1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* TLS 1.3 Protocol
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "keyhi.h"
#include "pk11func.h"
#include "secitem.h"
#include "ssl.h"
#include "sslt.h"
#include "sslerr.h"
#include "sslimpl.h"
/* This table contains the mapping between TLS hash identifiers and the
* PKCS#11 identifiers */
static const struct {
SSLHashType hash;
CK_MECHANISM_TYPE pkcs11Mech;
unsigned int hashSize;
} kTlsHkdfInfo[] = {
{ ssl_hash_none, 0, 0 },
{ ssl_hash_md5, 0, 0 },
{ ssl_hash_sha1, 0, 0 },
{ ssl_hash_sha224, 0 },
{ ssl_hash_sha256, CKM_NSS_HKDF_SHA256, 32 },
{ ssl_hash_sha384, CKM_NSS_HKDF_SHA384, 48 },
{ ssl_hash_sha512, CKM_NSS_HKDF_SHA512, 64 }
};
SECStatus
tls13_HkdfExtract(PK11SymKey *ikm1, PK11SymKey *ikm2in, SSLHashType baseHash,
PK11SymKey **prkp)
{
CK_NSS_HKDFParams params;
SECItem paramsi;
SECStatus rv;
SECItem *salt;
PK11SymKey *prk;
static const PRUint8 zeroKeyBuf[HASH_LENGTH_MAX];
PK11SymKey *zeroKey = NULL;
PK11SlotInfo *slot = NULL;
PK11SymKey *ikm2;
params.bExtract = CK_TRUE;
params.bExpand = CK_FALSE;
params.pInfo = NULL;
params.ulInfoLen = 0UL;
if (ikm1) {
/* TODO(ekr@rtfm.com): This violates the PKCS#11 key boundary
* but is imposed on us by the present HKDF interface. */
rv = PK11_ExtractKeyValue(ikm1);
if (rv != SECSuccess)
return rv;
salt = PK11_GetKeyData(ikm1);
if (!salt)
return SECFailure;
params.pSalt = salt->data;
params.ulSaltLen = salt->len;
PORT_Assert(salt->len > 0);
} else {
/* Per documentation for CKM_NSS_HKDF_*:
*
* If the optional salt is given, it is used; otherwise, the salt is
* set to a sequence of zeros equal in length to the HMAC output.
*/
params.pSalt = NULL;
params.ulSaltLen = 0UL;
}
paramsi.data = (unsigned char *)¶ms;
paramsi.len = sizeof(params);
PORT_Assert(kTlsHkdfInfo[baseHash].pkcs11Mech);
PORT_Assert(kTlsHkdfInfo[baseHash].hashSize);
PORT_Assert(kTlsHkdfInfo[baseHash].hash == baseHash);
/* A zero ikm2 is a key of hash-length 0s. */
if (!ikm2in) {
SECItem zeroItem = {
siBuffer,
(unsigned char *)zeroKeyBuf,
kTlsHkdfInfo[baseHash].hashSize
};
slot = PK11_GetInternalSlot();
if (!slot) {
return SECFailure;
}
zeroKey = PK11_ImportSymKey(slot,
kTlsHkdfInfo[baseHash].pkcs11Mech,
PK11_OriginUnwrap,
CKA_DERIVE, &zeroItem, NULL);
if (!zeroKey)
return SECFailure;
ikm2 = zeroKey;
} else {
ikm2 = ikm2in;
}
PORT_Assert(ikm2);
PRINT_BUF(50, (NULL, "HKDF Extract: IKM1/Salt", params.pSalt, params.ulSaltLen));
PRINT_KEY(50, (NULL, "HKDF Extract: IKM2", ikm2));
prk = PK11_Derive(ikm2, kTlsHkdfInfo[baseHash].pkcs11Mech,
¶msi, kTlsHkdfInfo[baseHash].pkcs11Mech,
CKA_DERIVE, kTlsHkdfInfo[baseHash].hashSize);
if (zeroKey)
PK11_FreeSymKey(zeroKey);
if (slot)
PK11_FreeSlot(slot);
if (!prk)
return SECFailure;
PRINT_KEY(50, (NULL, "HKDF Extract", prk));
*prkp = prk;
return SECSuccess;
}
SECStatus
tls13_HkdfExpandLabel(PK11SymKey *prk, SSLHashType baseHash,
const PRUint8 *handshakeHash, unsigned int handshakeHashLen,
const char *label, unsigned int labelLen,
CK_MECHANISM_TYPE algorithm, unsigned int keySize,
PK11SymKey **keyp)
{
CK_NSS_HKDFParams params;
SECItem paramsi = { siBuffer, NULL, 0 };
/* Size of info array needs to be big enough to hold the maximum Prefix,
* Label, plus HandshakeHash. If it's ever to small, the code will abort.
