1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/strings/safe_sprintf.h"
#include <errno.h>
#include <string.h>
#include <limits>
#include "base/macros.h"
#include "build/build_config.h"
#if !defined(NDEBUG)
// In debug builds, we use RAW_CHECK() to print useful error messages, if
// SafeSPrintf() is called with broken arguments.
// As our contract promises that SafeSPrintf() can be called from any
// restricted run-time context, it is not actually safe to call logging
// functions from it; and we only ever do so for debug builds and hope for the
// best. We should _never_ call any logging function other than RAW_CHECK(),
// and we should _never_ include any logging code that is active in production
// builds. Most notably, we should not include these logging functions in
// unofficial release builds, even though those builds would otherwise have
// DCHECKS() enabled.
// In other words; please do not remove the #ifdef around this #include.
// Instead, in production builds we opt for returning a degraded result,
// whenever an error is encountered.
// E.g. The broken function call
// SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
// will print something like
// errno = 13, (%x)
// instead of
// errno = 13 (Access denied)
// In most of the anticipated use cases, that's probably the preferred
// behavior.
#include "base/logging.h"
#define DEBUG_CHECK RAW_CHECK
#else
#define DEBUG_CHECK(x) do { if (x) { } } while (0)
#endif
namespace base {
namespace strings {
// The code in this file is extremely careful to be async-signal-safe.
//
// Most obviously, we avoid calling any code that could dynamically allocate
// memory. Doing so would almost certainly result in bugs and dead-locks.
// We also avoid calling any other STL functions that could have unintended
// side-effects involving memory allocation or access to other shared
// resources.
//
// But on top of that, we also avoid calling other library functions, as many
// of them have the side-effect of calling getenv() (in order to deal with
// localization) or accessing errno. The latter sounds benign, but there are
// several execution contexts where it isn't even possible to safely read let
// alone write errno.
//
// The stated design goal of the SafeSPrintf() function is that it can be
// called from any context that can safely call C or C++ code (i.e. anything
// that doesn't require assembly code).
//
// For a brief overview of some but not all of the issues with async-signal-
// safety, refer to:
// http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
namespace {
const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
const char kUpCaseHexDigits[] = "0123456789ABCDEF";
const char kDownCaseHexDigits[] = "0123456789abcdef";
}
#if defined(NDEBUG)
// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
// but C++ doesn't allow us to do that for constants. Instead, we have to
// use careful casting and shifting. We later use a static_assert to
// verify that this worked correctly.
namespace {
const size_t kSSizeMax = kSSizeMaxConst;
}
#else // defined(NDEBUG)
// For efficiency, we really need kSSizeMax to be a constant. But for unit
// tests, it should be adjustable. This allows us to verify edge cases without
// having to fill the entire available address space. As a compromise, we make
// kSSizeMax adjustable in debug builds, and then only compile that particular
// part of the unit test in debug builds.
namespace {
static size_t kSSizeMax = kSSizeMaxConst;
}
namespace internal {
void SetSafeSPrintfSSizeMaxForTest(size_t max) {
kSSizeMax = max;
}
size_t GetSafeSPrintfSSizeMaxForTest() {
return kSSizeMax;
}
}
#endif // defined(NDEBUG)
namespace {
class Buffer {
public:
// |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
// has |size| bytes of writable storage. It is the caller's responsibility
// to ensure that the buffer is at least one byte in size, so that it fits
// the trailing NUL that will be added by the destructor. The buffer also
// must be smaller or equal to kSSizeMax in size.
Buffer(char* buffer, size_t size)
: buffer_(buffer),
size_(size - 1), // Account for trailing NUL byte
count_(0) {
// MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
// supports static_cast but doesn't really implement constexpr yet so it doesn't
// complain, but clang does.
#if __cplusplus >= 201103 && !(defined(__clang__) && defined(OS_WIN))
static_assert(kSSizeMaxConst ==
static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
"kSSizeMaxConst should be the max value of an ssize_t");
#endif
DEBUG_CHECK(size > 0);
DEBUG_CHECK(size <= kSSizeMax);
}
~Buffer() {
// The code calling the constructor guaranteed that there was enough space
// to store a trailing NUL -- and in debug builds, we are actually
// verifying this with DEBUG_CHECK()s in the constructor. So, we can
// always unconditionally write the NUL byte in the destructor. We do not
// need to adjust the count_, as SafeSPrintf() copies snprintf() in not
// including the NUL byte in its return code.
