1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
|
; This Source Code Form is subject to the terms of the Mozilla Public
; License, v. 2.0. If a copy of the MPL was not distributed with this
; file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifdef __LP64__
.LEVEL 2.0W
#else
; .LEVEL 1.1
; .ALLOW 2.0N
.LEVEL 2.0
#endif
.SPACE $TEXT$,SORT=8
.SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,CODE_ONLY,SORT=24
; ***************************************************************
;
; maxpy_[little/big]
;
; ***************************************************************
; There is no default -- you must specify one or the other.
#define LITTLE_WORDIAN 1
#ifdef LITTLE_WORDIAN
#define EIGHT 8
#define SIXTEEN 16
#define THIRTY_TWO 32
#define UN_EIGHT -8
#define UN_SIXTEEN -16
#define UN_TWENTY_FOUR -24
#endif
#ifdef BIG_WORDIAN
#define EIGHT -8
#define SIXTEEN -16
#define THIRTY_TWO -32
#define UN_EIGHT 8
#define UN_SIXTEEN 16
#define UN_TWENTY_FOUR 24
#endif
; This performs a multiple-precision integer version of "daxpy",
; Using the selected addressing direction. "Little-wordian" means that
; the least significant word of a number is stored at the lowest address.
; "Big-wordian" means that the most significant word is at the lowest
; address. Either way, the incoming address of the vector is that
; of the least significant word. That means that, for little-wordian
; addressing, we move the address upward as we propagate carries
; from the least significant word to the most significant. For
; big-wordian we move the address downward.
; We use the following registers:
;
; r2 return PC, of course
; r26 = arg1 = length
; r25 = arg2 = address of scalar
; r24 = arg3 = multiplicand vector
; r23 = arg4 = result vector
;
; fr9 = scalar loaded once only from r25
; The cycle counts shown in the bodies below are simply the result of a
; scheduling by hand. The actual PCX-U hardware does it differently.
; The intention is that the overall speed is the same.
; The pipeline startup and shutdown code is constructed in the usual way,
; by taking the loop bodies and removing unnecessary instructions.
; We have left the comments describing cycle numbers in the code.
; These are intended for reference when comparing with the main loop,
; and have no particular relationship to actual cycle numbers.
#ifdef LITTLE_WORDIAN
maxpy_little
#else
maxpy_big
#endif
.PROC
.CALLINFO FRAME=120,ENTRY_GR=4
.ENTRY
STW,MA %r3,128(%sp)
STW %r4,-124(%sp)
ADDIB,< -1,%r26,$L0 ; If N = 0, exit immediately.
FLDD 0(%r25),%fr9 ; fr9 = scalar
; First startup
FLDD 0(%r24),%fr24 ; Cycle 1
XMPYU %fr9R,%fr24R,%fr27 ; Cycle 3
XMPYU %fr9R,%fr24L,%fr25 ; Cycle 4
