1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
|
/* -*- c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* ====================================================================
* Copyright (c) 1999-2010 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*
*/
/**
* @file fsg_lextree.c
* @brief The collection of all the lextrees for the entire FSM.
* @author M K Ravishankar <rkm@cs.cmu.edu>
* @author Bhiksha Raj <bhiksha@cs.cmu.edu>
*/
/* System headers. */
#include <stdio.h>
#include <string.h>
#include <assert.h>
/* SphinxBase headers. */
#include <sphinxbase/ckd_alloc.h>
#include <sphinxbase/err.h>
/* Local headers. */
#include "fsg_lextree.h"
#define __FSG_DBG__ 0
/* A linklist structure that is actually used to build local lextrees at grammar nodes */
typedef struct fsg_glist_linklist_t {
int32 ci, rc;
glist_t glist;
struct fsg_glist_linklist_t *next;
} fsg_glist_linklist_t;
/**
* Build the phone lextree for all transitions out of state from_state.
* Return the root node of this tree.
* Also, return a linear linked list of all allocated fsg_pnode_t nodes in
* *alloc_head (for memory management purposes).
*/
static fsg_pnode_t *fsg_psubtree_init(fsg_lextree_t *tree,
fsg_model_t *fsg,
int32 from_state,
fsg_pnode_t **alloc_head);
/**
* Free the given lextree. alloc_head: head of linear list of allocated
* nodes updated by fsg_psubtree_init().
*/
static void fsg_psubtree_free(fsg_pnode_t *alloc_head);
/**
* Dump the list of nodes in the given lextree to the given file. alloc_head:
* head of linear list of allocated nodes updated by fsg_psubtree_init().
*/
static void fsg_psubtree_dump(fsg_lextree_t *tree, fsg_pnode_t *root, FILE *fp);
/**
* Compute the left and right context CIphone sets for each state.
*/
static void
fsg_lextree_lc_rc(fsg_lextree_t *lextree)
{
int32 s, i, j;
int32 n_ci;
fsg_model_t *fsg;
int32 silcipid;
int32 len;
silcipid = bin_mdef_silphone(lextree->mdef);
assert(silcipid >= 0);
n_ci = bin_mdef_n_ciphone(lextree->mdef);
fsg = lextree->fsg;
/*
* lextree->lc[s] = set of left context CIphones for state s. Similarly, rc[s]
* for right context CIphones.
*/
lextree->lc = ckd_calloc_2d(fsg->n_state, n_ci + 1, sizeof(**lextree->lc));
lextree->rc = ckd_calloc_2d(fsg->n_state, n_ci + 1, sizeof(**lextree->rc));
E_INFO("Allocated %d bytes (%d KiB) for left and right context phones\n",
fsg->n_state * (n_ci + 1) * 2,
fsg->n_state * (n_ci + 1) * 2 / 1024);
for (s = 0; s < fsg->n_state; s++) {
fsg_arciter_t *itor;
for (itor = fsg_model_arcs(fsg, s); itor; itor = fsg_arciter_next(itor)) {
fsg_link_t *l = fsg_arciter_get(itor);
int32 dictwid; /**< Dictionary (not FSG) word ID!! */
if (fsg_link_wid(l) >= 0) {
dictwid = dict_wordid(lextree->dict,
fsg_model_word_str(lextree->fsg, l->wid));
/*
* Add the first CIphone of l->wid to the rclist of state s, and
* the last CIphone to lclist of state d.
* (Filler phones are a pain to deal with. There is no direct
* marking of a filler phone; but only filler words are supposed to
* use such phones, so we use that fact. HACK!! FRAGILE!!)