*GetInsertionPoint() = '\000';
}
// Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
// caller can now stop adding more data, as GetCount() has reached its
// maximum possible value.
inline bool OutOfAddressableSpace() const {
return count_ == static_cast<size_t>(kSSizeMax - 1);
}
// Returns the number of bytes that would have been emitted to |buffer_|
// if it was sized sufficiently large. This number can be larger than
// |size_|, if the caller provided an insufficiently large output buffer.
// But it will never be bigger than |kSSizeMax-1|.
inline ssize_t GetCount() const {
DEBUG_CHECK(count_ < kSSizeMax);
return static_cast<ssize_t>(count_);
}
// Emits one |ch| character into the |buffer_| and updates the |count_| of
// characters that are currently supposed to be in the buffer.
// Returns "false", iff the buffer was already full.
// N.B. |count_| increases even if no characters have been written. This is
// needed so that GetCount() can return the number of bytes that should
// have been allocated for the |buffer_|.
inline bool Out(char ch) {
if (size_ >= 1 && count_ < size_) {
buffer_[count_] = ch;
return IncrementCountByOne();
}
// |count_| still needs to be updated, even if the buffer has been
// filled completely. This allows SafeSPrintf() to return the number of
// bytes that should have been emitted.
IncrementCountByOne();
return false;
}
// Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
// |count_| will also be incremented by the number of bytes that were meant
// to be emitted. The |pad| character is typically either a ' ' space
// or a '0' zero, but other non-NUL values are legal.
// Returns "false", iff the the |buffer_| filled up (i.e. |count_|
// overflowed |size_|) at any time during padding.
inline bool Pad(char pad, size_t padding, size_t len) {
DEBUG_CHECK(pad);
DEBUG_CHECK(padding <= kSSizeMax);
for (; padding > len; --padding) {
if (!Out(pad)) {
if (--padding) {
IncrementCount(padding-len);
}
return false;
}
}
return true;
}
// POSIX doesn't define any async-signal-safe function for converting
// an integer to ASCII. Define our own version.
//
// This also gives us the ability to make the function a little more
// powerful and have it deal with |padding|, with truncation, and with
// predicting the length of the untruncated output.
//
// IToASCII() converts an integer |i| to ASCII.
//
// Unlike similar functions in the standard C library, it never appends a
// NUL character. This is left for the caller to do.
//
// While the function signature takes a signed int64_t, the code decides at
// run-time whether to treat the argument as signed (int64_t) or as unsigned
// (uint64_t) based on the value of |sign|.
//
// It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
// a |sign|. Otherwise, |i| is treated as unsigned.
//
// For bases larger than 10, |upcase| decides whether lower-case or upper-
// case letters should be used to designate digits greater than 10.
//
// Padding can be done with either '0' zeros or ' ' spaces. Padding has to
// be positive and will always be applied to the left of the output.
//
// Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
// the left of |padding|, if |pad| is '0'; and to the right of |padding|
// if |pad| is ' '.
//
// Returns "false", if the |buffer_| overflowed at any time.
bool IToASCII(bool sign, bool upcase, int64_t i, int base,
char pad, size_t padding, const char* prefix);
private:
// Increments |count_| by |inc| unless this would cause |count_| to
// overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
// it then clamps |count_| to |kSSizeMax-1|.
inline bool IncrementCount(size_t inc) {
// "inc" is either 1 or a "padding" value. Padding is clamped at
// run-time to at most kSSizeMax-1. So, we know that "inc" is always in
// the range 1..kSSizeMax-1.
// This allows us to compute "kSSizeMax - 1 - inc" without incurring any
// integer overflows.
