1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* This file implements PKCS 11 on top of our existing security modules
*
* For more information about PKCS 11 See PKCS 11 Token Inteface Standard.
* This implementation has two slots:
* slot 1 is our generic crypto support. It does not require login.
* It supports Public Key ops, and all they bulk ciphers and hashes.
* It can also support Private Key ops for imported Private keys. It does
* not have any token storage.
* slot 2 is our private key support. It requires a login before use. It
* can store Private Keys and Certs as token objects. Currently only private
* keys and their associated Certificates are saved on the token.
*
* In this implementation, session objects are only visible to the session
* that created or generated them.
*/
#include "seccomon.h"
#include "secitem.h"
#include "secport.h"
#include "blapi.h"
#include "pkcs11.h"
#include "pkcs11i.h"
#include "pkcs1sig.h"
#include "lowkeyi.h"
#include "secder.h"
#include "secdig.h"
#include "lowpbe.h" /* We do PBE below */
#include "pkcs11t.h"
#include "secoid.h"
#include "alghmac.h"
#include "softoken.h"
#include "secasn1.h"
#include "secerr.h"
#include "prprf.h"
#include "prenv.h"
/*
* A common prfContext to handle both hmac and aes xcbc
* hash contexts have non-null hashObj and hmac, aes
* contexts have non-null aes */
typedef struct prfContextStr {
HASH_HashType hashType;
const SECHashObject *hashObj;
HMACContext *hmac;
AESContext *aes;
unsigned int nextChar;
unsigned char padBuf[AES_BLOCK_SIZE];
unsigned char macBuf[AES_BLOCK_SIZE];
unsigned char k1[AES_BLOCK_SIZE];
unsigned char k2[AES_BLOCK_SIZE];
unsigned char k3[AES_BLOCK_SIZE];
} prfContext;
/* iv full of zeros used in several places in aes xcbc */
static const unsigned char iv_zero[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*
* Generate AES XCBC keys from the AES MAC key.
* k1 is used in the actual mac.
* k2 and k3 are used in the final pad step.
*/
static CK_RV
sftk_aes_xcbc_get_keys(const unsigned char *keyValue, unsigned int keyLen,
unsigned char *k1, unsigned char *k2, unsigned char *k3)
{
SECStatus rv;
CK_RV crv;
unsigned int tmpLen;
AESContext *aes_context = NULL;
unsigned char newKey[AES_BLOCK_SIZE];
/* AES XCBC keys. k1, k2, and k3 are derived by encrypting
* k1data, k2data, and k3data with the mac key.
*/
static const unsigned char k1data[] = {
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
};
static const unsigned char k2data[] = {
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02
};
static const unsigned char k3data[] = {
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
};
/* k1_0 = aes_ecb(0, k1data) */
static const unsigned char k1_0[] = {
0xe1, 0x4d, 0x5d, 0x0e, 0xe2, 0x77, 0x15, 0xdf,
0x08, 0xb4, 0x15, 0x2b, 0xa2, 0x3d, 0xa8, 0xe0
};
/* k2_0 = aes_ecb(0, k2data) */
static const unsigned char k2_0[] = {
0x5e, 0xba, 0x73, 0xf8, 0x91, 0x42, 0xc5, 0x48,
0x80, 0xf6, 0x85, 0x94, 0x37, 0x3c, 0x5c, 0x37
};
/* k3_0 = aes_ecb(0, k3data) */
static const unsigned char k3_0[] = {
0x8d, 0x34, 0xef, 0xcb, 0x3b, 0xd5, 0x45, 0xca,
0x06, 0x2a, 0xec, 0xdf, 0xef, 0x7c, 0x0b, 0xfa
};
/* first make sure out input key is the correct length
* rfc 4434. If key is shorter, pad with zeros to the
* the right. If key is longer newKey = aes_xcbc(0, key, keyLen).
*/
if (keyLen < AES_BLOCK_SIZE) {
PORT_Memcpy(newKey, keyValue, keyLen);
PORT_Memset(&newKey[keyLen], 0, AES_BLOCK_SIZE - keyLen);
keyValue = newKey;
} else if (keyLen > AES_BLOCK_SIZE) {
/* calculate our new key = aes_xcbc(0, key, keyLen). Because the
* key above is fixed (0), we can precalculate k1, k2, and k3.
* if this code ever needs to be more generic (support any xcbc
* function rather than just aes, we would probably want to just
* recurse here using our prf functions. This would be safe because
* the recurse case would have keyLen == blocksize and thus skip
* this conditional.
*/
aes_context = AES_CreateContext(k1_0, iv_zero, NSS_AES_CBC,
PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
/* we know the following loop will execute at least once */
while (keyLen > AES_BLOCK_SIZE) {
rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE,
keyValue, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto fail;
}
keyValue += AES_BLOCK_SIZE;
keyLen -= AES_BLOCK_SIZE;
}
PORT_Memcpy(newKey, keyValue, keyLen);
sftk_xcbc_mac_pad(newKey, keyLen, AES_BLOCK_SIZE, k2_0, k3_0);
rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE,
newKey, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
goto fail;
}
keyValue = newKey;
AES_DestroyContext(aes_context, PR_TRUE);
}
/* the length of the key in keyValue is known to be AES_BLOCK_SIZE,
* either because it was on input, or it was shorter and extended, or
* because it was mac'd down using aes_xcbc_prf.
