

  *weight = 1;

  return ssimv;
}

// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
//
// Re working out the math ->
//
// ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
//   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
//
// mean(x) = sum(x) / n
//
// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
//
// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
//
// ssim(x,y) =
//   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
//   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
//    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
//     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
//
// factoring out n*n
//
// ssim(x,y) =
//   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
//   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
//    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
//
// Replace c1 with n*n * c1 for the final step that leads to this code:
// The final step scales by 12 bits so we don't lose precision in the constants.

static double ssimv_similarity(const Ssimv *sv, int64_t n) {
  // Scale the constants by number of pixels.
  const int64_t c1 = (cc1 * n * n) >> 12;
  const int64_t c2 = (cc2 * n * n) >> 12;

  const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
                   (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);

  // Since these variables are unsigned sums, convert to double so
  // math is done in double arithmetic.
  const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
                   (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
                    n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);

  return l * v;
}

// The first term of the ssim metric is a luminance factor.
//
// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
//
// This luminance factor is super sensitive to the dark side of luminance
// values and completely insensitive on the white side.  check out 2 sets
// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
// 2*250*252/ (250^2+252^2) => .99999997
//
// As a result in this tweaked version of the calculation in which the
// luminance is taken as percentage off from peak possible.
//
// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
//
static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
  // Scale the constants by number of pixels.
  const int64_t c1 = (cc1 * n * n) >> 12;
  const int64_t c2 = (cc2 * n * n) >> 12;

  const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
  const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);

  // Since these variables are unsigned, sums convert to double so
  // math is done in double arithmetic.
  const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
                   (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
                    n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);

  return l * v;
}
static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
                        int img2_pitch, Ssimv *sv) {
  aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
                     &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
}

double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
                            int img2_pitch, int width, int height, Ssimv *sv2,
                            Metrics *m, int do_inconsistency) {
  double dssim_total = 0;
  double ssim_total = 0;
  double ssim2_total = 0;
  double inconsistency_total = 0;
  int i, j;
  int c = 0;
  double norm;
  double old_ssim_total = 0;
  aom_clear_system_state();
  // We can sample points as frequently as we like start with 1 per 4x4.
  for (i = 0; i < height;
       i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
    for (j = 0; j < width; j += 4, ++c) {
      Ssimv sv = { 0 };
      double ssim;
      double ssim2;
      double dssim;
      uint32_t var_new;
      uint32_t var_old;
      uint32_t mean_new;
      uint32_t mean_old;
      double ssim_new;
      double ssim_old;

      // Not sure there's a great way to handle the edge pixels
      // in ssim when using a window. Seems biased against edge pixels
      // however you handle this. This uses only samples that are
      // fully in the frame.
      if (j + 8 <= width && i + 8 <= height) {
        ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
      }

      ssim = ssimv_similarity(&sv, 64);
      ssim2 = ssimv_similarity2(&sv, 64);

      sv.ssim = ssim2;

      // dssim is calculated to use as an actual error metric and
      // is scaled up to the same range as sum square error.
      // Since we are subsampling every 16th point maybe this should be
      // *16 ?
      dssim = 255 * 255 * (1 - ssim2) / 2;

      // Here I introduce a new error metric: consistency-weighted
      // SSIM-inconsistency.  This metric isolates frames where the
      // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
      // sharper or blurrier than the others. Higher values indicate a
      // temporally inconsistent SSIM. There are two ideas at work:
      //
      // 1) 'SSIM-inconsistency': the total inconsistency value
      // reflects how much SSIM values are changing between this
      // source / reference frame pair and the previous pair.
      //
      // 2) 'consistency-weighted': weights de-emphasize areas in the
      // frame where the scene content has changed. Changes in scene
      // content are detected via changes in local variance and local
      // mean.
      //
      // Thus the overall measure reflects how inconsistent the SSIM
      // values are, over consistent regions of the frame.
      //
      // The metric has three terms:
      //
      // term 1 -> uses change in scene Variance to weight error score
      //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
      //  larger changes from one frame to the next mean we care
      //  less about consistency.
      //
      // term 2 -> uses change in local scene luminance to weight error
      //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
      //  larger changes from one frame to the next mean we care
      //  less about consistency.
      //
      // term3 -> measures inconsistency in ssim scores between frames
      //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
      //
      // This term compares the ssim score for the same location in 2
      // subsequent frames.
      var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
      var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
      mean_new = sv.sum_s;
      mean_old = sv2[c].sum_s;
      ssim_new = sv.ssim;
      ssim_old = sv2[c].ssim;

