1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <memory>
#include "nss.h"
#include "pk11pub.h"
#include "sechash.h"
#include "secerr.h"
#include "cpputil.h"
#include "nss_scoped_ptrs.h"
#include "testvectors/chachapoly-vectors.h"
#include "gtest/gtest.h"
namespace nss_test {
static const CK_MECHANISM_TYPE kMech = CKM_NSS_CHACHA20_POLY1305;
static const CK_MECHANISM_TYPE kMechXor = CKM_NSS_CHACHA20_CTR;
// Some test data for simple tests.
static const uint8_t kKeyData[32] = {'k'};
static const uint8_t kCtrNonce[16] = {'c', 0, 0, 0, 'n'};
static const uint8_t kData[16] = {'d'};
class Pkcs11ChaCha20Poly1305Test
: public ::testing::TestWithParam<chaChaTestVector> {
public:
void EncryptDecrypt(const ScopedPK11SymKey& key, const bool invalid_iv,
const bool invalid_tag, const uint8_t* data,
size_t data_len, const uint8_t* aad, size_t aad_len,
const uint8_t* iv, size_t iv_len,
const uint8_t* ct = nullptr, size_t ct_len = 0) {
// Prepare AEAD params.
CK_NSS_AEAD_PARAMS aead_params;
aead_params.pNonce = toUcharPtr(iv);
aead_params.ulNonceLen = iv_len;
aead_params.pAAD = toUcharPtr(aad);
aead_params.ulAADLen = aad_len;
aead_params.ulTagLen = 16;
SECItem params = {siBuffer, reinterpret_cast<unsigned char*>(&aead_params),
sizeof(aead_params)};
// Encrypt with bad parameters.
unsigned int encrypted_len = 0;
std::vector<uint8_t> encrypted(data_len + aead_params.ulTagLen);
aead_params.ulTagLen = 158072;
SECStatus rv =
PK11_Encrypt(key.get(), kMech, ¶ms, encrypted.data(),
&encrypted_len, encrypted.size(), data, data_len);
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(0U, encrypted_len);
aead_params.ulTagLen = 16;
// Encrypt.
rv = PK11_Encrypt(key.get(), kMech, ¶ms, encrypted.data(),
&encrypted_len, encrypted.size(), data, data_len);
// Return if encryption failure was expected due to invalid IV.
// Without valid ciphertext, all further tests can be skipped.
if (invalid_iv) {
EXPECT_EQ(rv, SECFailure);
EXPECT_EQ(0U, encrypted_len)
<< "encrypted_len is unmodified after failure";
return;
}
EXPECT_EQ(rv, SECSuccess);
EXPECT_EQ(encrypted.size(), static_cast<size_t>(encrypted_len));
// Check ciphertext and tag.
if (ct) {
ASSERT_EQ(ct_len, encrypted_len);
EXPECT_TRUE(!memcmp(ct, encrypted.data(), encrypted.size()) !=
invalid_tag);
}
// Get the *estimated* plaintext length. This value should
// never be zero as it could lead to a NULL outPtr being
// passed to a subsequent decryption call (for AEAD we
// must authenticate even when the pt is zero-length).
unsigned int decrypt_bytes_needed = 0;
rv = PK11_Decrypt(key.get(), kMech, ¶ms, nullptr, &decrypt_bytes_needed,
0, encrypted.data(), encrypted_len);
EXPECT_EQ(rv, SECSuccess);
EXPECT_GT(decrypt_bytes_needed, data_len);
// Now decrypt it
std::vector<uint8_t> decrypted(decrypt_bytes_needed);
unsigned int decrypted_len = 0;
rv = PK11_Decrypt(key.get(), kMech, ¶ms, decrypted.data(),
&decrypted_len, decrypted.size(), encrypted.data(),
encrypted.size());
EXPECT_EQ(rv, SECSuccess);
// Check the plaintext.
ASSERT_EQ(data_len, decrypted_len);
EXPECT_TRUE(!memcmp(data, decrypted.data(), decrypted_len));
// Decrypt with bogus data.
// Skip if there's no data to modify.
if (encrypted_len > 0) {
decrypted_len = 0;
std::vector<uint8_t> bogus_ciphertext(encrypted);
bogus_ciphertext[0] ^= 0xff;
rv = PK11_Decrypt(key.get(), kMech, ¶ms, decrypted.data(),
&decrypted_len, decrypted.size(),
bogus_ciphertext.data(), encrypted_len);
EXPECT_EQ(rv, SECFailure);
EXPECT_EQ(0U, decrypted_len);
}
// Decrypt with bogus tag.