*/
aes_context = AES_CreateContext(keyValue, iv_zero,
NSS_AES, PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
if (aes_context == NULL) {
goto fail;
}
rv = AES_Encrypt(aes_context, k1, &tmpLen, AES_BLOCK_SIZE,
k1data, sizeof(k1data));
if (rv != SECSuccess) {
goto fail;
}
rv = AES_Encrypt(aes_context, k2, &tmpLen, AES_BLOCK_SIZE,
k2data, sizeof(k2data));
if (rv != SECSuccess) {
goto fail;
}
rv = AES_Encrypt(aes_context, k3, &tmpLen, AES_BLOCK_SIZE,
k3data, sizeof(k3data));
if (rv != SECSuccess) {
goto fail;
}
AES_DestroyContext(aes_context, PR_TRUE);
PORT_Memset(newKey, 0, AES_BLOCK_SIZE);
return CKR_OK;
fail:
crv = sftk_MapCryptError(PORT_GetError());
if (aes_context) {
AES_DestroyContext(aes_context, PR_TRUE);
}
PORT_Memset(k1, 0, AES_BLOCK_SIZE);
PORT_Memset(k2, 0, AES_BLOCK_SIZE);
PORT_Memset(k3, 0, AES_BLOCK_SIZE);
PORT_Memset(newKey, 0, AES_BLOCK_SIZE);
return crv;
}
/* encode the final pad block of aes xcbc, padBuf is modified */
CK_RV
sftk_xcbc_mac_pad(unsigned char *padBuf, unsigned int bufLen, int blockSize,
const unsigned char *k2, const unsigned char *k3)
{
int i;
if (bufLen == blockSize) {
for (i = 0; i < blockSize; i++) {
padBuf[i] ^= k2[i];
}
} else {
padBuf[bufLen++] = 0x80;
for (i = bufLen; i < blockSize; i++) {
padBuf[i] = 0x00;
}
for (i = 0; i < blockSize; i++) {
padBuf[i] ^= k3[i];
}
}
return CKR_OK;
}
/* Map the mechanism to the underlying hash. If the type is not a hash
* or HMAC, return HASH_AlgNULL. This can happen legitimately if
* we are doing AES XCBC */
static HASH_HashType
sftk_map_hmac_to_hash(CK_MECHANISM_TYPE type)
{
switch (type) {
case CKM_SHA_1_HMAC:
case CKM_SHA_1:
return HASH_AlgSHA1;
case CKM_MD5_HMAC:
case CKM_MD5:
return HASH_AlgMD5;
case CKM_MD2_HMAC:
case CKM_MD2:
return HASH_AlgMD2;
case CKM_SHA224_HMAC:
case CKM_SHA224:
return HASH_AlgSHA224;
case CKM_SHA256_HMAC:
case CKM_SHA256:
return HASH_AlgSHA256;
case CKM_SHA384_HMAC:
case CKM_SHA384:
return HASH_AlgSHA384;
case CKM_SHA512_HMAC:
case CKM_SHA512:
return HASH_AlgSHA512;
}
return HASH_AlgNULL;
}
/*
* Generally setup the context based on the mechanism.
* If the mech is HMAC, context->hashObj should be set
* Otherwise it is assumed to be AES XCBC. prf_setup
* checks these assumptions and will return an error
* if they are not met. NOTE: this function does not allocate
* anything, so there is no requirement to free context after
* prf_setup like there is if you call prf_init.
*/
static CK_RV
prf_setup(prfContext *context, CK_MECHANISM_TYPE mech)
{
context->hashType = sftk_map_hmac_to_hash(mech);
context->hashObj = NULL;
context->hmac = NULL;
context->aes = NULL;
if (context->hashType != HASH_AlgNULL) {
context->hashObj = HASH_GetRawHashObject(context->hashType);
if (context->hashObj == NULL) {
return CKR_GENERAL_ERROR;
}
return CKR_OK;
} else if (mech == CKM_AES_XCBC_MAC) {
return CKR_OK;
}
return CKR_MECHANISM_PARAM_INVALID;
}
/* return the underlying prf length for this context. This will
* function once the context is setup */
static CK_RV
prf_length(prfContext *context)
{
if (context->hashObj) {
return context->hashObj->length;
}
return AES_BLOCK_SIZE; /* AES */
}
/* set up the key for the prf. prf_update or prf_final should not be called if
* prf_init has not been called first. Once prf_init returns hmac and
* aes contexts should set and valid.