*/
PRUint8 info[256];
PRUint8 *ptr = info;
unsigned int infoLen;
PK11SymKey *derived;
const char *kLabelPrefix = "TLS 1.3, ";
const unsigned int kLabelPrefixLen = strlen(kLabelPrefix);
if (handshakeHash) {
if (handshakeHashLen > 255) {
PORT_Assert(0);
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
} else {
PORT_Assert(!handshakeHashLen);
}
/*
* [draft-ietf-tls-tls13-11] Section 7.1:
*
* HKDF-Expand-Label(Secret, Label, HashValue, Length) =
* HKDF-Expand(Secret, HkdfLabel, Length)
*
* Where HkdfLabel is specified as:
*
* struct HkdfLabel {
* uint16 length;
* opaque label<9..255>;
* opaque hash_value<0..255>;
* };
*
* Where:
* - HkdfLabel.length is Length
* - HkdfLabel.hash_value is HashValue.
* - HkdfLabel.label is "TLS 1.3, " + Label
*
*/
infoLen = 2 + 1 + kLabelPrefixLen + labelLen + 1 + handshakeHashLen;
if (infoLen > sizeof(info)) {
PORT_Assert(0);
goto abort;
}
ptr = ssl_EncodeUintX(keySize, 2, ptr);
ptr = ssl_EncodeUintX(labelLen + kLabelPrefixLen, 1, ptr);
PORT_Memcpy(ptr, kLabelPrefix, kLabelPrefixLen);
ptr += kLabelPrefixLen;
PORT_Memcpy(ptr, label, labelLen);
ptr += labelLen;
ptr = ssl_EncodeUintX(handshakeHashLen, 1, ptr);
if (handshakeHash) {
PORT_Memcpy(ptr, handshakeHash, handshakeHashLen);
ptr += handshakeHashLen;
}
PORT_Assert((ptr - info) == infoLen);
params.bExtract = CK_FALSE;
params.bExpand = CK_TRUE;
params.pInfo = info;
params.ulInfoLen = infoLen;
paramsi.data = (unsigned char *)¶ms;
paramsi.len = sizeof(params);
derived = PK11_DeriveWithFlags(prk, kTlsHkdfInfo[baseHash].pkcs11Mech,
¶msi, algorithm,
CKA_DERIVE, keySize,
CKF_SIGN | CKF_VERIFY);
if (!derived)
return SECFailure;
*keyp = derived;
#ifdef TRACE
if (ssl_trace >= 10) {
/* Make sure the label is null terminated. */
char labelStr[100];
PORT_Memcpy(labelStr, label, labelLen);
labelStr[labelLen] = 0;
SSL_TRC(50, ("HKDF Expand: label=[TLS 1.3, ] + '%s',requested length=%d",
labelStr, keySize));
}
PRINT_KEY(50, (NULL, "PRK", prk));
PRINT_BUF(50, (NULL, "Hash", handshakeHash, handshakeHashLen));
PRINT_BUF(50, (NULL, "Info", info, infoLen));
PRINT_KEY(50, (NULL, "Derived key", derived));
#endif
return SECSuccess;
abort:
PORT_SetError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
return SECFailure;
}
SECStatus
tls13_HkdfExpandLabelRaw(PK11SymKey *prk, SSLHashType baseHash,
const PRUint8 *handshakeHash, unsigned int handshakeHashLen,
const char *label, unsigned int labelLen,
unsigned char *output, unsigned int outputLen)
{
PK11SymKey *derived = NULL;
SECItem *rawkey;
SECStatus rv;
rv = tls13_HkdfExpandLabel(prk, baseHash, handshakeHash, handshakeHashLen,
label, labelLen,
kTlsHkdfInfo[baseHash].pkcs11Mech, outputLen,
&derived);
if (rv != SECSuccess || !derived) {
goto abort;
}
rv = PK11_ExtractKeyValue(derived);
if (rv != SECSuccess) {
goto abort;
}
rawkey = PK11_GetKeyData(derived);
if (!rawkey) {
goto abort;
}
PORT_Assert(rawkey->len == outputLen);
memcpy(output, rawkey->data, outputLen);
PK11_FreeSymKey(derived);
return SECSuccess;
abort:
if (derived) {
PK11_FreeSymKey(derived);
}
PORT_SetError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
return SECFailure;
}
|