*
* UPD: tests carsh here if .fsg model used with wrong hmm and
* dictionary
*/
if (fsg_model_is_filler(fsg, fsg_link_wid(l))) {
/* Filler phone; use silence phone as context */
lextree->rc[fsg_link_from_state(l)][silcipid] = 1;
lextree->lc[fsg_link_to_state(l)][silcipid] = 1;
}
else {
len = dict_pronlen(lextree->dict, dictwid);
lextree->rc[fsg_link_from_state(l)][dict_pron(lextree->dict, dictwid, 0)] = 1;
lextree->lc[fsg_link_to_state(l)][dict_pron(lextree->dict, dictwid, len - 1)] = 1;
}
}
}
}
for (s = 0; s < fsg->n_state; s++) {
/*
* Add SIL phone to the lclist and rclist of each state. Strictly
* speaking, only needed at start and final states, respectively, but
* all states considered since the user may change the start and final
* states. In any case, most applications would have a silence self
* loop at each state, hence these would be needed anyway.
*/
lextree->lc[s][silcipid] = 1;
lextree->rc[s][silcipid] = 1;
}
/*
* Propagate lc and rc lists past null transitions. (Since FSG contains
* null transitions closure, no need to worry about a chain of successive
* null transitions. Right??)
*
* This can't be joined with the previous loop because we first calculate
* contexts and only then we can propagate them.
*/
for (s = 0; s < fsg->n_state; s++) {
fsg_arciter_t *itor;
for (itor = fsg_model_arcs(fsg, s); itor; itor = fsg_arciter_next(itor)) {
fsg_link_t *l = fsg_arciter_get(itor);
if (fsg_link_wid(l) < 0) {
/*
* lclist(d) |= lclist(s), because all the words ending up at s, can
* now also end at d, becoming the left context for words leaving d.
*/
for (i = 0; i < n_ci; i++)
lextree->lc[fsg_link_to_state(l)][i] |= lextree->lc[fsg_link_from_state(l)][i];
/*
* Similarly, rclist(s) |= rclist(d), because all the words leaving d
* can equivalently leave s, becoming the right context for words
* ending up at s.
*/
for (i = 0; i < n_ci; i++)
lextree->rc[fsg_link_from_state(l)][i] |= lextree->rc[fsg_link_to_state(l)][i];
}
}
}
/* Convert the bit-vector representation into a list */
for (s = 0; s < fsg->n_state; s++) {
j = 0;
for (i = 0; i < n_ci; i++) {
if (lextree->lc[s][i]) {
lextree->lc[s][j] = i;
j++;
}
}
lextree->lc[s][j] = -1; /* Terminate the list */
j = 0;
for (i = 0; i < n_ci; i++) {
if (lextree->rc[s][i]) {
lextree->rc[s][j] = i;
j++;
}
}
lextree->rc[s][j] = -1; /* Terminate the list */
}
}
/*
* For now, allocate the entire lextree statically.
*/
fsg_lextree_t *
fsg_lextree_init(fsg_model_t * fsg, dict_t *dict, dict2pid_t *d2p,
bin_mdef_t *mdef, hmm_context_t *ctx,
int32 wip, int32 pip)
{
int32 s, n_leaves;
fsg_lextree_t *lextree;
fsg_pnode_t *pn;
lextree = ckd_calloc(1, sizeof(fsg_lextree_t));
lextree->fsg = fsg;
lextree->root = ckd_calloc(fsg_model_n_state(fsg),
sizeof(fsg_pnode_t *));
lextree->alloc_head = ckd_calloc(fsg_model_n_state(fsg),
sizeof(fsg_pnode_t *));
lextree->ctx = ctx;
lextree->dict = dict;
lextree->d2p = d2p;
lextree->mdef = mdef;
lextree->wip = wip;
lextree->pip = pip;