*/
static CK_RV
prf_init(prfContext *context, const unsigned char *keyValue,
unsigned int keyLen)
{
CK_RV crv;
context->hmac = NULL;
if (context->hashObj) {
context->hmac = HMAC_Create(context->hashObj,
keyValue, keyLen, PR_FALSE);
if (context->hmac == NULL) {
return sftk_MapCryptError(PORT_GetError());
}
HMAC_Begin(context->hmac);
} else {
crv = sftk_aes_xcbc_get_keys(keyValue, keyLen, context->k1,
context->k2, context->k3);
if (crv != CKR_OK)
return crv;
context->nextChar = 0;
context->aes = AES_CreateContext(context->k1, iv_zero, NSS_AES_CBC,
PR_TRUE, sizeof(context->k1), AES_BLOCK_SIZE);
if (context->aes == NULL) {
crv = sftk_MapCryptError(PORT_GetError());
PORT_Memset(context->k1, 0, sizeof(context->k1));
PORT_Memset(context->k2, 0, sizeof(context->k2));
PORT_Memset(context->k3, 0, sizeof(context->k2));
return crv;
}
}
return CKR_OK;
}
/*
* process input to the prf
*/
static CK_RV
prf_update(prfContext *context, const unsigned char *buf, unsigned int len)
{
unsigned int tmpLen;
SECStatus rv;
if (context->hmac) {
HMAC_Update(context->hmac, buf, len);
} else {
/* AES MAC XCBC*/
/* We must keep the last block back so that it can be processed in
* final. This is why we only check that nextChar + len > blocksize,
* rather than checking that nextChar + len >= blocksize */
while (context->nextChar + len > AES_BLOCK_SIZE) {
if (context->nextChar != 0) {
/* first handle fill in any partial blocks in the buffer */
unsigned int left = AES_BLOCK_SIZE - context->nextChar;
/* note: left can be zero */
PORT_Memcpy(context->padBuf + context->nextChar, buf, left);
/* NOTE: AES MAC XCBC xors the data with the previous block
* We don't do that step here because our AES_Encrypt mode
* is CBC, which does the xor automatically */
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), context->padBuf,
sizeof(context->padBuf));
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
context->nextChar = 0;
len -= left;
buf += left;
} else {
/* optimization. if we have complete blocks to write out
* (and will still have leftover blocks for padbuf in the end).
* we can mac directly out of our buffer without first copying
* them to padBuf */
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), buf, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
len -= AES_BLOCK_SIZE;
buf += AES_BLOCK_SIZE;
}
}
PORT_Memcpy(context->padBuf + context->nextChar, buf, len);
context->nextChar += len;
}
return CKR_OK;
}
/*
* free the data associated with the prf. Clear any possible CSPs
* This can safely be called on any context after prf_setup. It can
* also be called an an already freed context.
* A free context can be reused by calling prf_init again without
* the need to call prf_setup.
*/
static void
prf_free(prfContext *context)
{
if (context->hmac) {
HMAC_Destroy(context->hmac, PR_TRUE);
context->hmac = NULL;
}
if (context->aes) {
PORT_Memset(context->k1, 0, sizeof(context->k1));
PORT_Memset(context->k2, 0, sizeof(context->k2));
PORT_Memset(context->k3, 0, sizeof(context->k2));
PORT_Memset(context->padBuf, 0, sizeof(context->padBuf));
PORT_Memset(context->macBuf, 0, sizeof(context->macBuf));
AES_DestroyContext(context->aes, PR_TRUE);
context->aes = NULL;
}
}
/*
* extract the final prf value. On success, this has the side effect of
* also freeing the context data and clearing the keys
*/
static CK_RV
prf_final(prfContext *context, unsigned char *buf, unsigned int len)
{
unsigned int tmpLen;
SECStatus rv;
if (context->hmac) {
unsigned int outLen;
HMAC_Finish(context->hmac, buf, &outLen, len);
if (outLen != len) {
return CKR_GENERAL_ERROR;
}
} else {
/* prf_update had guarrenteed that the last full block is still in
* the padBuf if the input data is a multiple of the blocksize. This
* allows sftk_xcbc_mac_pad to process that pad buf accordingly */
CK_RV crv = sftk_xcbc_mac_pad(context->padBuf, context->nextChar,
AES_BLOCK_SIZE, context->k2, context->k3);
if (crv != CKR_OK) {
return crv;
}
rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen,
sizeof(context->macBuf), context->padBuf, AES_BLOCK_SIZE);
if (rv != SECSuccess) {
return sftk_MapCryptError(PORT_GetError());
}
PORT_Memcpy(buf, context->macBuf, len);
}
prf_free(context);
return CKR_OK;
}
/*
* There are four flavors of ike prf functions here.
* ike_prf is used in both ikeV1 and ikeV2 to generate
* an initial key that all the other keys are generated with.
*
* These functions are called from NSC_DeriveKey with the inKey value
* already looked up, and it expects the CKA_VALUE for outKey to be set.
*
* Depending on usage it returns either:
* 1. prf(Ni|Nr, inKey); (bDataAsKey=TRUE, bRekey=FALSE)
* 2. prf(inKey, Ni|Nr); (bDataAsKkey=FALSE, bRekey=FALSE)
* 3. prf(inKey, newKey | Ni | Nr); (bDataAsKey=FALSE, bRekey=TRUE)
* The resulting output key is always the length of the underlying prf
* (as returned by prf_length()).