// Skip if there's no tag to modify.
if (encrypted_len > 0) {
decrypted_len = 0;
std::vector<uint8_t> bogus_tag(encrypted);
bogus_tag[encrypted_len - 1] ^= 0xff;
rv = PK11_Decrypt(key.get(), kMech, ¶ms, decrypted.data(),
&decrypted_len, decrypted.size(), bogus_tag.data(),
encrypted_len);
EXPECT_EQ(rv, SECFailure);
EXPECT_EQ(0U, decrypted_len);
}
// Decrypt with bogus IV.
// iv_len == 0 is invalid and should be caught earlier.
// Still skip, if there's no IV to modify.
if (iv_len != 0) {
decrypted_len = 0;
SECItem bogus_params(params);
CK_NSS_AEAD_PARAMS bogusAeadParams(aead_params);
bogus_params.data = reinterpret_cast<unsigned char*>(&bogusAeadParams);
std::vector<uint8_t> bogusIV(iv, iv + iv_len);
bogusAeadParams.pNonce = toUcharPtr(bogusIV.data());
bogusIV[0] ^= 0xff;
rv = PK11_Decrypt(key.get(), kMech, &bogus_params, decrypted.data(),
&decrypted_len, data_len, encrypted.data(),
encrypted.size());
EXPECT_EQ(rv, SECFailure);
EXPECT_EQ(0U, decrypted_len);
}
// Decrypt with bogus additional data.
// Skip when AAD was empty and can't be modified.
// Alternatively we could generate random aad.
if (aad_len != 0) {
decrypted_len = 0;
SECItem bogus_params(params);
CK_NSS_AEAD_PARAMS bogus_aead_params(aead_params);
bogus_params.data = reinterpret_cast<unsigned char*>(&bogus_aead_params);
std::vector<uint8_t> bogus_aad(aad, aad + aad_len);
bogus_aead_params.pAAD = toUcharPtr(bogus_aad.data());
bogus_aad[0] ^= 0xff;
rv = PK11_Decrypt(key.get(), kMech, &bogus_params, decrypted.data(),
&decrypted_len, data_len, encrypted.data(),
encrypted.size());
EXPECT_EQ(rv, SECFailure);
EXPECT_EQ(0U, decrypted_len);
}
}
void EncryptDecrypt(const chaChaTestVector testvector) {
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
SECItem keyItem = {siBuffer, toUcharPtr(testvector.Key.data()),
static_cast<unsigned int>(testvector.Key.size())};
// Import key.
ScopedPK11SymKey key(PK11_ImportSymKey(slot.get(), kMech, PK11_OriginUnwrap,
CKA_ENCRYPT, &keyItem, nullptr));
EXPECT_TRUE(!!key);
// Check.
EncryptDecrypt(key, testvector.invalidIV, testvector.invalidTag,
testvector.Data.data(), testvector.Data.size(),
testvector.AAD.data(), testvector.AAD.size(),
testvector.IV.data(), testvector.IV.size(),
testvector.CT.data(), testvector.CT.size());
}
protected:
};
TEST_F(Pkcs11ChaCha20Poly1305Test, GenerateEncryptDecrypt) {
// Generate a random key.
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ScopedPK11SymKey key(PK11_KeyGen(slot.get(), kMech, nullptr, 32, nullptr));
EXPECT_TRUE(!!key);
// Generate random data.
std::vector<uint8_t> input(512);
SECStatus rv =
PK11_GenerateRandomOnSlot(slot.get(), input.data(), input.size());
EXPECT_EQ(rv, SECSuccess);
// Generate random AAD.
std::vector<uint8_t> aad(16);
rv = PK11_GenerateRandomOnSlot(slot.get(), aad.data(), aad.size());
EXPECT_EQ(rv, SECSuccess);
// Generate random IV.
std::vector<uint8_t> iv(12);
rv = PK11_GenerateRandomOnSlot(slot.get(), iv.data(), iv.size());
EXPECT_EQ(rv, SECSuccess);
// Check.