/* Compute lc and rc for fsg. */
fsg_lextree_lc_rc(lextree);
/* Create lextree for each state, i.e. an HMM network that
* represents words for all arcs exiting that state. Note that
* for a dense grammar such as an N-gram model, this will
* rapidly exhaust all available memory. */
lextree->n_pnode = 0;
n_leaves = 0;
for (s = 0; s < fsg_model_n_state(fsg); s++) {
lextree->root[s] =
fsg_psubtree_init(lextree, fsg, s, &(lextree->alloc_head[s]));
for (pn = lextree->alloc_head[s]; pn; pn = pn->alloc_next) {
lextree->n_pnode++;
if (pn->leaf)
++n_leaves;
}
}
E_INFO("%d HMM nodes in lextree (%d leaves)\n",
lextree->n_pnode, n_leaves);
E_INFO("Allocated %d bytes (%d KiB) for all lextree nodes\n",
lextree->n_pnode * sizeof(fsg_pnode_t),
lextree->n_pnode * sizeof(fsg_pnode_t) / 1024);
E_INFO("Allocated %d bytes (%d KiB) for lextree leafnodes\n",
n_leaves * sizeof(fsg_pnode_t),
n_leaves * sizeof(fsg_pnode_t) / 1024);
#if __FSG_DBG__
fsg_lextree_dump(lextree, stdout);
#endif
return lextree;
}
void
fsg_lextree_dump(fsg_lextree_t * lextree, FILE * fp)
{
int32 s;
for (s = 0; s < fsg_model_n_state(lextree->fsg); s++) {
fprintf(fp, "State %5d root %p\n", s, lextree->root[s]);
fsg_psubtree_dump(lextree, lextree->root[s], fp);
}
fflush(fp);
}
void
fsg_lextree_free(fsg_lextree_t * lextree)
{
int32 s;
if (lextree == NULL)
return;
if (lextree->fsg)
for (s = 0; s < fsg_model_n_state(lextree->fsg); s++)
fsg_psubtree_free(lextree->alloc_head[s]);
ckd_free_2d(lextree->lc);
ckd_free_2d(lextree->rc);
ckd_free(lextree->root);
ckd_free(lextree->alloc_head);
ckd_free(lextree);
}
/******************************
* psubtree stuff starts here *
******************************/
void fsg_glist_linklist_free(fsg_glist_linklist_t *glist)
{
if (glist) {
fsg_glist_linklist_t *nxtglist;
if (glist->glist)
glist_free(glist->glist);
nxtglist = glist->next;
while (nxtglist) {
ckd_free(glist);
glist = nxtglist;
if (glist->glist)
glist_free(glist->glist);
nxtglist = glist->next;
}
ckd_free(glist);
}
return;
}
void
fsg_pnode_add_all_ctxt(fsg_pnode_ctxt_t * ctxt)
{
int32 i;
for (i = 0; i < FSG_PNODE_CTXT_BVSZ; i++)
ctxt->bv[i] = 0xffffffff;
}
uint32 fsg_pnode_ctxt_sub_generic(fsg_pnode_ctxt_t *src, fsg_pnode_ctxt_t *sub)
{
int32 i;
uint32 res = 0;
for (i = 0; i < FSG_PNODE_CTXT_BVSZ; i++)
res |= (src->bv[i] = ~(sub->bv[i]) & src->bv[i]);
return res;
}
/*
* fsg_pnode_ctxt_sub(fsg_pnode_ctxt_t * src, fsg_pnode_ctxt_t * sub)
* This has been moved into a macro in fsg_psubtree.h
* because it is called so frequently!
*/
/*
* Add the word emitted by the given transition (fsglink) to the given lextree
* (rooted at root), and return the new lextree root. (There may actually be
* several root nodes, maintained in a linked list via fsg_pnode_t.sibling.
* "root" is the head of this list.)
* lclist, rclist: sets of left and right context phones for this link.
* alloc_head: head of a linear list of all allocated pnodes for the parent
* FSG state, kept elsewhere and updated by this routine.
