1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*
* This code was originally written by: Gregory Maxwell, at the Daala
* project.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/psnr.h"
#include "aom_dsp/ssim.h"
#include "aom_ports/system_state.h"
#if !defined(M_PI)
#define M_PI (3.141592653589793238462643)
#endif
#include <string.h>
static void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x,
int xstride) {
int i, j;
(void)xstride;
aom_fdct8x8(x, y, ystride);
for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)
*(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3;
}
#if CONFIG_HIGHBITDEPTH
static void hbd_od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x,
int xstride) {
int i, j;
(void)xstride;
aom_highbd_fdct8x8(x, y, ystride);
for (i = 0; i < 8; i++)
for (j = 0; j < 8; j++)
*(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3;
}
#endif
/* Normalized inverse quantization matrix for 8x8 DCT at the point of
* transparency. This is not the JPEG based matrix from the paper,
this one gives a slightly higher MOS agreement.*/
static const double csf_y[8][8] = {
{ 1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411, 1.00227514334,
0.678296995242, 0.466224900598, 0.3265091542 },
{ 2.2901594831, 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963,
0.868920337363, 0.61280991668, 0.436405793551 },
{ 2.08509755623, 2.04793073064, 1.34329019223, 1.09205635862, 0.875748795257,
0.670882927016, 0.501731932449, 0.372504254596 },
{ 1.48366094411, 1.68731108984, 1.09205635862, 0.772819797575, 0.605636379554,
0.48309405692, 0.380429446972, 0.295774038565 },
{ 1.00227514334, 1.2305666963, 0.875748795257, 0.605636379554, 0.448996256676,
0.352889268808, 0.283006984131, 0.226951348204 },
{ 0.678296995242, 0.868920337363, 0.670882927016, 0.48309405692,
0.352889268808, 0.27032073436, 0.215017739696, 0.17408067321 },
{ 0.466224900598, 0.61280991668, 0.501731932449, 0.380429446972,
0.283006984131, 0.215017739696, 0.168869545842, 0.136153931001 },
{ 0.3265091542, 0.436405793551, 0.372504254596, 0.295774038565,
0.226951348204, 0.17408067321, 0.136153931001, 0.109083846276 }
};
static const double csf_cb420[8][8] = {
{ 1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788,
0.898018824055, 0.74725392039, 0.615105596242 },
{ 2.46074210438, 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972,
1.17428548929, 0.996404342439, 0.830890433625 },
{ 1.18284184739, 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362,
0.960060382087, 0.849823426169, 0.731221236837 },
{ 1.14982565193, 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099,
0.751437590932, 0.685398513368, 0.608694761374 },
{ 1.05017074788, 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187,
0.605503172737, 0.55002013668, 0.495804539034 },
{ 0.898018824055, 1.17428548929, 0.960060382087, 0.751437590932,
0.605503172737, 0.514674450957, 0.454353482512, 0.407050308965 },
{ 0.74725392039, 0.996404342439, 0.849823426169, 0.685398513368,
0.55002013668, 0.454353482512, 0.389234902883, 0.342353999733 },
{ 0.615105596242, 0.830890433625, 0.731221236837, 0.608694761374,
0.495804539034, 0.407050308965, 0.342353999733, 0.295530605237 }
};
static const double csf_cr420[8][8] = {
{ 2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469,
0.867069376285, 0.721500455585, 0.593906509971 },
{ 2.62502345193, 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198,
1.13381474809, 0.962064122248, 0.802254508198 },
{ 1.26180942886, 1.17180569821, 0.944981930573, 0.990876405848,
0.995903384143, 0.926972725286, 0.820534991409, 0.706020324706 },
{ 1.11019789803, 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195,
0.725539939514, 0.661776842059, 0.587716619023 },
{ 1.01397751469, 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286,
0.584635025748, 0.531064164893, 0.478717061273 },
{ 0.867069376285, 1.13381474809, 0.926972725286, 0.725539939514,
0.584635025748, 0.496936637883, 0.438694579826, 0.393021669543 },
{ 0.721500455585, 0.962064122248, 0.820534991409, 0.661776842059,
0.531064164893, 0.438694579826, 0.375820256136, 0.330555063063 },
{ 0.593906509971, 0.802254508198, 0.706020324706, 0.587716619023,
0.478717061273, 0.393021669543, 0.330555063063, 0.285345396658 }
};
static double convert_score_db(double _score, double _weight, int bit_depth) {
int16_t pix_max = 255;
assert(_score * _weight >= 0.0);
if (bit_depth == 10)
pix_max = 1023;
else if (bit_depth == 12)
pix_max = 4095;
if (_weight * _score < pix_max * pix_max * 1e-10) return MAX_PSNR;
return 10 * (log10(pix_max * pix_max) - log10(_weight * _score));
}
static double calc_psnrhvs(const unsigned char *src, int _systride,
const unsigned char *dst, int _dystride, double _par,
int _w, int _h, int _step, const double _csf[8][8],
uint32_t bit_depth, uint32_t _shift) {
double ret;
const uint8_t *_src8 = src;
const uint8_t *_dst8 = dst;
const uint16_t *_src16 = CONVERT_TO_SHORTPTR(src);
const uint16_t *_dst16 = CONVERT_TO_SHORTPTR(dst);
int16_t dct_s[8 * 8], dct_d[8 * 8];
tran_low_t dct_s_coef[8 * 8], dct_d_coef[8 * 8];
double mask[8][8];
int pixels;
int x;
int y;
(void)_par;
ret = pixels = 0;
/*In the PSNR-HVS-M paper[1] the authors describe the construction of
their masking table as "we have used the quantization table for the
color component Y of JPEG [6] that has been also obtained on the
basis of CSF. Note that the values in quantization table JPEG have
been normalized and then squared." Their CSF matrix (from PSNR-HVS)
was also constructed from the JPEG matrices. I can not find any obvious
scheme of normalizing to produce their table, but if I multiply their
CSF by 0.38857 and square the result I get their masking table.