XMPYU %fr9L,%fr24L,%fr26 ; Cycle 5
CMPIB,> 3,%r26,$N_IS_SMALL ; Pick out cases N = 1, 2, or 3
XMPYU %fr9L,%fr24R,%fr24 ; Cycle 6
FLDD EIGHT(%r24),%fr28 ; Cycle 8
XMPYU %fr9L,%fr28R,%fr31 ; Cycle 10
FSTD %fr24,-96(%sp)
XMPYU %fr9R,%fr28L,%fr30 ; Cycle 11
FSTD %fr25,-80(%sp)
LDO SIXTEEN(%r24),%r24 ; Cycle 12
FSTD %fr31,-64(%sp)
XMPYU %fr9R,%fr28R,%fr29 ; Cycle 13
FSTD %fr27,-48(%sp)
; Second startup
XMPYU %fr9L,%fr28L,%fr28 ; Cycle 1
FSTD %fr30,-56(%sp)
FLDD 0(%r24),%fr24
FSTD %fr26,-88(%sp) ; Cycle 2
XMPYU %fr9R,%fr24R,%fr27 ; Cycle 3
FSTD %fr28,-104(%sp)
XMPYU %fr9R,%fr24L,%fr25 ; Cycle 4
LDD -96(%sp),%r3
FSTD %fr29,-72(%sp)
XMPYU %fr9L,%fr24L,%fr26 ; Cycle 5
LDD -64(%sp),%r19
LDD -80(%sp),%r21
XMPYU %fr9L,%fr24R,%fr24 ; Cycle 6
LDD -56(%sp),%r20
ADD %r21,%r3,%r3
ADD,DC %r20,%r19,%r19 ; Cycle 7
LDD -88(%sp),%r4
SHRPD %r3,%r0,32,%r21
LDD -48(%sp),%r1
FLDD EIGHT(%r24),%fr28 ; Cycle 8
LDD -104(%sp),%r31
ADD,DC %r0,%r0,%r20
SHRPD %r19,%r3,32,%r3
LDD -72(%sp),%r29 ; Cycle 9
SHRPD %r20,%r19,32,%r20
ADD %r21,%r1,%r1
XMPYU %fr9L,%fr28R,%fr31 ; Cycle 10
ADD,DC %r3,%r4,%r4
FSTD %fr24,-96(%sp)
XMPYU %fr9R,%fr28L,%fr30 ; Cycle 11
ADD,DC %r0,%r20,%r20
LDD 0(%r23),%r3
FSTD %fr25,-80(%sp)
LDO SIXTEEN(%r24),%r24 ; Cycle 12
FSTD %fr31,-64(%sp)
XMPYU %fr9R,%fr28R,%fr29 ; Cycle 13
ADD %r0,%r0,%r0 ; clear the carry bit
ADDIB,<= -4,%r26,$ENDLOOP ; actually happens in cycle 12
FSTD %fr27,-48(%sp)
; MFCTL %cr16,%r21 ; for timing
; STD %r21,-112(%sp)
; Here is the loop.
$LOOP XMPYU %fr9L,%fr28L,%fr28 ; Cycle 1
ADD,DC %r29,%r4,%r4
FSTD %fr30,-56(%sp)
FLDD 0(%r24),%fr24
LDO SIXTEEN(%r23),%r23 ; Cycle 2
ADD,DC %r0,%r20,%r20
FSTD %fr26,-88(%sp)
XMPYU %fr9R,%fr24R,%fr27 ; Cycle 3
ADD %r3,%r1,%r1
FSTD %fr28,-104(%sp)
LDD UN_EIGHT(%r23),%r21
XMPYU %fr9R,%fr24L,%fr25 ; Cycle 4
ADD,DC %r21,%r4,%r28
FSTD %fr29,-72(%sp)
LDD -96(%sp),%r3
XMPYU %fr9L,%fr24L,%fr26 ; Cycle 5
ADD,DC %r20,%r31,%r22
LDD -64(%sp),%r19
LDD -80(%sp),%r21
XMPYU %fr9L,%fr24R,%fr24 ; Cycle 6
ADD %r21,%r3,%r3
LDD -56(%sp),%r20
STD %r1,UN_SIXTEEN(%r23)
ADD,DC %r20,%r19,%r19 ; Cycle 7
SHRPD %r3,%r0,32,%r21
LDD -88(%sp),%r4
LDD -48(%sp),%r1
ADD,DC %r0,%r0,%r20 ; Cycle 8
SHRPD %r19,%r3,32,%r3
FLDD EIGHT(%r24),%fr28
LDD -104(%sp),%r31
SHRPD %r20,%r19,32,%r20 ; Cycle 9
ADD %r21,%r1,%r1
STD %r28,UN_EIGHT(%r23)
LDD -72(%sp),%r29
XMPYU %fr9L,%fr28R,%fr31 ; Cycle 10
ADD,DC %r3,%r4,%r4
FSTD %fr24,-96(%sp)
XMPYU %fr9R,%fr28L,%fr30 ; Cycle 11
ADD,DC %r0,%r20,%r20
FSTD %fr25,-80(%sp)
LDD 0(%r23),%r3
LDO SIXTEEN(%r24),%r24 ; Cycle 12
FSTD %fr31,-64(%sp)
XMPYU %fr9R,%fr28R,%fr29 ; Cycle 13
ADD %r22,%r1,%r1
ADDIB,> -2,%r26,$LOOP ; actually happens in cycle 12
FSTD %fr27,-48(%sp)
$ENDLOOP
; Shutdown code, first stage.