* The combination of bDataAsKey=TRUE and bRekey=TRUE is not allowed
*
* Case 1 is used in
* a. ikev2 (rfc5996) inKey is called g^ir, the output is called SKEYSEED
* b. ikev1 (rfc2409) inKey is called g^ir, the output is called SKEYID
* Case 2 is used in ikev1 (rfc2409) inkey is called pre-shared-key, output
* is called SKEYID
* Case 3 is used in ikev2 (rfc5996) rekey case, inKey is SK_d, newKey is
* g^ir (new), the output is called SKEYSEED
*/
CK_RV
sftk_ike_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE_PRF_DERIVE_PARAMS *params, SFTKObject *outKey)
{
SFTKAttribute *newKeyValue = NULL;
SFTKObject *newKeyObj = NULL;
unsigned char outKeyData[HASH_LENGTH_MAX];
unsigned char *newInKey = NULL;
unsigned int newInKeySize;
unsigned int macSize;
CK_RV crv = CKR_OK;
prfContext context;
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
macSize = prf_length(&context);
if ((params->bDataAsKey) && (params->bRekey)) {
return CKR_ARGUMENTS_BAD;
}
if (params->bRekey) {
/* lookup the value of new key from the session and key handle */
SFTKSession *session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
newKeyObj = sftk_ObjectFromHandle(params->hNewKey, session);
sftk_FreeSession(session);
if (newKeyObj == NULL) {
return CKR_KEY_HANDLE_INVALID;
}
newKeyValue = sftk_FindAttribute(newKeyObj, CKA_VALUE);
if (newKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
}
if (params->bDataAsKey) {
/* The key is Ni || Np, so we need to concatenate them together first */
newInKeySize = params->ulNiLen + params->ulNrLen;
newInKey = PORT_Alloc(newInKeySize);
if (newInKey == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
PORT_Memcpy(newInKey, params->pNi, params->ulNiLen);
PORT_Memcpy(newInKey + params->ulNiLen, params->pNr, params->ulNrLen);
crv = prf_init(&context, newInKey, newInKeySize);
if (crv != CKR_OK) {
goto fail;
}
/* key as the data */
crv = prf_update(&context, inKey->attrib.pValue,
inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
} else {
crv = prf_init(&context, inKey->attrib.pValue,
inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (newKeyValue) {
crv = prf_update(&context, newKeyValue->attrib.pValue,
newKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_update(&context, params->pNi, params->ulNiLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pNr, params->ulNrLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_final(&context, outKeyData, macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, macSize);
fail:
if (newInKey) {
PORT_Free(newInKey);
}
if (newKeyValue) {
sftk_FreeAttribute(newKeyValue);
}
if (newKeyObj) {
sftk_FreeObject(newKeyObj);
}
PORT_Memset(outKeyData, 0, macSize);
prf_free(&context);
return crv;
}
/*
* The second flavor of ike prf is ike1_prf.
*
* It is used by ikeV1 to generate the various session keys used in the
* connection. It uses the initial key, an optional previous key, and a one byte
* key number to generate a unique key for each of the various session
* functions (encryption, decryption, mac). These keys expect a key size
* (as they may vary in length based on usage). If no length is provided,
* it will default to the length of the prf.
*
* This function returns either:
* prf(inKey, gxyKey || CKYi || CKYr || key_number)
* or
* prf(inKey, prevkey || gxyKey || CKYi || CKYr || key_number)
* depending on the stats of bHasPrevKey
*
* This is defined in rfc2409. For each of the following keys.
* inKey is SKEYID, gxyKey is g^xy
* for outKey = SKEYID_d, bHasPrevKey = false, key_number = 0
* for outKey = SKEYID_a, prevKey= SKEYID_d, key_number = 1
* for outKey = SKEYID_e, prevKey= SKEYID_a, key_number = 2
*/
CK_RV
sftk_ike1_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE1_PRF_DERIVE_PARAMS *params, SFTKObject *outKey,
unsigned int keySize)
{
SFTKAttribute *gxyKeyValue = NULL;
SFTKObject *gxyKeyObj = NULL;
SFTKAttribute *prevKeyValue = NULL;
SFTKObject *prevKeyObj = NULL;
SFTKSession *session;
unsigned char outKeyData[HASH_LENGTH_MAX];
unsigned int macSize;
CK_RV crv;
prfContext context;
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
macSize = prf_length(&context);
if (keySize > macSize) {
return CKR_KEY_SIZE_RANGE;
}
if (keySize == 0) {
keySize = macSize;
}
/* lookup the two keys from their passed in handles */
session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
gxyKeyObj = sftk_ObjectFromHandle(params->hKeygxy, session);
if (params->bHasPrevKey) {
prevKeyObj = sftk_ObjectFromHandle(params->hPrevKey, session);
}
sftk_FreeSession(session);
if ((gxyKeyObj == NULL) || ((params->bHasPrevKey) &&
(prevKeyObj == NULL))) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
gxyKeyValue = sftk_FindAttribute(gxyKeyObj, CKA_VALUE);
if (gxyKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
if (prevKeyObj) {
prevKeyValue = sftk_FindAttribute(prevKeyObj, CKA_VALUE);
if (prevKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
}
/* outKey = prf(inKey, [prevKey|] gxyKey | CKYi | CKYr | keyNumber) */
crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (prevKeyValue) {
crv = prf_update(&context, prevKeyValue->attrib.pValue,
prevKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
crv = prf_update(&context, gxyKeyValue->attrib.pValue,
gxyKeyValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pCKYi, params->ulCKYiLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, params->pCKYr, params->ulCKYrLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, ¶ms->keyNumber, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, outKeyData, macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
fail:
if (gxyKeyValue) {
sftk_FreeAttribute(gxyKeyValue);
}
if (prevKeyValue) {
sftk_FreeAttribute(prevKeyValue);
}
if (gxyKeyObj) {
sftk_FreeObject(gxyKeyObj);
}
if (prevKeyObj) {
sftk_FreeObject(prevKeyObj);
}
PORT_Memset(outKeyData, 0, macSize);
prf_free(&context);
return crv;
}
/*
* The third flavor of ike prf is ike1_appendix_b.