      if (do_inconsistency) {
        // We do the metric once for every 4x4 block in the image. Since
        // we are scaling the error to SSE for use in a psnr calculation
        // 1.0 = 4x4x255x255 the worst error we can possibly have.
        static const double kScaling = 4. * 4 * 255 * 255;

        // The constants have to be non 0 to avoid potential divide by 0
        // issues other than that they affect kind of a weighting between
        // the terms.  No testing of what the right terms should be has been
        // done.
        static const double c1 = 1, c2 = 1, c3 = 1;

        // This measures how much consistent variance is in two consecutive
        // source frames. 1.0 means they have exactly the same variance.
        const double variance_term =
            (2.0 * var_old * var_new + c1) /
            (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);

        // This measures how consistent the local mean are between two
        // consecutive frames. 1.0 means they have exactly the same mean.
        const double mean_term =
            (2.0 * mean_old * mean_new + c2) /
            (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);

        // This measures how consistent the ssims of two
        // consecutive frames is. 1.0 means they are exactly the same.
        double ssim_term =
            pow((2.0 * ssim_old * ssim_new + c3) /
                    (ssim_old * ssim_old + ssim_new * ssim_new + c3),
                5);

        double this_inconsistency;

        // Floating point math sometimes makes this > 1 by a tiny bit.
        // We want the metric to scale between 0 and 1.0 so we can convert
        // it to an snr scaled value.
        if (ssim_term > 1) ssim_term = 1;

        // This converts the consistency metric to an inconsistency metric
        // ( so we can scale it like psnr to something like sum square error.
        // The reason for the variance and mean terms is the assumption that
        // if there are big changes in the source we shouldn't penalize
        // inconsistency in ssim scores a bit less as it will be less visible
        // to the user.
        this_inconsistency = (1 - ssim_term) * variance_term * mean_term;

        this_inconsistency *= kScaling;
        inconsistency_total += this_inconsistency;
      }
      sv2[c] = sv;
      ssim_total += ssim;
      ssim2_total += ssim2;
      dssim_total += dssim;

      old_ssim_total += ssim_old;
    }
    old_ssim_total += 0;
  }

  norm = 1. / (width / 4) / (height / 4);
  ssim_total *= norm;
  ssim2_total *= norm;
  m->ssim2 = ssim2_total;
  m->ssim = ssim_total;
  if (old_ssim_total == 0) inconsistency_total = 0;

  m->ssimc = inconsistency_total;

  m->dssim = dssim_total;
  return inconsistency_total;
}

#if CONFIG_HIGHBITDEPTH
double aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
                            const YV12_BUFFER_CONFIG *dest, double *weight,
                            uint32_t bd, uint32_t in_bd) {
  double a, b, c;
  double ssimv;
  uint32_t shift = 0;

  assert(bd >= in_bd);
  shift = bd - in_bd;

  a = aom_highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
                       dest->y_stride, source->y_crop_width,
                       source->y_crop_height, in_bd, shift);

  b = aom_highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
                       dest->uv_stride, source->uv_crop_width,
                       source->uv_crop_height, in_bd, shift);

  c = aom_highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
                       dest->uv_stride, source->uv_crop_width,
                       source->uv_crop_height, in_bd, shift);

  ssimv = a * .8 + .1 * (b + c);

  *weight = 1;

  return ssimv;
}

#endif  // CONFIG_HIGHBITDEPTH