summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/answriter.h
blob: 353acf1a9416d91546bd66ec9e0aff9c9409115e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_DSP_ANSWRITER_H_
#define AOM_DSP_ANSWRITER_H_
// An implementation of Asymmetric Numeral Systems
// http://arxiv.org/abs/1311.2540v2
// Implements encoding of:
// * rABS (range Asymmetric Binary Systems), a boolean coder
// * rANS (range Asymmetric Numeral Systems), a multi-symbol coder

#include <assert.h>
#include "./aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/ans.h"
#include "aom_dsp/prob.h"
#include "aom_ports/mem_ops.h"
#include "av1/common/odintrin.h"

#if RANS_PRECISION <= OD_DIVU_DMAX
#define ANS_DIVREM(quotient, remainder, dividend, divisor) \
  do {                                                     \
    quotient = OD_DIVU_SMALL((dividend), (divisor));       \
    remainder = (dividend) - (quotient) * (divisor);       \
  } while (0)
#else
#define ANS_DIVREM(quotient, remainder, dividend, divisor) \
  do {                                                     \
    quotient = (dividend) / (divisor);                     \
    remainder = (dividend) % (divisor);                    \
  } while (0)
#endif

#define ANS_DIV8(dividend, divisor) OD_DIVU_SMALL((dividend), (divisor))

#ifdef __cplusplus
extern "C" {
#endif  // __cplusplus

struct AnsCoder {
  uint8_t *buf;
  int buf_offset;
  uint32_t state;
};

static INLINE void ans_write_init(struct AnsCoder *const ans,
                                  uint8_t *const buf) {
  ans->buf = buf;
  ans->buf_offset = 0;
  ans->state = L_BASE;
}

static INLINE int ans_write_end(struct AnsCoder *const ans) {
  uint32_t state;
  int ans_size;
  assert(ans->state >= L_BASE);
  assert(ans->state < L_BASE * IO_BASE);
  state = ans->state - L_BASE;
  if (state < (1u << 15)) {
    mem_put_le16(ans->buf + ans->buf_offset, (0x00u << 15) + state);
    ans_size = ans->buf_offset + 2;
#if ANS_REVERSE
#if L_BASE * IO_BASE > (1 << 23)
  } else if (state < (1u << 22)) {
    mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state);
    ans_size = ans->buf_offset + 3;
  } else if (state < (1u << 30)) {
    mem_put_le32(ans->buf + ans->buf_offset, (0x03u << 30) + state);
    ans_size = ans->buf_offset + 4;
#else
  } else if (state < (1u << 23)) {
    mem_put_le24(ans->buf + ans->buf_offset, (0x01u << 23) + state);
    ans_size = ans->buf_offset + 3;
#endif
#else
  } else if (state < (1u << 22)) {
    mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state);
    ans_size = ans->buf_offset + 3;
  } else if (state < (1u << 29)) {
    mem_put_le32(ans->buf + ans->buf_offset, (0x07u << 29) + state);
    ans_size = ans->buf_offset + 4;
#endif
  } else {
    assert(0 && "State is too large to be serialized");
    return ans->buf_offset;
  }
#if ANS_REVERSE
  {
    int i;
    uint8_t tmp;
    for (i = 0; i < (ans_size >> 1); i++) {
      tmp = ans->buf[i];
      ans->buf[i] = ans->buf[ans_size - 1 - i];
      ans->buf[ans_size - 1 - i] = tmp;
    }
    ans->buf += ans_size;
    ans->buf_offset = 0;
    ans->state = L_BASE;
  }
#endif
  return ans_size;
}

// Write one boolean using rABS where p0 is the probability of the value being
// zero.
static INLINE void rabs_write(struct AnsCoder *ans, int value, AnsP8 p0) {
  const AnsP8 p = ANS_P8_PRECISION - p0;
  const unsigned l_s = value ? p : p0;
  unsigned state = ans->state;
  while (state >= L_BASE / ANS_P8_PRECISION * IO_BASE * l_s) {
    ans->buf[ans->buf_offset++] = state % IO_BASE;
    state /= IO_BASE;
  }
  const unsigned quotient = ANS_DIV8(state, l_s);
  const unsigned remainder = state - quotient * l_s;
  ans->state = quotient * ANS_P8_PRECISION + remainder + (value ? p0 : 0);
}

// Encode one symbol using rANS.
// cum_prob: The cumulative probability before this symbol (the offset of
// the symbol in the symbol cycle)
// prob: The probability of this symbol (l_s from the paper)
// RANS_PRECISION takes the place of m from the paper.
static INLINE void rans_write(struct AnsCoder *ans, aom_cdf_prob cum_prob,
                              aom_cdf_prob prob) {
  unsigned quotient, remainder;
  while (ans->state >= L_BASE / RANS_PRECISION * IO_BASE * prob) {
    ans->buf[ans->buf_offset++] = ans->state % IO_BASE;
    ans->state /= IO_BASE;
  }
  ANS_DIVREM(quotient, remainder, ans->state, prob);
  ans->state = quotient * RANS_PRECISION + remainder + cum_prob;
}

#undef ANS_DIV8
#undef ANS_DIVREM
#ifdef __cplusplus
}  // extern "C"
#endif  // __cplusplus
#endif  // AOM_DSP_ANSWRITER_H_