; MFCTL %cr16,%r21 ; for timing
; STD %r21,UN_SIXTEEN(%r23)
; LDD -112(%sp),%r21
; STD %r21,UN_EIGHT(%r23)
XMPYU %fr9L,%fr28L,%fr28 ; Cycle 1
ADD,DC %r29,%r4,%r4
CMPIB,= 0,%r26,$ONEMORE
FSTD %fr30,-56(%sp)
LDO SIXTEEN(%r23),%r23 ; Cycle 2
ADD,DC %r0,%r20,%r20
FSTD %fr26,-88(%sp)
ADD %r3,%r1,%r1 ; Cycle 3
FSTD %fr28,-104(%sp)
LDD UN_EIGHT(%r23),%r21
ADD,DC %r21,%r4,%r28 ; Cycle 4
FSTD %fr29,-72(%sp)
STD %r28,UN_EIGHT(%r23) ; moved up from cycle 9
LDD -96(%sp),%r3
ADD,DC %r20,%r31,%r22 ; Cycle 5
STD %r1,UN_SIXTEEN(%r23)
$JOIN4
LDD -64(%sp),%r19
LDD -80(%sp),%r21
ADD %r21,%r3,%r3 ; Cycle 6
LDD -56(%sp),%r20
ADD,DC %r20,%r19,%r19 ; Cycle 7
SHRPD %r3,%r0,32,%r21
LDD -88(%sp),%r4
LDD -48(%sp),%r1
ADD,DC %r0,%r0,%r20 ; Cycle 8
SHRPD %r19,%r3,32,%r3
LDD -104(%sp),%r31
SHRPD %r20,%r19,32,%r20 ; Cycle 9
ADD %r21,%r1,%r1
LDD -72(%sp),%r29
ADD,DC %r3,%r4,%r4 ; Cycle 10
ADD,DC %r0,%r20,%r20 ; Cycle 11
LDD 0(%r23),%r3
ADD %r22,%r1,%r1 ; Cycle 13
; Shutdown code, second stage.
ADD,DC %r29,%r4,%r4 ; Cycle 1
LDO SIXTEEN(%r23),%r23 ; Cycle 2
ADD,DC %r0,%r20,%r20
LDD UN_EIGHT(%r23),%r21 ; Cycle 3
ADD %r3,%r1,%r1
ADD,DC %r21,%r4,%r28 ; Cycle 4
ADD,DC %r20,%r31,%r22 ; Cycle 5
STD %r1,UN_SIXTEEN(%r23); Cycle 6
STD %r28,UN_EIGHT(%r23) ; Cycle 9
LDD 0(%r23),%r3 ; Cycle 11
; Shutdown code, third stage.
LDO SIXTEEN(%r23),%r23
ADD %r3,%r22,%r1
$JOIN1 ADD,DC %r0,%r0,%r21
CMPIB,*= 0,%r21,$L0 ; if no overflow, exit
STD %r1,UN_SIXTEEN(%r23)
; Final carry propagation
$FINAL1 LDO EIGHT(%r23),%r23
LDD UN_SIXTEEN(%r23),%r21
ADDI 1,%r21,%r21
CMPIB,*= 0,%r21,$FINAL1 ; Keep looping if there is a carry.
STD %r21,UN_SIXTEEN(%r23)
B $L0
NOP
; Here is the code that handles the difficult cases N=1, N=2, and N=3.
; We do the usual trick -- branch out of the startup code at appropriate
; points, and branch into the shutdown code.
$N_IS_SMALL
CMPIB,= 0,%r26,$N_IS_ONE
FSTD %fr24,-96(%sp) ; Cycle 10
FLDD EIGHT(%r24),%fr28 ; Cycle 8
XMPYU %fr9L,%fr28R,%fr31 ; Cycle 10
XMPYU %fr9R,%fr28L,%fr30 ; Cycle 11
FSTD %fr25,-80(%sp)
FSTD %fr31,-64(%sp) ; Cycle 12
XMPYU %fr9R,%fr28R,%fr29 ; Cycle 13
FSTD %fr27,-48(%sp)
XMPYU %fr9L,%fr28L,%fr28 ; Cycle 1
CMPIB,= 2,%r26,$N_IS_THREE
FSTD %fr30,-56(%sp)
; N = 2
FSTD %fr26,-88(%sp) ; Cycle 2
FSTD %fr28,-104(%sp) ; Cycle 3
LDD -96(%sp),%r3 ; Cycle 4
FSTD %fr29,-72(%sp)
B $JOIN4
ADD %r0,%r0,%r22
$N_IS_THREE
FLDD SIXTEEN(%r24),%fr24
FSTD %fr26,-88(%sp) ; Cycle 2
XMPYU %fr9R,%fr24R,%fr27 ; Cycle 3
FSTD %fr28,-104(%sp)
XMPYU %fr9R,%fr24L,%fr25 ; Cycle 4
LDD -96(%sp),%r3
FSTD %fr29,-72(%sp)
XMPYU %fr9L,%fr24L,%fr26 ; Cycle 5
LDD -64(%sp),%r19
LDD -80(%sp),%r21
B $JOIN3
ADD %r0,%r0,%r22
$N_IS_ONE
FSTD %fr25,-80(%sp)
FSTD %fr27,-48(%sp)
FSTD %fr26,-88(%sp) ; Cycle 2
B $JOIN5
ADD %r0,%r0,%r22
; We came out of the unrolled loop with wrong parity. Do one more
; single cycle. This is quite tricky, because of the way the
; carry chains and SHRPD chains have been chopped up.