*
* It is used by ikeV1 to generate longer key material from skeyid_e.
* Unlike ike1_prf, if no length is provided, this function
* will generate a KEY_RANGE_ERROR.
*
* This function returns (from rfc2409 appendix b):
* Ka = K1 | K2 | K3 | K4 |... Kn
* where:
* K1 = prf(K, 0x00)
* K2 = prf(K, K1)
* K3 = prf(K, K2)
* K4 = prf(K, K3)
* .
* Kn = prf(K, K(n-1))
* K = inKey
*/
CK_RV
sftk_ike1_appendix_b_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_MECHANISM_TYPE *mech, SFTKObject *outKey, unsigned int keySize)
{
unsigned char *outKeyData = NULL;
unsigned char *thisKey = NULL;
unsigned char *lastKey = NULL;
unsigned int macSize;
unsigned int outKeySize;
unsigned int genKeySize;
CK_RV crv;
prfContext context;
crv = prf_setup(&context, *mech);
if (crv != CKR_OK) {
return crv;
}
macSize = prf_length(&context);
if (keySize == 0) {
keySize = macSize;
}
if (keySize <= inKey->attrib.ulValueLen) {
return sftk_forceAttribute(outKey, CKA_VALUE,
inKey->attrib.pValue, keySize);
}
outKeySize = PR_ROUNDUP(keySize, macSize);
outKeyData = PORT_Alloc(outKeySize);
if (outKeyData == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/*
* this loop generates on block of the prf, basically
* kn = prf(key, Kn-1)
* Kn is thisKey, Kn-1 is lastKey
* key is inKey
*/
thisKey = outKeyData;
for (genKeySize = 0; genKeySize <= keySize; genKeySize += macSize) {
crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (lastKey == NULL) {
const unsigned char zero = 0;
crv = prf_update(&context, &zero, 1);
} else {
crv = prf_update(&context, lastKey, macSize);
}
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, thisKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
lastKey = thisKey;
thisKey += macSize;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
fail:
if (outKeyData) {
PORT_ZFree(outKeyData, outKeySize);
}
prf_free(&context);
return crv;
}
/*
* The final flavor of ike prf is ike_prf_plus
*
* It is used by ikeV2 to generate the various session keys used in the
* connection. It uses the initial key and a feedback version of the prf
* to generate sufficient bytes to cover all the session keys. The application
* will then use CK_EXTRACT_KEY_FROM_KEY to pull out the various subkeys.
* This function expects a key size to be set by the application to cover
* all the keys. Unlike ike1_prf, if no length is provided, this function
* will generate a KEY_RANGE_ERROR
*
* This function returns (from rfc5996):
* prfplus = T1 | T2 | T3 | T4 |... Tn
* where:
* T1 = prf(K, S | 0x01)
* T2 = prf(K, T1 | S | 0x02)
* T3 = prf(K, T3 | S | 0x03)
* T4 = prf(K, T4 | S | 0x04)
* .
* Tn = prf(K, T(n-1) | n)
* K = inKey, S = seedKey | seedData
*/
CK_RV
sftk_ike_prf_plus(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey,
const CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS *params, SFTKObject *outKey,
unsigned int keySize)
{
SFTKAttribute *seedValue = NULL;
SFTKObject *seedKeyObj = NULL;
unsigned char *outKeyData = NULL;
unsigned int outKeySize;
unsigned char *thisKey;
unsigned char *lastKey = NULL;
unsigned char currentByte = 0;
unsigned int getKeySize;
unsigned int macSize;
CK_RV crv;
prfContext context;
if (keySize == 0) {
return CKR_KEY_SIZE_RANGE;
}
crv = prf_setup(&context, params->prfMechanism);
if (crv != CKR_OK) {
return crv;
}
/* pull in optional seedKey */
if (params->bHasSeedKey) {
SFTKSession *session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
return CKR_SESSION_HANDLE_INVALID;
}
seedKeyObj = sftk_ObjectFromHandle(params->hSeedKey, session);
sftk_FreeSession(session);
if (seedKeyObj == NULL) {
return CKR_KEY_HANDLE_INVALID;
}
seedValue = sftk_FindAttribute(seedKeyObj, CKA_VALUE);
if (seedValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
} else if (params->ulSeedDataLen == 0) {
crv = CKR_ARGUMENTS_BAD;
goto fail;
}
macSize = prf_length(&context);
outKeySize = PR_ROUNDUP(keySize, macSize);
outKeyData = PORT_Alloc(outKeySize);
if (outKeyData == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/*
* this loop generates on block of the prf, basically
* Tn = prf(key, Tn-1 | S | n)
* Tn is thisKey, Tn-2 is lastKey, S is seedKey || seedData,
* key is inKey. currentByte = n-1 on entry.
*/
thisKey = outKeyData;
for (getKeySize = 0; getKeySize < keySize; getKeySize += macSize) {
/* if currentByte is 255, we'll overflow when we increment it below.
