1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/binary_codes_writer.h"
#include "av1/common/common.h"
// Recenters a non-negative literal v around a reference r
static uint16_t recenter_nonneg(uint16_t r, uint16_t v) {
if (v > (r << 1))
return v;
else if (v >= r)
return ((v - r) << 1);
else
return ((r - v) << 1) - 1;
}
// Recenters a non-negative literal v in [0, n-1] around a
// reference r also in [0, n-1]
static uint16_t recenter_finite_nonneg(uint16_t n, uint16_t r, uint16_t v) {
if ((r << 1) <= n) {
return recenter_nonneg(r, v);
} else {
return recenter_nonneg(n - 1 - r, n - 1 - v);
}
}
// Codes a symbol v in [-2^mag_bits, 2^mag_bits].
// mag_bits is number of bits for magnitude. The alphabet is of size
// 2 * 2^mag_bits + 1, symmetric around 0, where one bit is used to
// indicate 0 or non-zero, mag_bits bits are used to indicate magnitide
// and 1 more bit for the sign if non-zero.
void aom_write_primitive_symmetric(aom_writer *w, int16_t v,
unsigned int abs_bits) {
if (v == 0) {
aom_write_bit(w, 0);
} else {
const int x = abs(v);
const int s = v < 0;
aom_write_bit(w, 1);
aom_write_bit(w, s);
aom_write_literal(w, x - 1, abs_bits);
}
}
int aom_count_primitive_symmetric(int16_t v, unsigned int abs_bits) {
return (v == 0 ? 1 : abs_bits + 2);
}
// Encodes a value v in [0, n-1] quasi-uniformly
void aom_write_primitive_quniform(aom_writer *w, uint16_t n, uint16_t v) {
if (n <= 1) return;
const int l = get_msb(n - 1) + 1;
const int m = (1 << l) - n;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_bit(w, (v - m) & 1);
}
}
static void aom_wb_write_primitive_quniform(struct aom_write_bit_buffer *wb,
uint16_t n, uint16_t v) {
if (n <= 1) return;
const int l = get_msb(n - 1) + 1;
const int m = (1 << l) - n;
if (v < m) {
aom_wb_write_literal(wb, v, l - 1);
} else {
aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
aom_wb_write_bit(wb, (v - m) & 1);
}
}
int aom_count_primitive_quniform(uint16_t n, uint16_t v) {
if (n <= 1) return 0;
const int l = get_msb(n - 1) + 1;
const int m = (1 << l) - n;
return v < m ? l - 1 : l;
}
// Finite subexponential code that codes a symbol v in [0, n-1] with parameter k
void aom_write_primitive_subexpfin(aom_writer *w, uint16_t n, uint16_t k,
uint16_t v) {
int i = 0;
int mk = 0;
while (1) {
int b = (i ? k + i - 1 : k);
int a = (1 << b);
if (n <= mk + 3 * a) {
aom_write_primitive_quniform(w, n - mk, v - mk);
break;
} else {
int t = (v >= mk + a);
aom_write_bit(w, t);
if (t) {
i = i + 1;
mk += a;
} else {
aom_write_literal(w, v - mk, b);
break;
}
}
}
}
static void aom_wb_write_primitive_subexpfin(struct aom_write_bit_buffer *wb,
uint16_t n, uint16_t k,
uint16_t v) {
int i = 0;
int mk = 0;
while (1) {
int b = (i ? k + i - 1 : k);
int a = (1 << b);
if (n <= mk + 3 * a) {
aom_wb_write_primitive_quniform(wb, n - mk, v - mk);
break;
} else {
int t = (v >= mk + a);
aom_wb_write_bit(wb, t);
if (t) {
i = i + 1;
mk += a;
} else {
aom_wb_write_literal(wb, v - mk, b);
break;
}
}
}
}
int aom_count_primitive_subexpfin(uint16_t n, uint16_t k, uint16_t v) {
int count = 0;
int i = 0;
int mk = 0;
while (1) {
int b = (i ? k + i - 1 : k);
int a = (1 << b);
if (n <= mk + 3 * a) {
count += aom_count_primitive_quniform(n - mk, v - mk);
break;
} else {
int t = (v >= mk + a);
count++;
if (t) {
i = i + 1;
mk += a;
} else {
count += b;
break;
}
}
}
return count;
}
// Finite subexponential code that codes a symbol v in [0, n-1] with parameter k
// based on a reference ref also in [0, n-1].
// Recenters symbol around r first and then uses a finite subexponential code.
void aom_write_primitive_refsubexpfin(aom_writer *w, uint16_t n, uint16_t k,
uint16_t ref, uint16_t v) {
aom_write_primitive_subexpfin(w, n, k, recenter_finite_nonneg(n, ref, v));
}
static void aom_wb_write_primitive_refsubexpfin(struct aom_write_bit_buffer *wb,
uint16_t n, uint16_t k,
uint16_t ref, uint16_t v) {
aom_wb_write_primitive_subexpfin(wb, n, k, recenter_finite_nonneg(n, ref, v));
}
void aom_write_signed_primitive_refsubexpfin(aom_writer *w, uint16_t n,
uint16_t k, int16_t ref,
int16_t v) {
ref += n - 1;
v += n - 1;
const uint16_t scaled_n = (n << 1) - 1;
aom_write_primitive_refsubexpfin(w, scaled_n, k, ref, v);
}
void aom_wb_write_signed_primitive_refsubexpfin(struct aom_write_bit_buffer *wb,
uint16_t n, uint16_t k,
int16_t ref, int16_t v) {
ref += n - 1;
v += n - 1;
const uint16_t scaled_n = (n << 1) - 1;
aom_wb_write_primitive_refsubexpfin(wb, scaled_n, k, ref, v);
}
int aom_count_primitive_refsubexpfin(uint16_t n, uint16_t k, uint16_t ref,
uint16_t v) {
return aom_count_primitive_subexpfin(n, k, recenter_finite_nonneg(n, ref, v));
}
int aom_count_signed_primitive_refsubexpfin(uint16_t n, uint16_t k, int16_t ref,
int16_t v) {
ref += n - 1;
v += n - 1;
const uint16_t scaled_n = (n << 1) - 1;
return aom_count_primitive_refsubexpfin(scaled_n, k, ref, v);
}
void aom_wb_write_uvlc(struct aom_write_bit_buffer *wb, uint32_t v) {
int64_t shift_val = ++v;
int leading_zeroes = 1;
assert(shift_val > 0);
while (shift_val >>= 1) leading_zeroes += 2;
aom_wb_write_literal(wb, 0, leading_zeroes >> 1);
aom_wb_write_unsigned_literal(wb, v, (leading_zeroes + 1) >> 1);
}
|