$ONEMORE
FLDD 0(%r24),%fr24
LDO SIXTEEN(%r23),%r23 ; Cycle 2
ADD,DC %r0,%r20,%r20
FSTD %fr26,-88(%sp)
XMPYU %fr9R,%fr24R,%fr27 ; Cycle 3
FSTD %fr28,-104(%sp)
LDD UN_EIGHT(%r23),%r21
ADD %r3,%r1,%r1
XMPYU %fr9R,%fr24L,%fr25 ; Cycle 4
ADD,DC %r21,%r4,%r28
STD %r28,UN_EIGHT(%r23) ; moved from cycle 9
LDD -96(%sp),%r3
FSTD %fr29,-72(%sp)
XMPYU %fr9L,%fr24L,%fr26 ; Cycle 5
ADD,DC %r20,%r31,%r22
LDD -64(%sp),%r19
LDD -80(%sp),%r21
STD %r1,UN_SIXTEEN(%r23); Cycle 6
$JOIN3
XMPYU %fr9L,%fr24R,%fr24
LDD -56(%sp),%r20
ADD %r21,%r3,%r3
ADD,DC %r20,%r19,%r19 ; Cycle 7
LDD -88(%sp),%r4
SHRPD %r3,%r0,32,%r21
LDD -48(%sp),%r1
LDD -104(%sp),%r31 ; Cycle 8
ADD,DC %r0,%r0,%r20
SHRPD %r19,%r3,32,%r3
LDD -72(%sp),%r29 ; Cycle 9
SHRPD %r20,%r19,32,%r20
ADD %r21,%r1,%r1
ADD,DC %r3,%r4,%r4 ; Cycle 10
FSTD %fr24,-96(%sp)
ADD,DC %r0,%r20,%r20 ; Cycle 11
LDD 0(%r23),%r3
FSTD %fr25,-80(%sp)
ADD %r22,%r1,%r1 ; Cycle 13
FSTD %fr27,-48(%sp)
; Shutdown code, stage 1-1/2.
ADD,DC %r29,%r4,%r4 ; Cycle 1
LDO SIXTEEN(%r23),%r23 ; Cycle 2
ADD,DC %r0,%r20,%r20
FSTD %fr26,-88(%sp)
LDD UN_EIGHT(%r23),%r21 ; Cycle 3
ADD %r3,%r1,%r1
ADD,DC %r21,%r4,%r28 ; Cycle 4
STD %r28,UN_EIGHT(%r23) ; moved from cycle 9
ADD,DC %r20,%r31,%r22 ; Cycle 5
STD %r1,UN_SIXTEEN(%r23)
$JOIN5
LDD -96(%sp),%r3 ; moved from cycle 4
LDD -80(%sp),%r21
ADD %r21,%r3,%r3 ; Cycle 6
ADD,DC %r0,%r0,%r19 ; Cycle 7
LDD -88(%sp),%r4
SHRPD %r3,%r0,32,%r21
LDD -48(%sp),%r1
SHRPD %r19,%r3,32,%r3 ; Cycle 8
ADD %r21,%r1,%r1 ; Cycle 9
ADD,DC %r3,%r4,%r4 ; Cycle 10
LDD 0(%r23),%r3 ; Cycle 11
ADD %r22,%r1,%r1 ; Cycle 13
; Shutdown code, stage 2-1/2.