* This can only happen if keysize > 255*macSize. In that case
* the application has asked for too much key material, so return
* an error */
if (currentByte == 255) {
crv = CKR_KEY_SIZE_RANGE;
goto fail;
}
crv = prf_init(&context, inKey->attrib.pValue,
inKey->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
if (lastKey) {
crv = prf_update(&context, lastKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
}
/* prf the key first */
if (seedValue) {
crv = prf_update(&context, seedValue->attrib.pValue,
seedValue->attrib.ulValueLen);
if (crv != CKR_OK) {
goto fail;
}
}
/* then prf the data */
if (params->ulSeedDataLen != 0) {
crv = prf_update(&context, params->pSeedData,
params->ulSeedDataLen);
if (crv != CKR_OK) {
goto fail;
}
}
currentByte++;
crv = prf_update(&context, ¤tByte, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, thisKey, macSize);
if (crv != CKR_OK) {
goto fail;
}
lastKey = thisKey;
thisKey += macSize;
}
crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize);
fail:
if (outKeyData) {
PORT_ZFree(outKeyData, outKeySize);
}
if (seedValue) {
sftk_FreeAttribute(seedValue);
}
if (seedKeyObj) {
sftk_FreeObject(seedKeyObj);
}
prf_free(&context);
return crv;
}
/* sftk_aes_xcbc_new_keys:
*
* aes xcbc creates 3 new keys from the input key. The first key will be the
* base key of the underlying cbc. The sign code hooks directly into encrypt
* so we'll have to create a full PKCS #11 key with handle for that key. The
* caller needs to delete the key when it's through setting up the context.
*
* The other two keys will be stored in the sign context until we need them
* at the end.
*/
CK_RV
sftk_aes_xcbc_new_keys(CK_SESSION_HANDLE hSession,
CK_OBJECT_HANDLE hKey, CK_OBJECT_HANDLE_PTR phKey,
unsigned char *k2, unsigned char *k3)
{
SFTKObject *key = NULL;
SFTKSession *session = NULL;
SFTKObject *inKeyObj = NULL;
SFTKAttribute *inKeyValue = NULL;
CK_KEY_TYPE key_type = CKK_AES;
CK_OBJECT_CLASS objclass = CKO_SECRET_KEY;
CK_BBOOL ck_true = CK_TRUE;
CK_RV crv = CKR_OK;
SFTKSlot *slot = sftk_SlotFromSessionHandle(hSession);
unsigned char buf[AES_BLOCK_SIZE];
if (!slot) {
return CKR_SESSION_HANDLE_INVALID;
}
/* get the session */
session = sftk_SessionFromHandle(hSession);
if (session == NULL) {
crv = CKR_SESSION_HANDLE_INVALID;
goto fail;
}
inKeyObj = sftk_ObjectFromHandle(hKey, session);
if (inKeyObj == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
inKeyValue = sftk_FindAttribute(inKeyObj, CKA_VALUE);
if (inKeyValue == NULL) {
crv = CKR_KEY_HANDLE_INVALID;
goto fail;
}
crv = sftk_aes_xcbc_get_keys(inKeyValue->attrib.pValue,
inKeyValue->attrib.ulValueLen, buf, k2, k3);
if (crv != CKR_OK) {
goto fail;
}
/*
* now lets create an object to hang the attributes off of
*/
key = sftk_NewObject(slot); /* fill in the handle later */
if (key == NULL) {
crv = CKR_HOST_MEMORY;
goto fail;
}
/* make sure we don't have any class, key_type, or value fields */
sftk_DeleteAttributeType(key, CKA_CLASS);
sftk_DeleteAttributeType(key, CKA_KEY_TYPE);
sftk_DeleteAttributeType(key, CKA_VALUE);
sftk_DeleteAttributeType(key, CKA_SIGN);
/* Add the class, key_type, and value */
crv = sftk_AddAttributeType(key, CKA_CLASS, &objclass, sizeof(CK_OBJECT_CLASS));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_KEY_TYPE, &key_type, sizeof(CK_KEY_TYPE));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_SIGN, &ck_true, sizeof(CK_BBOOL));
if (crv != CKR_OK) {
goto fail;
}
crv = sftk_AddAttributeType(key, CKA_VALUE, buf, AES_BLOCK_SIZE);
if (crv != CKR_OK) {
goto fail;
}
/*
* finish filling in the key and link it with our global system.