DEBUG_CHECK(inc <= kSSizeMax - 1);
if (count_ > kSSizeMax - 1 - inc) {
count_ = kSSizeMax - 1;
return false;
} else {
count_ += inc;
return true;
}
}
// Convenience method for the common case of incrementing |count_| by one.
inline bool IncrementCountByOne() {
return IncrementCount(1);
}
// Return the current insertion point into the buffer. This is typically
// at |buffer_| + |count_|, but could be before that if truncation
// happened. It always points to one byte past the last byte that was
// successfully placed into the |buffer_|.
inline char* GetInsertionPoint() const {
size_t idx = count_;
if (idx > size_) {
idx = size_;
}
return buffer_ + idx;
}
// User-provided buffer that will receive the fully formatted output string.
char* buffer_;
// Number of bytes that are available in the buffer excluding the trailing
// NUL byte that will be added by the destructor.
const size_t size_;
// Number of bytes that would have been emitted to the buffer, if the buffer
// was sufficiently big. This number always excludes the trailing NUL byte
// and it is guaranteed to never grow bigger than kSSizeMax-1.
size_t count_;
DISALLOW_COPY_AND_ASSIGN(Buffer);
};
bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
char pad, size_t padding, const char* prefix) {
// Sanity check for parameters. None of these should ever fail, but see
// above for the rationale why we can't call CHECK().
DEBUG_CHECK(base >= 2);
DEBUG_CHECK(base <= 16);
DEBUG_CHECK(!sign || base == 10);
DEBUG_CHECK(pad == '0' || pad == ' ');
DEBUG_CHECK(padding <= kSSizeMax);
DEBUG_CHECK(!(sign && prefix && *prefix));
// Handle negative numbers, if the caller indicated that |i| should be
// treated as a signed number; otherwise treat |i| as unsigned (even if the
// MSB is set!)
// Details are tricky, because of limited data-types, but equivalent pseudo-
// code would look like:
// if (sign && i < 0)
// prefix = "-";
// num = abs(i);
int minint = 0;
uint64_t num;
if (sign && i < 0) {
prefix = "-";
// Turn our number positive.
if (i == std::numeric_limits<int64_t>::min()) {
// The most negative integer needs special treatment.
minint = 1;
num = static_cast<uint64_t>(-(i + 1));
} else {
// "Normal" negative numbers are easy.
num = static_cast<uint64_t>(-i);
}
} else {
num = static_cast<uint64_t>(i);
}
// If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
// make the prefix accessible in reverse order, so that we can later output
// it right between padding and the number.
// We cannot choose the easier approach of just reversing the number, as that
// fails in situations where we need to truncate numbers that have padding
// and/or prefixes.
const char* reverse_prefix = NULL;
if (prefix && *prefix) {
if (pad == '0') {
while (*prefix) {
if (padding) {
--padding;
}
Out(*prefix++);
}
prefix = NULL;
} else {
for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
}
}
} else
prefix = NULL;
const size_t prefix_length = reverse_prefix - prefix;
// Loop until we have converted the entire number. Output at least one
// character (i.e. '0').
size_t start = count_;
size_t discarded = 0;
bool started = false;
do {
// Make sure there is still enough space left in our output buffer.
if (count_ >= size_) {
if (start < size_) {
// It is rare that we need to output a partial number. But if asked
// to do so, we will still make sure we output the correct number of
// leading digits.
// Since we are generating the digits in reverse order, we actually
// have to discard digits in the order that we have already emitted
// them. This is essentially equivalent to:
// memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
move < end;
++move) {
*move = move[1];
}
++discarded;
--count_;
} else if (count_ - size_ > 1) {
// Need to increment either |count_| or |discarded| to make progress.
// The latter is more efficient, as it eventually triggers fast
// handling of padding. But we have to ensure we don't accidentally
// change the overall state (i.e. switch the state-machine from
// discarding to non-discarding). |count_| needs to always stay
// bigger than |size_|.
--count_;
++discarded;
}
}
// Output the next digit and (if necessary) compensate for the most
// negative integer needing special treatment. This works because,
// no matter the bit width of the integer, the lowest-most decimal
// integer always ends in 2, 4, 6, or 8.
if (!num && started) {
if (reverse_prefix > prefix) {
Out(*--reverse_prefix);
} else {
Out(pad);
}
} else {
started = true;
Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
}
minint = 0;
num /= base;
// Add padding, if requested.
if (padding > 0) {
--padding;
// Performance optimization for when we are asked to output excessive
// padding, but our output buffer is limited in size. Even if we output
// a 64bit number in binary, we would never write more than 64 plus
// prefix non-padding characters. So, once this limit has been passed,
// any further state change can be computed arithmetically; we know that
// by this time, our entire final output consists of padding characters
// that have all already been output.
if (discarded > 8*sizeof(num) + prefix_length) {
IncrementCount(padding);
padding = 0;
}
}
} while (num || padding || (reverse_prefix > prefix));
// Conversion to ASCII actually resulted in the digits being in reverse
// order. We can't easily generate them in forward order, as we can't tell
// the number of characters needed until we are done converting.
