1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
/******************************************************************************
*
* Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
* Copyright (C) 2015-2018 Mark Straver <moonchild@palemoon.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer
* unmodified other than the allowable addition of one or more
* copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*
* cpp macro implementation of left-leaning red-black trees.
*
* Usage:
*
* (Optional.)
* #define SIZEOF_PTR ...
* #define SIZEOF_PTR_2POW ...
* #define RB_NO_C99_VARARRAYS
*
* (Optional, see assert(3).)
* #define NDEBUG
*
* (Required.)
* #include <assert.h>
* #include <rb.h>
* ...
*
* All operations are done non-recursively. Parent pointers are not used, and
* color bits are stored in the least significant bit of right-child pointers,
* thus making node linkage as compact as is possible for red-black trees.
*
* Some macros use a comparison function pointer, which is expected to have the
* following prototype:
*
* int (a_cmp *)(a_type *a_node, a_type *a_other);
* ^^^^^^
* or a_key
*
* Interpretation of comparision function return values:
*
* -1 : a_node < a_other
* 0 : a_node == a_other
* 1 : a_node > a_other
*
* In all cases, the a_node or a_key macro argument is the first argument to the
* comparison function, which makes it possible to write comparison functions
* that treat the first argument specially.
*
******************************************************************************/
#ifndef RB_H_
#define RB_H_
#if 0
#include <sys/cdefs.h>
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
#endif
/* Node structure. */
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right_red; \
}
/* Root structure. */
#define rb_tree(a_type) \
struct { \
a_type *rbt_root; \
a_type rbt_nil; \
}
/* Left accessors. */
#define rbp_left_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_left)
#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
(a_node)->a_field.rbn_left = a_left; \
} while (0)
/* Right accessors. */
#define rbp_right_get(a_type, a_field, a_node) \
((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
& ((ssize_t)-2)))
#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
| (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
} while (0)
/* Color accessors. */
#define rbp_red_get(a_type, a_field, a_node) \
((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
& ((size_t)1)))
#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
| ((ssize_t)a_red)); \
} while (0)
#define rbp_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
(a_node)->a_field.rbn_right_red) | ((size_t)1)); \
} while (0)
#define rbp_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
} while (0)
/* Node initializer. */
#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
/* Tree initializer. */
#define rb_new(a_type, a_field, a_tree) do { \
(a_tree)->rbt_root = &(a_tree)->rbt_nil; \
rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
} while (0)
/* Tree operations. */
#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
a_type *rbp_bh_t; \
for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
rbp_bh_t != &(a_tree)->rbt_nil; \
rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
(r_height)++; \
} \
} \
} while (0)
#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
for ((r_node) = (a_root); \
rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
(r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
} \
} while (0)
#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
for ((r_node) = (a_root); \
rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
(r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
} \
} while (0)
#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
if (rbp_right_get(a_type, a_field, (a_node)) \
!= &(a_tree)->rbt_nil) { \
rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
a_field, (a_node)), (r_node)); \
} else { \
a_type *rbp_n_t = (a_tree)->rbt_root; \
assert(rbp_n_t != &(a_tree)->rbt_nil); \
(r_node) = &(a_tree)->rbt_nil; \
while (true) { \
int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
if (rbp_n_cmp < 0) { \
(r_node) = rbp_n_t; \
rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
} else if (rbp_n_cmp > 0) { \
rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
} else { \
break; \
} \
assert(rbp_n_t != &(a_tree)->rbt_nil); \
} \
} \
} while (0)
#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
a_field, (a_node)), (r_node)); \
} else { \
a_type *rbp_p_t = (a_tree)->rbt_root; \
assert(rbp_p_t != &(a_tree)->rbt_nil); \
(r_node) = &(a_tree)->rbt_nil; \
while (true) { \
int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
if (rbp_p_cmp < 0) { \
rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
} else if (rbp_p_cmp > 0) { \
(r_node) = rbp_p_t; \
rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
} else { \
break; \
} \
assert(rbp_p_t != &(a_tree)->rbt_nil); \
} \
} \
} while (0)
#define rb_first(a_type, a_field, a_tree, r_node) do { \
rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_last(a_type, a_field, a_tree, r_node) do { \
rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
int rbp_se_cmp; \
(r_node) = (a_tree)->rbt_root; \
while ((r_node) != &(a_tree)->rbt_nil \
&& (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
if (rbp_se_cmp < 0) { \
(r_node) = rbp_left_get(a_type, a_field, (r_node)); \
} else { \
(r_node) = rbp_right_get(a_type, a_field, (r_node)); \
} \
} \
if ((r_node) == &(a_tree)->rbt_nil) { \
(r_node) = NULL; \
} \
} while (0)
/*
* Find a match if it exists. Otherwise, find the next greater node, if one
* exists.
