summaryrefslogtreecommitdiffstats
path: root/taskcluster/taskgraph/test/test_graph.py
blob: 5c4c950a73cb381808d4537d7398a671f0dae8f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-

# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

from __future__ import absolute_import, print_function, unicode_literals

import unittest

from ..graph import Graph
from mozunit import main


class TestGraph(unittest.TestCase):

    tree = Graph(set(['a', 'b', 'c', 'd', 'e', 'f', 'g']), {
        ('a', 'b', 'L'),
        ('a', 'c', 'L'),
        ('b', 'd', 'K'),
        ('b', 'e', 'K'),
        ('c', 'f', 'N'),
        ('c', 'g', 'N'),
    })

    linear = Graph(set(['1', '2', '3', '4']), {
        ('1', '2', 'L'),
        ('2', '3', 'L'),
        ('3', '4', 'L'),
    })

    diamonds = Graph(set(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']),
                     set(tuple(x) for x in
                         'AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL'.split()
                         ))

    multi_edges = Graph(set(['1', '2', '3', '4']), {
        ('2', '1', 'red'),
        ('2', '1', 'blue'),
        ('3', '1', 'red'),
        ('3', '2', 'blue'),
        ('3', '2', 'green'),
        ('4', '3', 'green'),
    })

    disjoint = Graph(set(['1', '2', '3', '4', 'α', 'β', 'γ']), {
        ('2', '1', 'red'),
        ('3', '1', 'red'),
        ('3', '2', 'green'),
        ('4', '3', 'green'),
        ('α', 'β', 'πράσινο'),
        ('β', 'γ', 'κόκκινο'),
        ('α', 'γ', 'μπλε'),
    })

    def test_transitive_closure_empty(self):
        "transitive closure of an empty set is an empty graph"
        g = Graph(set(['a', 'b', 'c']), {('a', 'b', 'L'), ('a', 'c', 'L')})
        self.assertEqual(g.transitive_closure(set()),
                         Graph(set(), set()))

    def test_transitive_closure_disjoint(self):
        "transitive closure of a disjoint set is a subset"
        g = Graph(set(['a', 'b', 'c']), set())
        self.assertEqual(g.transitive_closure(set(['a', 'c'])),
                         Graph(set(['a', 'c']), set()))

    def test_transitive_closure_trees(self):
        "transitive closure of a tree, at two non-root nodes, is the two subtrees"
        self.assertEqual(self.tree.transitive_closure(set(['b', 'c'])),
                         Graph(set(['b', 'c', 'd', 'e', 'f', 'g']), {
                             ('b', 'd', 'K'),
                             ('b', 'e', 'K'),
                             ('c', 'f', 'N'),
                             ('c', 'g', 'N'),
                         }))

    def test_transitive_closure_multi_edges(self):
        "transitive closure of a tree with multiple edges between nodes keeps those edges"
        self.assertEqual(self.multi_edges.transitive_closure(set(['3'])),
                         Graph(set(['1', '2', '3']), {
                             ('2', '1', 'red'),
                             ('2', '1', 'blue'),
                             ('3', '1', 'red'),
                             ('3', '2', 'blue'),
                             ('3', '2', 'green'),
                         }))

    def test_transitive_closure_disjoint_edges(self):
        "transitive closure of a disjoint graph keeps those edges"
        self.assertEqual(self.disjoint.transitive_closure(set(['3', 'β'])),
                         Graph(set(['1', '2', '3', 'β', 'γ']), {
                             ('2', '1', 'red'),
                             ('3', '1', 'red'),
                             ('3', '2', 'green'),
                             ('β', 'γ', 'κόκκινο'),
                         }))

    def test_transitive_closure_linear(self):
        "transitive closure of a linear graph includes all nodes in the line"
        self.assertEqual(self.linear.transitive_closure(set(['1'])), self.linear)

    def test_visit_postorder_empty(self):
        "postorder visit of an empty graph is empty"
        self.assertEqual(list(Graph(set(), set()).visit_postorder()), [])

    def assert_postorder(self, seq, all_nodes):
        seen = set()
        for e in seq:
            for l, r, n in self.tree.edges:
                if l == e:
                    self.failUnless(r in seen)
            seen.add(e)
        self.assertEqual(seen, all_nodes)

    def test_visit_postorder_tree(self):
        "postorder visit of a tree satisfies invariant"
        self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes)

    def test_visit_postorder_diamonds(self):
        "postorder visit of a graph full of diamonds satisfies invariant"
        self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes)

    def test_visit_postorder_multi_edges(self):
        "postorder visit of a graph with duplicate edges satisfies invariant"
        self.assert_postorder(self.multi_edges.visit_postorder(), self.multi_edges.nodes)

    def test_visit_postorder_disjoint(self):
        "postorder visit of a disjoint graph satisfies invariant"
        self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes)

    def test_links_dict(self):
        "link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.links_dict(), {
            '2': set(['1']),
            '3': set(['1', '2']),
            '4': set(['3']),
        })

    def test_named_links_dict(self):
        "named link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.named_links_dict(), {
            '2': dict(red='1', blue='1'),
            '3': dict(red='1', blue='2', green='2'),
            '4': dict(green='3'),
        })

    def test_reverse_links_dict(self):
        "reverse link dict for a graph with multiple edges is correct"
        self.assertEqual(self.multi_edges.reverse_links_dict(), {
            '1': set(['2', '3']),
            '2': set(['3']),
            '3': set(['4']),
        })

if __name__ == '__main__':
    main()