EncryptDecrypt(key, false, false, input.data(), input.size(), aad.data(),
aad.size(), iv.data(), iv.size());
}
TEST_F(Pkcs11ChaCha20Poly1305Test, Xor) {
static const uint8_t kExpected[sizeof(kData)] = {
0xd8, 0x15, 0xd3, 0xb3, 0xe9, 0x34, 0x3b, 0x7a,
0x24, 0xf6, 0x5f, 0xd7, 0x95, 0x3d, 0xd3, 0x51};
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
SECItem keyItem = {siBuffer, toUcharPtr(kKeyData),
static_cast<unsigned int>(sizeof(kKeyData))};
ScopedPK11SymKey key(PK11_ImportSymKey(
slot.get(), kMechXor, PK11_OriginUnwrap, CKA_ENCRYPT, &keyItem, nullptr));
EXPECT_TRUE(!!key);
SECItem ctrNonceItem = {siBuffer, toUcharPtr(kCtrNonce),
static_cast<unsigned int>(sizeof(kCtrNonce))};
uint8_t encrypted[sizeof(kData)];
unsigned int encrypted_len = 88; // This should be overwritten.
SECStatus rv =
PK11_Encrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kData, sizeof(kData));
ASSERT_EQ(SECSuccess, rv);
ASSERT_EQ(sizeof(kExpected), static_cast<size_t>(encrypted_len));
EXPECT_EQ(0, memcmp(kExpected, encrypted, sizeof(kExpected)));
// Decrypting has the same effect.
rv = PK11_Decrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kData, sizeof(kData));
ASSERT_EQ(SECSuccess, rv);
ASSERT_EQ(sizeof(kData), static_cast<size_t>(encrypted_len));
EXPECT_EQ(0, memcmp(kExpected, encrypted, sizeof(kExpected)));
// Operating in reverse too.
rv = PK11_Encrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kExpected,
sizeof(kExpected));
ASSERT_EQ(SECSuccess, rv);
ASSERT_EQ(sizeof(kExpected), static_cast<size_t>(encrypted_len));
EXPECT_EQ(0, memcmp(kData, encrypted, sizeof(kData)));
}
// This test just ensures that a key can be generated for use with the XOR
// function. The result is random and therefore cannot be checked.
TEST_F(Pkcs11ChaCha20Poly1305Test, GenerateXor) {
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ScopedPK11SymKey key(PK11_KeyGen(slot.get(), kMech, nullptr, 32, nullptr));
EXPECT_TRUE(!!key);
SECItem ctrNonceItem = {siBuffer, toUcharPtr(kCtrNonce),
static_cast<unsigned int>(sizeof(kCtrNonce))};
uint8_t encrypted[sizeof(kData)];
unsigned int encrypted_len = 88; // This should be overwritten.
SECStatus rv =
PK11_Encrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kData, sizeof(kData));
ASSERT_EQ(SECSuccess, rv);
ASSERT_EQ(sizeof(kData), static_cast<size_t>(encrypted_len));
}
TEST_F(Pkcs11ChaCha20Poly1305Test, XorInvalidParams) {
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
ScopedPK11SymKey key(PK11_KeyGen(slot.get(), kMech, nullptr, 32, nullptr));
EXPECT_TRUE(!!key);
SECItem ctrNonceItem = {siBuffer, toUcharPtr(kCtrNonce),
static_cast<unsigned int>(sizeof(kCtrNonce)) - 1};
uint8_t encrypted[sizeof(kData)];
unsigned int encrypted_len = 88;
SECStatus rv =
PK11_Encrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kData, sizeof(kData));
EXPECT_EQ(SECFailure, rv);
ctrNonceItem.data = nullptr;
rv = PK11_Encrypt(key.get(), kMechXor, &ctrNonceItem, encrypted,
&encrypted_len, sizeof(encrypted), kData, sizeof(kData));
EXPECT_EQ(SECFailure, rv);
EXPECT_EQ(SEC_ERROR_BAD_DATA, PORT_GetError());
}
TEST_P(Pkcs11ChaCha20Poly1305Test, TestVectors) { EncryptDecrypt(GetParam()); }
INSTANTIATE_TEST_CASE_P(NSSTestVector, Pkcs11ChaCha20Poly1305Test,
::testing::ValuesIn(kChaCha20Vectors));
INSTANTIATE_TEST_CASE_P(WycheproofTestVector, Pkcs11ChaCha20Poly1305Test,
::testing::ValuesIn(kChaCha20WycheproofVectors));
} // namespace nss_test
|