// So, now, we reverse the string (except for the possible '-' sign).
char* front = buffer_ + start;
char* back = GetInsertionPoint();
while (--back > front) {
char ch = *back;
*back = *front;
*front++ = ch;
}
IncrementCount(discarded);
return !discarded;
}
} // anonymous namespace
namespace internal {
ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
const size_t max_args) {
// Make sure that at least one NUL byte can be written, and that the buffer
// never overflows kSSizeMax. Not only does that use up most or all of the
// address space, it also would result in a return code that cannot be
// represented.
if (static_cast<ssize_t>(sz) < 1) {
return -1;
} else if (sz > kSSizeMax) {
sz = kSSizeMax;
}
// Iterate over format string and interpret '%' arguments as they are
// encountered.
Buffer buffer(buf, sz);
size_t padding;
char pad;
for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
if (*fmt++ == '%') {
padding = 0;
pad = ' ';
char ch = *fmt++;
format_character_found:
switch (ch) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
// Found a width parameter. Convert to an integer value and store in
// "padding". If the leading digit is a zero, change the padding
// character from a space ' ' to a zero '0'.
pad = ch == '0' ? '0' : ' ';
for (;;) {
// The maximum allowed padding fills all the available address
// space and leaves just enough space to insert the trailing NUL.
const size_t max_padding = kSSizeMax - 1;
if (padding > max_padding/10 ||
10*padding > max_padding - (ch - '0')) {
DEBUG_CHECK(padding <= max_padding/10 &&
10*padding <= max_padding - (ch - '0'));
// Integer overflow detected. Skip the rest of the width until
// we find the format character, then do the normal error handling.
padding_overflow:
padding = max_padding;
while ((ch = *fmt++) >= '0' && ch <= '9') {
}
if (cur_arg < max_args) {
++cur_arg;
}
goto fail_to_expand;
}
padding = 10*padding + ch - '0';
if (padding > max_padding) {
// This doesn't happen for "sane" values of kSSizeMax. But once
// kSSizeMax gets smaller than about 10, our earlier range checks
// are incomplete. Unittests do trigger this artificial corner
// case.
DEBUG_CHECK(padding <= max_padding);
goto padding_overflow;
}
ch = *fmt++;
if (ch < '0' || ch > '9') {
// Reached the end of the width parameter. This is where the format
// character is found.
goto format_character_found;
}
}
break;
case 'c': { // Output an ASCII character.
// Check that there are arguments left to be inserted.
if (cur_arg >= max_args) {
DEBUG_CHECK(cur_arg < max_args);
goto fail_to_expand;
}
// Check that the argument has the expected type.
const Arg& arg = args[cur_arg++];
if (arg.type != Arg::INT && arg.type != Arg::UINT) {
DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
goto fail_to_expand;
}
// Apply padding, if needed.
buffer.Pad(' ', padding, 1);
// Convert the argument to an ASCII character and output it.
char as_char = static_cast<char>(arg.integer.i);
if (!as_char) {
goto end_of_output_buffer;
}
buffer.Out(as_char);
break; }
case 'd': // Output a possibly signed decimal value.
case 'o': // Output an unsigned octal value.
case 'x': // Output an unsigned hexadecimal value.
case 'X':
case 'p': { // Output a pointer value.
// Check that there are arguments left to be inserted.
if (cur_arg >= max_args) {
DEBUG_CHECK(cur_arg < max_args);
goto fail_to_expand;
}
const Arg& arg = args[cur_arg++];
int64_t i;
const char* prefix = NULL;
if (ch != 'p') {
// Check that the argument has the expected type.
if (arg.type != Arg::INT && arg.type != Arg::UINT) {
DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
goto fail_to_expand;
}
i = arg.integer.i;
if (ch != 'd') {
// The Arg() constructor automatically performed sign expansion on
// signed parameters. This is great when outputting a %d decimal
// number, but can result in unexpected leading 0xFF bytes when
// outputting a %x hexadecimal number. Mask bits, if necessary.