I have no idea where this constant comes from, but deviating from it
too greatly hurts MOS agreement.
[1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli,
Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking
of DCT basis functions", CD-ROM Proceedings of the Third
International Workshop on Video Processing and Quality Metrics for Consumer
Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/
for (x = 0; x < 8; x++)
for (y = 0; y < 8; y++)
mask[x][y] =
(_csf[x][y] * 0.3885746225901003) * (_csf[x][y] * 0.3885746225901003);
for (y = 0; y < _h - 7; y += _step) {
for (x = 0; x < _w - 7; x += _step) {
int i;
int j;
double s_means[4];
double d_means[4];
double s_vars[4];
double d_vars[4];
double s_gmean = 0;
double d_gmean = 0;
double s_gvar = 0;
double d_gvar = 0;
double s_mask = 0;
double d_mask = 0;
for (i = 0; i < 4; i++)
s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
if (bit_depth == 8 && _shift == 0) {
dct_s[i * 8 + j] = _src8[(y + i) * _systride + (j + x)];
dct_d[i * 8 + j] = _dst8[(y + i) * _dystride + (j + x)];
} else if (bit_depth == 10 || bit_depth == 12) {
dct_s[i * 8 + j] = _src16[(y + i) * _systride + (j + x)] >> _shift;
dct_d[i * 8 + j] = _dst16[(y + i) * _dystride + (j + x)] >> _shift;
}
s_gmean += dct_s[i * 8 + j];
d_gmean += dct_d[i * 8 + j];
s_means[sub] += dct_s[i * 8 + j];
d_means[sub] += dct_d[i * 8 + j];
}
}
s_gmean /= 64.f;
d_gmean /= 64.f;
for (i = 0; i < 4; i++) s_means[i] /= 16.f;
for (i = 0; i < 4; i++) d_means[i] /= 16.f;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
int sub = ((i & 12) >> 2) + ((j & 12) >> 1);
s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean);
d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean);
s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub]) *
(dct_s[i * 8 + j] - s_means[sub]);
d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub]) *
(dct_d[i * 8 + j] - d_means[sub]);
}
}
s_gvar *= 1 / 63.f * 64;
d_gvar *= 1 / 63.f * 64;
for (i = 0; i < 4; i++) s_vars[i] *= 1 / 15.f * 16;
for (i = 0; i < 4; i++) d_vars[i] *= 1 / 15.f * 16;
if (s_gvar > 0)
s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar;
if (d_gvar > 0)
d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar;
#if CONFIG_HIGHBITDEPTH
if (bit_depth == 10 || bit_depth == 12) {
hbd_od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8);
hbd_od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8);
}
#endif
if (bit_depth == 8) {
od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8);
od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8);
}
for (i = 0; i < 8; i++)
for (j = (i == 0); j < 8; j++)
s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j];
for (i = 0; i < 8; i++)
for (j = (i == 0); j < 8; j++)
d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j];
s_mask = sqrt(s_mask * s_gvar) / 32.f;
d_mask = sqrt(d_mask * d_gvar) / 32.f;
if (d_mask > s_mask) s_mask = d_mask;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
double err;
err = fabs((double)(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j]));
if (i != 0 || j != 0)
err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j];
ret += (err * _csf[i][j]) * (err * _csf[i][j]);
pixels++;
}
}
}
}
if (pixels <= 0) return 0;
ret /= pixels;
return ret;
}
double aom_psnrhvs(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst,
double *y_psnrhvs, double *u_psnrhvs, double *v_psnrhvs,
uint32_t bd, uint32_t in_bd) {
double psnrhvs;
const double par = 1.0;
const int step = 7;
uint32_t bd_shift = 0;
aom_clear_system_state();
assert(bd == 8 || bd == 10 || bd == 12);
assert(bd >= in_bd);
bd_shift = bd - in_bd;
*y_psnrhvs = calc_psnrhvs(src->y_buffer, src->y_stride, dst->y_buffer,
dst->y_stride, par, src->y_crop_width,
src->y_crop_height, step, csf_y, bd, bd_shift);
*u_psnrhvs = calc_psnrhvs(src->u_buffer, src->uv_stride, dst->u_buffer,
dst->uv_stride, par, src->uv_crop_width,
src->uv_crop_height, step, csf_cb420, bd, bd_shift);
*v_psnrhvs = calc_psnrhvs(src->v_buffer, src->uv_stride, dst->v_buffer,
dst->uv_stride, par, src->uv_crop_width,
src->uv_crop_height, step, csf_cr420, bd, bd_shift);
psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs));
return convert_score_db(psnrhvs, 1.0, in_bd);
}
|