ADD,DC %r0,%r4,%r4 ; Cycle 1
LDO SIXTEEN(%r23),%r23 ; Cycle 2
LDD UN_EIGHT(%r23),%r21 ; Cycle 3
ADD %r3,%r1,%r1
STD %r1,UN_SIXTEEN(%r23)
ADD,DC %r21,%r4,%r1
B $JOIN1
LDO EIGHT(%r23),%r23
; exit
$L0
LDW -124(%sp),%r4
BVE (%r2)
.EXIT
LDW,MB -128(%sp),%r3
.PROCEND
; ***************************************************************
;
; add_diag_[little/big]
;
; ***************************************************************
; The arguments are as follows:
; r2 return PC, of course
; r26 = arg1 = length
; r25 = arg2 = vector to square
; r24 = arg3 = result vector
#ifdef LITTLE_WORDIAN
add_diag_little
#else
add_diag_big
#endif
.PROC
.CALLINFO FRAME=120,ENTRY_GR=4
.ENTRY
STW,MA %r3,128(%sp)
STW %r4,-124(%sp)
ADDIB,< -1,%r26,$Z0 ; If N=0, exit immediately.
NOP
; Startup code
FLDD 0(%r25),%fr7 ; Cycle 2 (alternate body)
XMPYU %fr7R,%fr7R,%fr29 ; Cycle 4
XMPYU %fr7L,%fr7R,%fr27 ; Cycle 5
XMPYU %fr7L,%fr7L,%fr30
LDO SIXTEEN(%r25),%r25 ; Cycle 6
FSTD %fr29,-88(%sp)
FSTD %fr27,-72(%sp) ; Cycle 7
CMPIB,= 0,%r26,$DIAG_N_IS_ONE ; Cycle 1 (main body)
FSTD %fr30,-96(%sp)
FLDD UN_EIGHT(%r25),%fr7 ; Cycle 2
LDD -88(%sp),%r22 ; Cycle 3
LDD -72(%sp),%r31 ; Cycle 4
XMPYU %fr7R,%fr7R,%fr28
XMPYU %fr7L,%fr7R,%fr24 ; Cycle 5
XMPYU %fr7L,%fr7L,%fr31
LDD -96(%sp),%r20 ; Cycle 6
FSTD %fr28,-80(%sp)
ADD %r0,%r0,%r0 ; clear the carry bit
ADDIB,<= -2,%r26,$ENDDIAGLOOP ; Cycle 7
FSTD %fr24,-64(%sp)
; Here is the loop. It is unrolled twice, modelled after the "alternate body" and then the "main body".
$DIAGLOOP
SHRPD %r31,%r0,31,%r3 ; Cycle 1 (alternate body)
LDO SIXTEEN(%r25),%r25
LDD 0(%r24),%r1
FSTD %fr31,-104(%sp)
SHRPD %r0,%r31,31,%r4 ; Cycle 2
ADD,DC %r22,%r3,%r3
FLDD UN_SIXTEEN(%r25),%fr7
ADD,DC %r0,%r20,%r20 ; Cycle 3
ADD %r1,%r3,%r3
XMPYU %fr7R,%fr7R,%fr29 ; Cycle 4
LDD -80(%sp),%r21
STD %r3,0(%r24)
XMPYU %fr7L,%fr7R,%fr27 ; Cycle 5
XMPYU %fr7L,%fr7L,%fr30
LDD -64(%sp),%r29
LDD EIGHT(%r24),%r1
ADD,DC %r4,%r20,%r20 ; Cycle 6
LDD -104(%sp),%r19
FSTD %fr29,-88(%sp)
ADD %r20,%r1,%r1 ; Cycle 7
FSTD %fr27,-72(%sp)
SHRPD %r29,%r0,31,%r4 ; Cycle 1 (main body)
LDO THIRTY_TWO(%r24),%r24
LDD UN_SIXTEEN(%r24),%r28
FSTD %fr30,-96(%sp)
SHRPD %r0,%r29,31,%r3 ; Cycle 2
ADD,DC %r21,%r4,%r4
FLDD UN_EIGHT(%r25),%fr7
STD %r1,UN_TWENTY_FOUR(%r24)
ADD,DC %r0,%r19,%r19 ; Cycle 3
ADD %r28,%r4,%r4
XMPYU %fr7R,%fr7R,%fr28 ; Cycle 4
LDD -88(%sp),%r22
STD %r4,UN_SIXTEEN(%r24)
XMPYU %fr7L,%fr7R,%fr24 ; Cycle 5
XMPYU %fr7L,%fr7L,%fr31
LDD -72(%sp),%r31
LDD UN_EIGHT(%r24),%r28
ADD,DC %r3,%r19,%r19 ; Cycle 6
LDD -96(%sp),%r20
FSTD %fr28,-80(%sp)
ADD %r19,%r28,%r28 ; Cycle 7
FSTD %fr24,-64(%sp)
ADDIB,> -2,%r26,$DIAGLOOP ; Cycle 8
STD %r28,UN_EIGHT(%r24)
$ENDDIAGLOOP
ADD,DC %r0,%r22,%r22
CMPIB,= 0,%r26,$ONEMOREDIAG
SHRPD %r31,%r0,31,%r3
; Shutdown code, first stage.