*/
#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
a_type *rbp_ns_t = (a_tree)->rbt_root; \
(r_node) = NULL; \
while (rbp_ns_t != &(a_tree)->rbt_nil) { \
int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
if (rbp_ns_cmp < 0) { \
(r_node) = rbp_ns_t; \
rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
} else if (rbp_ns_cmp > 0) { \
rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
} else { \
(r_node) = rbp_ns_t; \
break; \
} \
} \
} while (0)
/*
* Find a match if it exists. Otherwise, find the previous lesser node, if one
* exists.
*/
#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
a_type *rbp_ps_t = (a_tree)->rbt_root; \
(r_node) = NULL; \
while (rbp_ps_t != &(a_tree)->rbt_nil) { \
int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
if (rbp_ps_cmp < 0) { \
rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
} else if (rbp_ps_cmp > 0) { \
(r_node) = rbp_ps_t; \
rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
} else { \
(r_node) = rbp_ps_t; \
break; \
} \
} \
} while (0)
#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
(r_node) = rbp_right_get(a_type, a_field, (a_node)); \
rbp_right_set(a_type, a_field, (a_node), \
rbp_left_get(a_type, a_field, (r_node))); \
rbp_left_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
(r_node) = rbp_left_get(a_type, a_field, (a_node)); \
rbp_left_set(a_type, a_field, (a_node), \
rbp_right_get(a_type, a_field, (r_node))); \
rbp_right_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
bool rbp_ll_red; \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
bool rbp_lr_red; \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
rbp_red_set(a_type, a_field, (a_node)); \
} while (0)
#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
a_type *rbp_mrl_t, *rbp_mrl_u; \
rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
rbp_red_set(a_type, a_field, rbp_mrl_t); \
rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
rbp_black_set(a_type, a_field, rbp_mrl_t); \
rbp_red_set(a_type, a_field, (a_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
} else { \
rbp_black_set(a_type, a_field, (a_node)); \
} \
} else { \
rbp_red_set(a_type, a_field, (a_node)); \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
} \
} while (0)
#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
a_type *rbp_mrr_t; \
rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
a_type *rbp_mrr_u, *rbp_mrr_v; \
rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
rbp_color_set(a_type, a_field, rbp_mrr_u, \
rbp_red_get(a_type, a_field, (a_node))); \
rbp_black_set(a_type, a_field, rbp_mrr_v); \
rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} else { \
rbp_color_set(a_type, a_field, rbp_mrr_t, \
rbp_red_get(a_type, a_field, (a_node))); \
rbp_red_set(a_type, a_field, rbp_mrr_u); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} \
rbp_red_set(a_type, a_field, (a_node)); \
} else { \
rbp_red_set(a_type, a_field, rbp_mrr_t); \
rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
rbp_black_set(a_type, a_field, rbp_mrr_t); \
rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
} else { \
rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
} \
} \
} while (0)
#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
a_type rbp_i_s; \
a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
int rbp_i_cmp = 0; \
rbp_i_g = &(a_tree)->rbt_nil; \
rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &rbp_i_s); \
rbp_i_p = &rbp_i_s; \
rbp_i_c = (a_tree)->rbt_root; \
/* Iteratively search down the tree for the insertion point, */\
/* splitting 4-nodes as they are encountered. At the end of each */\
/* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
/* the tree, assuming a sufficiently deep tree. */\
while (rbp_i_c != &(a_tree)->rbt_nil) { \
rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
if (rbp_red_get(a_type, a_field, rbp_i_t) \
&& rbp_red_get(a_type, a_field, rbp_i_u)) { \
/* rbp_i_c is the top of a logical 4-node, so split it. */\
/* This iteration does not move down the tree, due to the */\
/* disruptiveness of node splitting. */\
/* */\
/* Rotate right. */\
rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
/* Pass red links up one level. */\
rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
rbp_black_set(a_type, a_field, rbp_i_u); \
if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
rbp_i_c = rbp_i_t; \
} else { \
/* rbp_i_c was the right child of rbp_i_p, so rotate */\
/* left in order to maintain the left-leaning */\
/* invariant. */\
assert(rbp_right_get(a_type, a_field, rbp_i_p) \
== rbp_i_c); \
rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
} else { \
assert(rbp_right_get(a_type, a_field, rbp_i_g) \
== rbp_i_p); \
rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
} \
rbp_i_p = rbp_i_u; \
rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
if (rbp_i_cmp < 0) { \
rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
} else { \
assert(rbp_i_cmp > 0); \
rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
} \
continue; \
} \
} \
rbp_i_g = rbp_i_p; \
rbp_i_p = rbp_i_c; \
rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
if (rbp_i_cmp < 0) { \
rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
} else { \
assert(rbp_i_cmp > 0); \
rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
} \
} \
/* rbp_i_p now refers to the node under which to insert. */\
rbp_node_new(a_type, a_field, a_tree, (a_node)); \
if (rbp_i_cmp > 0) { \
rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
} else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
} \
} else { \
rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
} \
/* Update the root and make sure that it is black. */\
(a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
} while (0)
#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
a_type rbp_r_s; \
a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
int rbp_r_cmp; \
rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
rbp_black_set(a_type, a_field, &rbp_r_s); \
rbp_r_p = &rbp_r_s; \
rbp_r_c = (a_tree)->rbt_root; \
rbp_r_xp = &(a_tree)->rbt_nil; \
/* Iterate down the tree, but always transform 2-nodes to 3- or */\
/* 4-nodes in order to maintain the invariant that the current */\
/* node is not a 2-node. This allows simple deletion once a leaf */\
/* is reached. Handle the root specially though, since there may */\
/* be no way to convert it from a 2-node to a 3-node. */\
rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
if (rbp_r_cmp < 0) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
&& rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
/* Apply standard transform to prepare for left move. */\
rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
rbp_black_set(a_type, a_field, rbp_r_t); \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
rbp_r_c = rbp_r_t; \
} else { \
/* Move left. */\
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
} \
} else { \
if (rbp_r_cmp == 0) { \
assert((a_node) == rbp_r_c); \
if (rbp_right_get(a_type, a_field, rbp_r_c) \
== &(a_tree)->rbt_nil) { \
/* Delete root node (which is also a leaf node). */\
if (rbp_left_get(a_type, a_field, rbp_r_c) \
!= &(a_tree)->rbt_nil) { \
rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
rbp_right_set(a_type, a_field, rbp_r_t, \
&(a_tree)->rbt_nil); \
} else { \
rbp_r_t = &(a_tree)->rbt_nil; \
} \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
} else { \
/* This is the node we want to delete, but we will */\
/* instead swap it with its successor and delete the */\
/* successor. Record enough information to do the */\
/* swap later. rbp_r_xp is the a_node's parent. */\
rbp_r_xp = rbp_r_p; \
rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
} \
} \
if (rbp_r_cmp == 1) { \
if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
== false) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
/* Standard transform. */\
rbp_move_red_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
} else { \
/* Root-specific transform. */\
rbp_red_set(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
rbp_black_set(a_type, a_field, rbp_r_u); \
rbp_rotate_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
rbp_rotate_left(a_type, a_field, rbp_r_c, \
rbp_r_u); \
rbp_right_set(a_type, a_field, rbp_r_t, \
rbp_r_u); \
} else { \
rbp_red_set(a_type, a_field, rbp_r_t); \
rbp_rotate_left(a_type, a_field, rbp_r_c, \
rbp_r_t); \
} \
} \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
rbp_r_c = rbp_r_t; \
} else { \
/* Move right. */\
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
} \
} \
} \
if (rbp_r_cmp != 0) { \
while (true) { \
assert(rbp_r_p != &(a_tree)->rbt_nil); \
rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
if (rbp_r_cmp < 0) { \
rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
if (rbp_r_t == &(a_tree)->rbt_nil) { \
/* rbp_r_c now refers to the successor node to */\
/* relocate, and rbp_r_xp/a_node refer to the */\
/* context for the relocation. */\
if (rbp_left_get(a_type, a_field, rbp_r_xp) \
== (a_node)) { \
rbp_left_set(a_type, a_field, rbp_r_xp, \
rbp_r_c); \
} else { \
assert(rbp_right_get(a_type, a_field, \
rbp_r_xp) == (a_node)); \
rbp_right_set(a_type, a_field, rbp_r_xp, \
rbp_r_c); \
} \
rbp_left_set(a_type, a_field, rbp_r_c, \
rbp_left_get(a_type, a_field, (a_node))); \
rbp_right_set(a_type, a_field, rbp_r_c, \
rbp_right_get(a_type, a_field, (a_node))); \
rbp_color_set(a_type, a_field, rbp_r_c, \
rbp_red_get(a_type, a_field, (a_node))); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, \
&(a_tree)->rbt_nil); \
} else { \
assert(rbp_right_get(a_type, a_field, rbp_r_p) \
== rbp_r_c); \
rbp_right_set(a_type, a_field, rbp_r_p, \
&(a_tree)->rbt_nil); \
} \
break; \