*/
static fsg_pnode_t *
psubtree_add_trans(fsg_lextree_t *lextree,
fsg_pnode_t * root,
fsg_glist_linklist_t **curglist,
fsg_link_t * fsglink,
int16 *lclist, int16 *rclist,
fsg_pnode_t ** alloc_head)
{
int32 silcipid; /* Silence CI phone ID */
int32 pronlen; /* Pronunciation length */
int32 wid; /* FSG (not dictionary!!) word ID */
int32 dictwid; /* Dictionary (not FSG!!) word ID */
int32 ssid; /* Senone Sequence ID */
int32 tmatid;
gnode_t *gn;
fsg_pnode_t *pnode, *pred, *head;
int32 n_ci, p, lc, rc;
glist_t lc_pnodelist; /* Temp pnodes list for different left contexts */
glist_t rc_pnodelist; /* Temp pnodes list for different right contexts */
int32 i, j;
int n_lc_alloc = 0, n_int_alloc = 0, n_rc_alloc = 0;
silcipid = bin_mdef_silphone(lextree->mdef);
n_ci = bin_mdef_n_ciphone(lextree->mdef);
wid = fsg_link_wid(fsglink);
assert(wid >= 0); /* Cannot be a null transition */
dictwid = dict_wordid(lextree->dict,
fsg_model_word_str(lextree->fsg, wid));
pronlen = dict_pronlen(lextree->dict, dictwid);
assert(pronlen >= 1);
assert(lclist[0] >= 0); /* At least one phonetic context provided */
assert(rclist[0] >= 0);
head = *alloc_head;
pred = NULL;
if (pronlen == 1) { /* Single-phone word */
int ci = dict_first_phone(lextree->dict, dictwid);
/* Only non-filler words are mpx */
if (!dict_filler_word(lextree->dict, dictwid)) {
/*
* Left diphone ID for single-phone words already assumes SIL is right
* context; only left contexts need to be handled.
*/
lc_pnodelist = NULL;
for (i = 0; lclist[i] >= 0; i++) {
lc = lclist[i];
ssid = dict2pid_lrdiph_rc(lextree->d2p, ci, lc, silcipid);
tmatid = bin_mdef_pid2tmatid(lextree->mdef, dict_first_phone(lextree->dict, dictwid));
/* Check if this ssid already allocated for some other context */
for (gn = lc_pnodelist; gn; gn = gnode_next(gn)) {
pnode = (fsg_pnode_t *) gnode_ptr(gn);
if (hmm_nonmpx_ssid(&pnode->hmm) == ssid) {
/* already allocated; share it for this context phone */
fsg_pnode_add_ctxt(pnode, lc);
break;
}
}
if (!gn) { /* ssid not already allocated */
pnode =
(fsg_pnode_t *) ckd_calloc(1, sizeof(fsg_pnode_t));
pnode->ctx = lextree->ctx;
pnode->next.fsglink = fsglink;
pnode->logs2prob =
(fsg_link_logs2prob(fsglink) >> SENSCR_SHIFT)
+ lextree->wip + lextree->pip;
pnode->ci_ext = dict_first_phone(lextree->dict, dictwid);
pnode->ppos = 0;
pnode->leaf = TRUE;
pnode->sibling = root; /* All root nodes linked together */
fsg_pnode_add_ctxt(pnode, lc); /* Initially zeroed by calloc above */
pnode->alloc_next = head;
head = pnode;
root = pnode;
++n_lc_alloc;
hmm_init(lextree->ctx, &pnode->hmm, FALSE, ssid, tmatid);
lc_pnodelist =
glist_add_ptr(lc_pnodelist, (void *) pnode);
}
}
glist_free(lc_pnodelist);
}
else { /* Filler word; no context modelled */
ssid = bin_mdef_pid2ssid(lextree->mdef, ci); /* probably the same... */
tmatid = bin_mdef_pid2tmatid(lextree->mdef, ci);
pnode = (fsg_pnode_t *) ckd_calloc(1, sizeof(fsg_pnode_t));
pnode->ctx = lextree->ctx;
pnode->next.fsglink = fsglink;