// We have to do this here, instead of in the Arg() constructor, as
// the Arg() constructor cannot tell whether we will output a %d
// or a %x. Only the latter should experience masking.
if (arg.integer.width < sizeof(int64_t)) {
i &= (1LL << (8*arg.integer.width)) - 1;
}
}
} else {
// Pointer values require an actual pointer or a string.
if (arg.type == Arg::POINTER) {
i = reinterpret_cast<uintptr_t>(arg.ptr);
} else if (arg.type == Arg::STRING) {
i = reinterpret_cast<uintptr_t>(arg.str);
} else if (arg.type == Arg::INT &&
arg.integer.width == sizeof(NULL) &&
arg.integer.i == 0) { // Allow C++'s version of NULL
i = 0;
} else {
DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
goto fail_to_expand;
}
// Pointers always include the "0x" prefix.
prefix = "0x";
}
// Use IToASCII() to convert to ASCII representation. For decimal
// numbers, optionally print a sign. For hexadecimal numbers,
// distinguish between upper and lower case. %p addresses are always
// printed as upcase. Supports base 8, 10, and 16. Prints padding
// and/or prefixes, if so requested.
buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
ch != 'x', i,
ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
pad, padding, prefix);
break; }
case 's': {
// Check that there are arguments left to be inserted.
if (cur_arg >= max_args) {
DEBUG_CHECK(cur_arg < max_args);
goto fail_to_expand;
}
// Check that the argument has the expected type.
const Arg& arg = args[cur_arg++];
const char *s;
if (arg.type == Arg::STRING) {
s = arg.str ? arg.str : "<NULL>";
} else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) &&
arg.integer.i == 0) { // Allow C++'s version of NULL
s = "<NULL>";
} else {
DEBUG_CHECK(arg.type == Arg::STRING);
goto fail_to_expand;
}
// Apply padding, if needed. This requires us to first check the
// length of the string that we are outputting.
if (padding) {
size_t len = 0;
for (const char* src = s; *src++; ) {
++len;
}
buffer.Pad(' ', padding, len);
}
// Printing a string involves nothing more than copying it into the
// output buffer and making sure we don't output more bytes than
// available space; Out() takes care of doing that.
for (const char* src = s; *src; ) {
buffer.Out(*src++);
}
break; }
case '%':
// Quoted percent '%' character.
goto copy_verbatim;
fail_to_expand:
// C++ gives us tools to do type checking -- something that snprintf()
// could never really do. So, whenever we see arguments that don't
// match up with the format string, we refuse to output them. But
// since we have to be extremely conservative about being async-
// signal-safe, we are limited in the type of error handling that we
// can do in production builds (in debug builds we can use
// DEBUG_CHECK() and hope for the best). So, all we do is pass the
// format string unchanged. That should eventually get the user's
// attention; and in the meantime, it hopefully doesn't lose too much
// data.
default:
// Unknown or unsupported format character. Just copy verbatim to
// output.
buffer.Out('%');
DEBUG_CHECK(ch);
if (!ch) {
goto end_of_format_string;
}
buffer.Out(ch);
break;
}
} else {
copy_verbatim:
buffer.Out(fmt[-1]);
}
}
end_of_format_string:
end_of_output_buffer:
return buffer.GetCount();
}
} // namespace internal
ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
// Make sure that at least one NUL byte can be written, and that the buffer
// never overflows kSSizeMax. Not only does that use up most or all of the
// address space, it also would result in a return code that cannot be
// represented.
if (static_cast<ssize_t>(sz) < 1) {
return -1;
} else if (sz > kSSizeMax) {
sz = kSSizeMax;
}
Buffer buffer(buf, sz);
// In the slow-path, we deal with errors by copying the contents of
// "fmt" unexpanded. This means, if there are no arguments passed, the
// SafeSPrintf() function always degenerates to a version of strncpy() that
// de-duplicates '%' characters.
const char* src = fmt;
for (; *src; ++src) {
buffer.Out(*src);
DEBUG_CHECK(src[0] != '%' || src[1] == '%');
if (src[0] == '%' && src[1] == '%') {
++src;
}
}
return buffer.GetCount();
}
} // namespace strings
} // namespace base
|