*/
crv = sftk_handleObject(key, session);
if (crv != CKR_OK) {
goto fail;
}
*phKey = key->handle;
fail:
if (session) {
sftk_FreeSession(session);
}
if (inKeyValue) {
sftk_FreeAttribute(inKeyValue);
}
if (inKeyObj) {
sftk_FreeObject(inKeyObj);
}
if (key) {
sftk_FreeObject(key);
}
/* clear our CSPs */
PORT_Memset(buf, 0, sizeof(buf));
if (crv != CKR_OK) {
PORT_Memset(k2, 0, AES_BLOCK_SIZE);
PORT_Memset(k3, 0, AES_BLOCK_SIZE);
}
return crv;
}
/*
* Helper function that tests a single prf test vector
*/
static SECStatus
prf_test(CK_MECHANISM_TYPE mech,
const unsigned char *inKey, unsigned int inKeyLen,
const unsigned char *plainText, unsigned int plainTextLen,
const unsigned char *expectedResult, unsigned int expectedResultLen)
{
PRUint8 ike_computed_mac[HASH_LENGTH_MAX];
prfContext context;
unsigned int macSize;
CK_RV crv;
crv = prf_setup(&context, mech);
if (crv != CKR_OK) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
macSize = prf_length(&context);
crv = prf_init(&context, inKey, inKeyLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, plainText, plainTextLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, ike_computed_mac, macSize);
if (crv != CKR_OK) {
goto fail;
}
if (macSize != expectedResultLen) {
goto fail;
}
if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) {
goto fail;
}
/* only do the alignment if the plaintext is long enough */
if (plainTextLen <= macSize) {
return SECSuccess;
}
prf_free(&context);
/* do it again, but this time tweak with the alignment */
crv = prf_init(&context, inKey, inKeyLen);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, plainText, 1);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, &plainText[1], macSize);
if (crv != CKR_OK) {
goto fail;
}
crv = prf_update(&context, &plainText[1 + macSize], plainTextLen - (macSize + 1));
if (crv != CKR_OK) {
goto fail;
}
crv = prf_final(&context, ike_computed_mac, macSize);
if (crv != CKR_OK) {
goto fail;
}
if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) {
goto fail;
}
prf_free(&context);
return SECSuccess;
fail:
prf_free(&context);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
/*
* FIPS Power up Self Tests for IKE. This is in this function so it
* can access the private prf_ functions here. It's called out of fipstest.c
*/
SECStatus
sftk_fips_IKE_PowerUpSelfTests(void)
{
/* PRF known test vectors */
static const PRUint8 ike_xcbc_known_key[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
static const PRUint8 ike_xcbc_known_plain_text[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
static const PRUint8 ike_xcbc_known_mac[] = {
0xd2, 0xa2, 0x46, 0xfa, 0x34, 0x9b, 0x68, 0xa7,
0x99, 0x98, 0xa4, 0x39, 0x4f, 0xf7, 0xa2, 0x63
};
/* test 2 uses the same key as test 1 */
static const PRUint8 ike_xcbc_known_plain_text_2[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13
};
static const PRUint8 ike_xcbc_known_mac_2[] = {
0x47, 0xf5, 0x1b, 0x45, 0x64, 0x96, 0x62, 0x15,
0xb8, 0x98, 0x5c, 0x63, 0x05, 0x5e, 0xd3, 0x08
};
static const PRUint8 ike_xcbc_known_key_3[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09
};
/* test 3 uses the same plaintest as test 2 */
static const PRUint8 ike_xcbc_known_mac_3[] = {
0x0f, 0xa0, 0x87, 0xaf, 0x7d, 0x86, 0x6e, 0x76,
0x53, 0x43, 0x4e, 0x60, 0x2f, 0xdd, 0xe8, 0x35
};
static const PRUint8 ike_xcbc_known_key_4[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0xed, 0xcb
};
/* test 4 uses the same plaintest as test 2 */
static const PRUint8 ike_xcbc_known_mac_4[] = {
0x8c, 0xd3, 0xc9, 0x3a, 0xe5, 0x98, 0xa9, 0x80,
0x30, 0x06, 0xff, 0xb6, 0x7c, 0x40, 0xe9, 0xe4
};
static const PRUint8 ike_sha1_known_key[] = {
0x59, 0x98, 0x2b, 0x5b, 0xa5, 0x7e, 0x62, 0xc0,
0x46, 0x0d, 0xef, 0xc7, 0x1e, 0x18, 0x64, 0x63
};
static const PRUint8 ike_sha1_known_plain_text[] = {
0x1c, 0x07, 0x32, 0x1a, 0x9a, 0x7e, 0x41, 0xcd,
0x88, 0x0c, 0xa3, 0x7a, 0xdb, 0x10, 0xc7, 0x3b,
0xf0, 0x0e, 0x7a, 0xe3, 0xcf, 0xc6, 0xfd, 0x8b,
0x51, 0xbc, 0xe2, 0xb9, 0x90, 0xe6, 0xf2, 0x01
};
static const PRUint8 ike_sha1_known_mac[] = {