FSTD %fr31,-104(%sp) ; Cycle 1 (alternate body)
LDD 0(%r24),%r28
SHRPD %r0,%r31,31,%r4 ; Cycle 2
ADD %r3,%r22,%r3
ADD,DC %r0,%r20,%r20 ; Cycle 3
LDD -80(%sp),%r21
ADD %r3,%r28,%r3
LDD -64(%sp),%r29 ; Cycle 4
STD %r3,0(%r24)
LDD EIGHT(%r24),%r1 ; Cycle 5
LDO SIXTEEN(%r25),%r25 ; Cycle 6
LDD -104(%sp),%r19
ADD,DC %r4,%r20,%r20
ADD %r20,%r1,%r1 ; Cycle 7
ADD,DC %r0,%r21,%r21 ; Cycle 8
STD %r1,EIGHT(%r24)
; Shutdown code, second stage.
SHRPD %r29,%r0,31,%r4 ; Cycle 1 (main body)
LDO THIRTY_TWO(%r24),%r24
LDD UN_SIXTEEN(%r24),%r1
SHRPD %r0,%r29,31,%r3 ; Cycle 2
ADD %r4,%r21,%r4
ADD,DC %r0,%r19,%r19 ; Cycle 3
ADD %r4,%r1,%r4
STD %r4,UN_SIXTEEN(%r24); Cycle 4
LDD UN_EIGHT(%r24),%r28 ; Cycle 5
ADD,DC %r3,%r19,%r19 ; Cycle 6
ADD %r19,%r28,%r28 ; Cycle 7
ADD,DC %r0,%r0,%r22 ; Cycle 8
CMPIB,*= 0,%r22,$Z0 ; if no overflow, exit
STD %r28,UN_EIGHT(%r24)
; Final carry propagation
$FDIAG2
LDO EIGHT(%r24),%r24
LDD UN_EIGHT(%r24),%r26
ADDI 1,%r26,%r26
CMPIB,*= 0,%r26,$FDIAG2 ; Keep looping if there is a carry.
STD %r26,UN_EIGHT(%r24)
B $Z0
NOP
; Here is the code that handles the difficult case N=1.
; We do the usual trick -- branch out of the startup code at appropriate
; points, and branch into the shutdown code.
$DIAG_N_IS_ONE
LDD -88(%sp),%r22
LDD -72(%sp),%r31
B $JOINDIAG
LDD -96(%sp),%r20
; We came out of the unrolled loop with wrong parity. Do one more
; single cycle. This is the "alternate body". It will, of course,
; give us opposite registers from the other case, so we need
; completely different shutdown code.
$ONEMOREDIAG
FSTD %fr31,-104(%sp) ; Cycle 1 (alternate body)
LDD 0(%r24),%r28
FLDD 0(%r25),%fr7 ; Cycle 2
SHRPD %r0,%r31,31,%r4
ADD %r3,%r22,%r3
ADD,DC %r0,%r20,%r20 ; Cycle 3
LDD -80(%sp),%r21
ADD %r3,%r28,%r3
LDD -64(%sp),%r29 ; Cycle 4
STD %r3,0(%r24)
XMPYU %fr7R,%fr7R,%fr29
LDD EIGHT(%r24),%r1 ; Cycle 5
XMPYU %fr7L,%fr7R,%fr27
XMPYU %fr7L,%fr7L,%fr30
LDD -104(%sp),%r19 ; Cycle 6
FSTD %fr29,-88(%sp)
ADD,DC %r4,%r20,%r20
FSTD %fr27,-72(%sp) ; Cycle 7
ADD %r20,%r1,%r1
ADD,DC %r0,%r21,%r21 ; Cycle 8
STD %r1,EIGHT(%r24)
; Shutdown code, first stage.