} \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
&& rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
rbp_move_red_left(a_type, a_field, rbp_r_c, \
rbp_r_t); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
rbp_r_c = rbp_r_t; \
} else { \
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
} \
} else { \
/* Check whether to delete this node (it has to be */\
/* the correct node and a leaf node). */\
if (rbp_r_cmp == 0) { \
assert((a_node) == rbp_r_c); \
if (rbp_right_get(a_type, a_field, rbp_r_c) \
== &(a_tree)->rbt_nil) { \
/* Delete leaf node. */\
if (rbp_left_get(a_type, a_field, rbp_r_c) \
!= &(a_tree)->rbt_nil) { \
rbp_lean_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
rbp_right_set(a_type, a_field, rbp_r_t, \
&(a_tree)->rbt_nil); \
} else { \
rbp_r_t = &(a_tree)->rbt_nil; \
} \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
break; \
} else { \
/* This is the node we want to delete, but we */\
/* will instead swap it with its successor */\
/* and delete the successor. Record enough */\
/* information to do the swap later. */\
/* rbp_r_xp is a_node's parent. */\
rbp_r_xp = rbp_r_p; \
} \
} \
rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
rbp_move_red_right(a_type, a_field, rbp_r_c, \
rbp_r_t); \
if (rbp_left_get(a_type, a_field, rbp_r_p) \
== rbp_r_c) { \
rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
} else { \
rbp_right_set(a_type, a_field, rbp_r_p, \
rbp_r_t); \
} \
rbp_r_c = rbp_r_t; \
} else { \
rbp_r_p = rbp_r_c; \
rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
} \
} \
} \
} \
/* Update root. */\
(a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
} while (0)
/*
* The rb_wrap() macro provides a convenient way to wrap functions around the
* cpp macros. The main benefits of wrapping are that 1) repeated macro
* expansion can cause code bloat, especially for rb_{insert,remove)(), and
* 2) type, linkage, comparison functions, etc. need not be specified at every
* call point.
*/
#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
a_attr void \
a_prefix##new(a_tree_type *tree) { \
rb_new(a_type, a_field, tree); \
} \
a_attr a_type * \
a_prefix##first(a_tree_type *tree) { \
a_type *ret; \
rb_first(a_type, a_field, tree, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##last(a_tree_type *tree) { \
a_type *ret; \
rb_last(a_type, a_field, tree, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##next(a_tree_type *tree, a_type *node) { \
a_type *ret; \
rb_next(a_type, a_field, a_cmp, tree, node, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##prev(a_tree_type *tree, a_type *node) { \
a_type *ret; \
rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##search(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_search(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr a_type * \
a_prefix##psearch(a_tree_type *tree, a_type *key) { \
a_type *ret; \
rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
return (ret); \
} \
a_attr void \
a_prefix##insert(a_tree_type *tree, a_type *node) { \
rb_insert(a_type, a_field, a_cmp, tree, node); \
} \
a_attr void \
a_prefix##remove(a_tree_type *tree, a_type *node) { \
rb_remove(a_type, a_field, a_cmp, tree, node); \
}
/*
* The iterators simulate recursion via an array of pointers that store the
* current path. This is critical to performance, since a series of calls to
* rb_{next,prev}() would require time proportional to (n lg n), whereas this
* implementation only requires time proportional to (n).
*
* Since the iterators cache a path down the tree, any tree modification may
* cause the cached path to become invalid. In order to continue iteration,
* use something like the following sequence:
*
* {
* a_type *node, *tnode;
*
* rb_foreach_begin(a_type, a_field, a_tree, node) {
* ...
* rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
* rb_remove(a_type, a_field, a_cmp, a_tree, node);
* rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
* ...
* } rb_foreach_end(a_type, a_field, a_tree, node)
* }
*
* Note that this idiom is not advised if every iteration modifies the tree,
* since in that case there is no algorithmic complexity improvement over a
* series of rb_{next,prev}() calls, thus making the setup overhead wasted
* effort.
*/
#ifdef RB_NO_C99_VARARRAYS
/*
* Avoid using variable-length arrays, at the cost of using more stack space.
* Size the path arrays such that they are always large enough, even if a
* tree consumes all of memory. Since each node must contain a minimum of
* two pointers, there can never be more nodes than:
*
* 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
*
* Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
* is:
*
* (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
*
* This works out to a maximum depth of 87 and 180 for 32- and 64-bit
* systems, respectively (approximatly 348 and 1440 bytes, respectively).