0x0c, 0x2a, 0xf3, 0x42, 0x97, 0x15, 0x62, 0x1d,
0x2a, 0xad, 0xc9, 0x94, 0x5a, 0x90, 0x26, 0xfa,
0xc7, 0x91, 0xe2, 0x4b
};
static const PRUint8 ike_sha256_known_key[] = {
0x9d, 0xa2, 0xd5, 0x8f, 0x57, 0xf0, 0x39, 0xf9,
0x20, 0x4e, 0x0d, 0xd0, 0xef, 0x04, 0xf3, 0x72
};
static const PRUint8 ike_sha256_known_plain_text[] = {
0x33, 0xf1, 0x7a, 0xfc, 0xb6, 0x13, 0x4c, 0xbf,
0x1c, 0xab, 0x59, 0x87, 0x7d, 0x42, 0xdb, 0x35,
0x82, 0x22, 0x6e, 0xff, 0x74, 0xdd, 0x37, 0xeb,
0x8b, 0x75, 0xe6, 0x75, 0x64, 0x5f, 0xc1, 0x69
};
static const PRUint8 ike_sha256_known_mac[] = {
0x80, 0x4b, 0x4a, 0x1e, 0x0e, 0xc5, 0x93, 0xcf,
0xb6, 0xe4, 0x54, 0x52, 0x41, 0x49, 0x39, 0x6d,
0xe2, 0x34, 0xd0, 0xda, 0xe2, 0x9f, 0x34, 0xa8,
0xfd, 0xb5, 0xf9, 0xaf, 0xe7, 0x6e, 0xa6, 0x52
};
static const PRUint8 ike_sha384_known_key[] = {
0xce, 0xc8, 0x9d, 0x84, 0x5a, 0xdd, 0x83, 0xef,
0xce, 0xbd, 0x43, 0xab, 0x71, 0xd1, 0x7d, 0xb9
};
static const PRUint8 ike_sha384_known_plain_text[] = {
0x17, 0x24, 0xdb, 0xd8, 0x93, 0x52, 0x37, 0x64,
0xbf, 0xef, 0x8c, 0x6f, 0xa9, 0x27, 0x85, 0x6f,
0xcc, 0xfb, 0x77, 0xae, 0x25, 0x43, 0x58, 0xcc,
0xe2, 0x9c, 0x27, 0x69, 0xa3, 0x29, 0x15, 0xc1
};
static const PRUint8 ike_sha384_known_mac[] = {
0x6e, 0x45, 0x14, 0x61, 0x0b, 0xf8, 0x2d, 0x0a,
0xb7, 0xbf, 0x02, 0x60, 0x09, 0x6f, 0x61, 0x46,
0xa1, 0x53, 0xc7, 0x12, 0x07, 0x1a, 0xbb, 0x63,
0x3c, 0xed, 0x81, 0x3c, 0x57, 0x21, 0x56, 0xc7,
0x83, 0xe3, 0x68, 0x74, 0xa6, 0x5a, 0x64, 0x69,
0x0c, 0xa7, 0x01, 0xd4, 0x0d, 0x56, 0xea, 0x18
};
static const PRUint8 ike_sha512_known_key[] = {
0xac, 0xad, 0xc6, 0x31, 0x4a, 0x69, 0xcf, 0xcd,
0x4e, 0x4a, 0xd1, 0x77, 0x18, 0xfe, 0xa7, 0xce
};
static const PRUint8 ike_sha512_known_plain_text[] = {
0xb1, 0x5a, 0x9c, 0xfc, 0xe8, 0xc8, 0xd7, 0xea,
0xb8, 0x79, 0xd6, 0x24, 0x30, 0x29, 0xd4, 0x01,
0x88, 0xd3, 0xb7, 0x40, 0x87, 0x5a, 0x6a, 0xc6,
0x2f, 0x56, 0xca, 0xc4, 0x37, 0x7e, 0x2e, 0xdd
};
static const PRUint8 ike_sha512_known_mac[] = {
0xf0, 0x5a, 0xa0, 0x36, 0xdf, 0xce, 0x45, 0xa5,
0x58, 0xd4, 0x04, 0x18, 0xde, 0xa9, 0x80, 0x96,
0xe5, 0x19, 0xbc, 0x78, 0x41, 0xe3, 0xdb, 0x3d,
0xd9, 0x36, 0x58, 0xd1, 0x18, 0xc3, 0xe8, 0x3b,
0x50, 0x2f, 0x39, 0x8e, 0xcb, 0x13, 0x61, 0xec,
0x77, 0xd3, 0x8a, 0x88, 0x55, 0xef, 0xff, 0x40,
0x7f, 0x6f, 0x77, 0x2e, 0x5d, 0x65, 0xb5, 0x8e,
0xb1, 0x13, 0x40, 0x96, 0xe8, 0x47, 0x8d, 0x2b
};
SECStatus rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key, sizeof(ike_xcbc_known_key),
ike_xcbc_known_plain_text, sizeof(ike_xcbc_known_plain_text),
ike_xcbc_known_mac, sizeof(ike_xcbc_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key, sizeof(ike_xcbc_known_key),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_2, sizeof(ike_xcbc_known_mac_2));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key_3, sizeof(ike_xcbc_known_key_3),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_3, sizeof(ike_xcbc_known_mac_3));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_AES_XCBC_MAC,
ike_xcbc_known_key_4, sizeof(ike_xcbc_known_key_4),
ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2),
ike_xcbc_known_mac_4, sizeof(ike_xcbc_known_mac_4));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA_1_HMAC,
ike_sha1_known_key, sizeof(ike_sha1_known_key),
ike_sha1_known_plain_text, sizeof(ike_sha1_known_plain_text),
ike_sha1_known_mac, sizeof(ike_sha1_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA256_HMAC,
ike_sha256_known_key, sizeof(ike_sha256_known_key),
ike_sha256_known_plain_text,
sizeof(ike_sha256_known_plain_text),
ike_sha256_known_mac, sizeof(ike_sha256_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA384_HMAC,
ike_sha384_known_key, sizeof(ike_sha384_known_key),
ike_sha384_known_plain_text,
sizeof(ike_sha384_known_plain_text),
ike_sha384_known_mac, sizeof(ike_sha384_known_mac));
if (rv != SECSuccess)
return rv;
rv = prf_test(CKM_SHA512_HMAC,
ike_sha512_known_key, sizeof(ike_sha512_known_key),
ike_sha512_known_plain_text,
sizeof(ike_sha512_known_plain_text),
ike_sha512_known_mac, sizeof(ike_sha512_known_mac));
return rv;
}
|