SHRPD %r29,%r0,31,%r4 ; Cycle 1 (main body)
LDO THIRTY_TWO(%r24),%r24
FSTD %fr30,-96(%sp)
LDD UN_SIXTEEN(%r24),%r1
SHRPD %r0,%r29,31,%r3 ; Cycle 2
ADD %r4,%r21,%r4
ADD,DC %r0,%r19,%r19 ; Cycle 3
LDD -88(%sp),%r22
ADD %r4,%r1,%r4
LDD -72(%sp),%r31 ; Cycle 4
STD %r4,UN_SIXTEEN(%r24)
LDD UN_EIGHT(%r24),%r28 ; Cycle 5
LDD -96(%sp),%r20 ; Cycle 6
ADD,DC %r3,%r19,%r19
ADD %r19,%r28,%r28 ; Cycle 7
ADD,DC %r0,%r22,%r22 ; Cycle 8
STD %r28,UN_EIGHT(%r24)
; Shutdown code, second stage.
$JOINDIAG
SHRPD %r31,%r0,31,%r3 ; Cycle 1 (alternate body)
LDD 0(%r24),%r28
SHRPD %r0,%r31,31,%r4 ; Cycle 2
ADD %r3,%r22,%r3
ADD,DC %r0,%r20,%r20 ; Cycle 3
ADD %r3,%r28,%r3
STD %r3,0(%r24) ; Cycle 4
LDD EIGHT(%r24),%r1 ; Cycle 5
ADD,DC %r4,%r20,%r20
ADD %r20,%r1,%r1 ; Cycle 7
ADD,DC %r0,%r0,%r21 ; Cycle 8
CMPIB,*= 0,%r21,$Z0 ; if no overflow, exit
STD %r1,EIGHT(%r24)
; Final carry propagation
$FDIAG1
LDO EIGHT(%r24),%r24
LDD EIGHT(%r24),%r26
ADDI 1,%r26,%r26
CMPIB,*= 0,%r26,$FDIAG1 ; Keep looping if there is a carry.
STD %r26,EIGHT(%r24)
$Z0
LDW -124(%sp),%r4
BVE (%r2)
.EXIT
LDW,MB -128(%sp),%r3
.PROCEND
; .ALLOW
.SPACE $TEXT$
.SUBSPA $CODE$
#ifdef LITTLE_WORDIAN
#ifdef __GNUC__
; GNU-as (as of 2.19) does not support LONG_RETURN
.EXPORT maxpy_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
.EXPORT add_diag_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR
#else
.EXPORT maxpy_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,LONG_RETURN
.EXPORT add_diag_little,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,LONG_RETURN
#endif
#else
.EXPORT maxpy_big,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,LONG_RETURN
.EXPORT add_diag_big,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,LONG_RETURN
#endif
.END
; How to use "maxpy_PA20_little" and "maxpy_PA20_big"
;
; The routine "maxpy_PA20_little" or "maxpy_PA20_big"
; performs a 64-bit x any-size multiply, and adds the
; result to an area of memory. That is, it performs
; something like
;
; A B C D
; * Z
; __________
; P Q R S T
;
; and then adds the "PQRST" vector into an area of memory,
; handling all carries.
;
; Digression on nomenclature and endian-ness:
;
; Each of the capital letters in the above represents a 64-bit
; quantity. That is, you could think of the discussion as
; being in terms of radix-16-quintillion arithmetic. The data
; type being manipulated is "unsigned long long int". This
; requires the 64-bit extension of the HP-UX C compiler,
; available at release 10. You need these compiler flags to
; enable these extensions:
;
; -Aa +e +DA2.0 +DS2.0
;
; (The first specifies ANSI C, the second enables the
; extensions, which are beyond ANSI C, and the third and
; fourth tell the compiler to use whatever features of the
; PA2.0 architecture it wishes, in order to made the code more
; efficient. Since the presence of the assembly code will
; make the program unable to run on anything less than PA2.0,
; you might as well gain the performance enhancements in the C
; code as well.)