*/
# define rbp_compute_f_height(a_type, a_field, a_tree)
# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
# define rbp_compute_fr_height(a_type, a_field, a_tree)
# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
#else
# define rbp_compute_f_height(a_type, a_field, a_tree) \
/* Compute the maximum possible tree depth (3X the black height). */\
unsigned rbp_f_height; \
rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
rbp_f_height *= 3;
# define rbp_compute_fr_height(a_type, a_field, a_tree) \
/* Compute the maximum possible tree depth (3X the black height). */\
unsigned rbp_fr_height; \
rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
rbp_fr_height *= 3;
#endif
#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
rbp_compute_f_height(a_type, a_field, a_tree) \
{ \
/* Initialize the path to contain the left spine. */\
a_type *rbp_f_path[rbp_f_height]; \
a_type *rbp_f_node; \
bool rbp_f_synced = false; \
unsigned rbp_f_depth = 0; \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
rbp_f_depth++; \
while ((rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} \
/* While the path is non-empty, iterate. */\
while (rbp_f_depth > 0) { \
(a_var) = rbp_f_path[rbp_f_depth-1];
/* Only use if modifying the tree during iteration. */
#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
/* Re-initialize the path to contain the path to a_node. */\
rbp_f_depth = 0; \
if (a_node != NULL) { \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
rbp_f_depth++; \
rbp_f_node = rbp_f_path[0]; \
while (true) { \
int rbp_f_cmp = (a_cmp)((a_node), \
rbp_f_path[rbp_f_depth-1]); \
if (rbp_f_cmp < 0) { \
rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]); \
} else if (rbp_f_cmp > 0) { \
rbp_f_node = rbp_right_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]); \
} else { \
break; \
} \
assert(rbp_f_node != &(a_tree)->rbt_nil); \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} \
} \
rbp_f_synced = true;
#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
if (rbp_f_synced) { \
rbp_f_synced = false; \
continue; \
} \
/* Find the successor. */\
if ((rbp_f_node = rbp_right_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
/* The successor is the left-most node in the right */\
/* subtree. */\
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
while ((rbp_f_node = rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_f_path[rbp_f_depth] = rbp_f_node; \
rbp_f_depth++; \
} \
} else { \
/* The successor is above the current node. Unwind */\
/* until a left-leaning edge is removed from the */\
/* path, or the path is empty. */\
for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
if (rbp_left_get(a_type, a_field, \
rbp_f_path[rbp_f_depth-1]) \
== rbp_f_path[rbp_f_depth]) { \
break; \
} \
} \
} \
} \
} \
}
#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
rbp_compute_fr_height(a_type, a_field, a_tree) \
{ \
/* Initialize the path to contain the right spine. */\
a_type *rbp_fr_path[rbp_fr_height]; \
a_type *rbp_fr_node; \
bool rbp_fr_synced = false; \
unsigned rbp_fr_depth = 0; \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
rbp_fr_depth++; \
while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} \
/* While the path is non-empty, iterate. */\
while (rbp_fr_depth > 0) { \
(a_var) = rbp_fr_path[rbp_fr_depth-1];
/* Only use if modifying the tree during iteration. */
#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
/* Re-initialize the path to contain the path to a_node. */\
rbp_fr_depth = 0; \
if (a_node != NULL) { \
if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
rbp_fr_depth++; \
rbp_fr_node = rbp_fr_path[0]; \
while (true) { \
int rbp_fr_cmp = (a_cmp)((a_node), \
rbp_fr_path[rbp_fr_depth-1]); \
if (rbp_fr_cmp < 0) { \
rbp_fr_node = rbp_left_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1]); \
} else if (rbp_fr_cmp > 0) { \
rbp_fr_node = rbp_right_get(a_type, a_field,\
rbp_fr_path[rbp_fr_depth-1]); \
} else { \
break; \
} \
assert(rbp_fr_node != &(a_tree)->rbt_nil); \
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} \
} \
rbp_fr_synced = true;
#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
if (rbp_fr_synced) { \
rbp_fr_synced = false; \
continue; \
} \
if (rbp_fr_depth == 0) { \
/* rb_foreach_reverse_sync() was called with a NULL */\
/* a_node. */\
break; \
} \
/* Find the predecessor. */\
if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
/* The predecessor is the right-most node in the left */\
/* subtree. */\
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
rbp_fr_depth++; \
} \
} else { \
/* The predecessor is above the current node. Unwind */\
/* until a right-leaning edge is removed from the */\
/* path, or the path is empty. */\
for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
if (rbp_right_get(a_type, a_field, \
rbp_fr_path[rbp_fr_depth-1]) \
== rbp_fr_path[rbp_fr_depth]) { \
break; \
} \
} \
} \
} \
} \
}
#endif /* RB_H_ */
|