pnode->logs2prob = (fsg_link_logs2prob(fsglink) >> SENSCR_SHIFT)
+ lextree->wip + lextree->pip;
pnode->ci_ext = silcipid; /* Presents SIL as context to neighbors */
pnode->ppos = 0;
pnode->leaf = TRUE;
pnode->sibling = root;
fsg_pnode_add_all_ctxt(&(pnode->ctxt));
pnode->alloc_next = head;
head = pnode;
root = pnode;
++n_int_alloc;
hmm_init(lextree->ctx, &pnode->hmm, FALSE, ssid, tmatid);
}
}
else { /* Multi-phone word */
fsg_pnode_t **ssid_pnode_map; /* Temp array of ssid->pnode mapping */
ssid_pnode_map =
(fsg_pnode_t **) ckd_calloc(n_ci, sizeof(fsg_pnode_t *));
lc_pnodelist = NULL;
rc_pnodelist = NULL;
for (p = 0; p < pronlen; p++) {
int ci = dict_pron(lextree->dict, dictwid, p);
if (p == 0) { /* Root phone, handle required left contexts */
/* Find if we already have an lc_pnodelist for the first phone of this word */
fsg_glist_linklist_t *glist;
rc = dict_pron(lextree->dict, dictwid, 1);
for (glist = *curglist;
glist && glist->glist;
glist = glist->next) {
if (glist->ci == ci && glist->rc == rc)
break;
}
if (glist && glist->glist) {
assert(glist->ci == ci && glist->rc == rc);
/* We've found a valid glist. Hook to it and move to next phoneme */
E_DEBUG(2,("Found match for (%d,%d)\n", ci, rc));
lc_pnodelist = glist->glist;
/* Set the predecessor node for the future tree first */
pred = (fsg_pnode_t *) gnode_ptr(lc_pnodelist);
continue;
}
else {
/* Two cases that can bring us here
* a. glist == NULL, i.e. end of current list. Create new entry.
* b. glist->glist == NULL, i.e. first entry into list.
*/
if (glist == NULL) { /* Case a; reduce it to case b by allocing glist */
glist = (fsg_glist_linklist_t*) ckd_calloc(1, sizeof(fsg_glist_linklist_t));
glist->next = *curglist;
*curglist = glist;
}
glist->ci = ci;
glist->rc = rc;
lc_pnodelist = glist->glist = NULL; /* Gets created below */
}
for (i = 0; lclist[i] >= 0; i++) {
lc = lclist[i];
ssid = dict2pid_ldiph_lc(lextree->d2p, ci, rc, lc);
tmatid = bin_mdef_pid2tmatid(lextree->mdef, dict_first_phone(lextree->dict, dictwid));
/* Compression is not done by d2p, so we do it
* here. This might be slow, but it might not
* be... we'll see. */
pnode = ssid_pnode_map[0];
for (j = 0; j < n_ci && ssid_pnode_map[j] != NULL; ++j) {
pnode = ssid_pnode_map[j];
if (hmm_nonmpx_ssid(&pnode->hmm) == ssid)
break;
}
assert(j < n_ci);
if (!pnode) { /* Allocate pnode for this new ssid */
pnode =
(fsg_pnode_t *) ckd_calloc(1,
sizeof
(fsg_pnode_t));
pnode->ctx = lextree->ctx;
/* This bit is tricky! For now we'll put the prob in the final link only */
/* pnode->logs2prob = (fsg_link_logs2prob(fsglink) >> SENSCR_SHIFT)
+ lextree->wip + lextree->pip; */
pnode->logs2prob = lextree->wip + lextree->pip;
pnode->ci_ext = dict_first_phone(lextree->dict, dictwid);
pnode->ppos = 0;
pnode->leaf = FALSE;
pnode->sibling = root; /* All root nodes linked together */
pnode->alloc_next = head;
head = pnode;
root = pnode;
++n_lc_alloc;
hmm_init(lextree->ctx, &pnode->hmm, FALSE, ssid, tmatid);
lc_pnodelist =
glist_add_ptr(lc_pnodelist, (void *) pnode);