;
; Questions of "endian-ness" often come up, usually in the
; context of byte ordering in a word. These routines have a
; similar issue, that could be called "wordian-ness".
; Independent of byte ordering (PA is always big-endian), one
; can make two choices when representing extremely large
; numbers as arrays of 64-bit doublewords in memory.
;
; "Little-wordian" layout means that the least significant
; word of a number is stored at the lowest address.
;
; MSW LSW
; | |
; V V
;
; A B C D E
;
; ^ ^ ^
; | | |____ address 0
; | |
; | |_______address 8
; |
; address 32
;
; "Big-wordian" means that the most significant word is at the
; lowest address.
;
; MSW LSW
; | |
; V V
;
; A B C D E
;
; ^ ^ ^
; | | |____ address 32
; | |
; | |_______address 24
; |
; address 0
;
; When you compile the file, you must specify one or the other, with
; a switch "-DLITTLE_WORDIAN" or "-DBIG_WORDIAN".
;
; Incidentally, you assemble this file as part of your
; project with the same C compiler as the rest of the program.
; My "makefile" for a superprecision arithmetic package has
; the following stuff:
;
; # definitions:
; CC = cc -Aa +e -z +DA2.0 +DS2.0 +w1
; CFLAGS = +O3
; LDFLAGS = -L /usr/lib -Wl,-aarchive
;
; # general build rule for ".s" files:
; .s.o:
; $(CC) $(CFLAGS) -c $< -DBIG_WORDIAN
;
; # Now any bind step that calls for pa20.o will assemble pa20.s
;
; End of digression, back to arithmetic:
;
; The way we multiply two huge numbers is, of course, to multiply
; the "ABCD" vector by each of the "WXYZ" doublewords, adding
; the result vectors with increasing offsets, the way we learned
; in school, back before we all used calculators:
;
; A B C D
; * W X Y Z
; __________
; P Q R S T
; E F G H I
; M N O P Q
; + R S T U V
; _______________
; F I N A L S U M
;
; So we call maxpy_PA20_big (in my case; my package is
; big-wordian) repeatedly, giving the W, X, Y, and Z arguments
; in turn as the "scalar", and giving the "ABCD" vector each
; time. We direct it to add its result into an area of memory
; that we have cleared at the start. We skew the exact
; location into that area with each call.
;
; The prototype for the function is
;
; extern void maxpy_PA20_big(
; int length, /* Number of doublewords in the multiplicand vector. */
; const long long int *scalaraddr, /* Address to fetch the scalar. */
; const long long int *multiplicand, /* The multiplicand vector. */
; long long int *result); /* Where to accumulate the result. */
;
; (You should place a copy of this prototype in an include file
; or in your C file.)
;
; Now, IN ALL CASES, the given address for the multiplicand or
; the result is that of the LEAST SIGNIFICANT DOUBLEWORD.
; That word is, of course, the word at which the routine
; starts processing. "maxpy_PA20_little" then increases the
; addresses as it computes. "maxpy_PA20_big" decreases them.
;
; In our example above, "length" would be 4 in each case.
; "multiplicand" would be the "ABCD" vector. Specifically,
; the address of the element "D". "scalaraddr" would be the
; address of "W", "X", "Y", or "Z" on the four calls that we
; would make. (The order doesn't matter, of course.)
; "result" would be the appropriate address in the result
; area. When multiplying by "Z", that would be the least
; significant word. When multiplying by "Y", it would be the
; next higher word (8 bytes higher if little-wordian; 8 bytes
; lower if big-wordian), and so on. The size of the result
; area must be the the sum of the sizes of the multiplicand
; and multiplier vectors, and must be initialized to zero
; before we start.
;
; Whenever the routine adds its partial product into the result
; vector, it follows carry chains as far as they need to go.
;
; Here is the super-precision multiply routine that I use for
; my package. The package is big-wordian. I have taken out
; handling of exponents (it's a floating point package):
;
; static void mul_PA20(
; int size,
; const long long int *arg1,
; const long long int *arg2,
; long long int *result)
; {
; int i;
;
; for (i=0 ; i<2*size ; i++) result[i] = 0ULL;
;
; for (i=0 ; i<size ; i++) {
; maxpy_PA20_big(size, &arg2[i], &arg1[size-1], &result[size+i]);
; }
; }
|