ssid_pnode_map[j] = pnode;
}
fsg_pnode_add_ctxt(pnode, lc);
}
/* Put the lc_pnodelist back into glist */
glist->glist = lc_pnodelist;
/* The predecessor node for the future tree is the root */
pred = root;
}
else if (p != pronlen - 1) { /* Word internal phone */
fsg_pnode_t *pnodeyoungest;
ssid = dict2pid_internal(lextree->d2p, dictwid, p);
tmatid = bin_mdef_pid2tmatid(lextree->mdef, dict_pron (lextree->dict, dictwid, p));
/* First check if we already have this ssid in our tree */
pnode = pred->next.succ;
pnodeyoungest = pnode; /* The youngest sibling */
while (pnode && (hmm_nonmpx_ssid(&pnode->hmm) != ssid || pnode->leaf)) {
pnode = pnode->sibling;
}
if (pnode && (hmm_nonmpx_ssid(&pnode->hmm) == ssid && !pnode->leaf)) {
/* Found the ssid; go to next phoneme */
E_DEBUG(2,("Found match for %d\n", ci));
pred = pnode;
continue;
}
/* pnode not found, allocate it */
pnode = (fsg_pnode_t *) ckd_calloc(1, sizeof(fsg_pnode_t));
pnode->ctx = lextree->ctx;
pnode->logs2prob = lextree->pip;
pnode->ci_ext = dict_pron(lextree->dict, dictwid, p);
pnode->ppos = p;
pnode->leaf = FALSE;
pnode->sibling = pnodeyoungest; /* May be NULL */
if (p == 1) { /* Predecessor = set of root nodes for left ctxts */
for (gn = lc_pnodelist; gn; gn = gnode_next(gn)) {
pred = (fsg_pnode_t *) gnode_ptr(gn);
pred->next.succ = pnode;
}
}
else { /* Predecessor = word internal node */
pred->next.succ = pnode;
}
pnode->alloc_next = head;
head = pnode;
++n_int_alloc;
hmm_init(lextree->ctx, &pnode->hmm, FALSE, ssid, tmatid);
pred = pnode;
}
else { /* Leaf phone, handle required right contexts */
/* Note, leaf phones are not part of the tree */
xwdssid_t *rssid;
memset((void *) ssid_pnode_map, 0,
n_ci * sizeof(fsg_pnode_t *));
lc = dict_pron(lextree->dict, dictwid, p-1);
rssid = dict2pid_rssid(lextree->d2p, ci, lc);
tmatid = bin_mdef_pid2tmatid(lextree->mdef, dict_pron (lextree->dict, dictwid, p));
for (i = 0; rclist[i] >= 0; i++) {
rc = rclist[i];
j = rssid->cimap[rc];
ssid = rssid->ssid[j];
pnode = ssid_pnode_map[j];
if (!pnode) { /* Allocate pnode for this new ssid */
pnode =
(fsg_pnode_t *) ckd_calloc(1,
sizeof
(fsg_pnode_t));
pnode->ctx = lextree->ctx;
/* We are plugging the word prob here. Ugly */
/* pnode->logs2prob = lextree->pip; */
pnode->logs2prob = (fsg_link_logs2prob(fsglink) >> SENSCR_SHIFT)
+ lextree->pip;
pnode->ci_ext = dict_pron(lextree->dict, dictwid, p);
pnode->ppos = p;
pnode->leaf = TRUE;
pnode->sibling = rc_pnodelist ?
(fsg_pnode_t *) gnode_ptr(rc_pnodelist) : NULL;
pnode->next.fsglink = fsglink;
pnode->alloc_next = head;
head = pnode;
++n_rc_alloc;
hmm_init(lextree->ctx, &pnode->hmm, FALSE, ssid, tmatid);
rc_pnodelist =
glist_add_ptr(rc_pnodelist, (void *) pnode);
ssid_pnode_map[j] = pnode;
}
else {
assert(hmm_nonmpx_ssid(&pnode->hmm) == ssid);
}
fsg_pnode_add_ctxt(pnode, rc);
}
if (p == 1) { /* Predecessor = set of root nodes for left ctxts */
for (gn = lc_pnodelist; gn; gn = gnode_next(gn)) {
pred = (fsg_pnode_t *) gnode_ptr(gn);
if (!pred->next.succ)
pred->next.succ = (fsg_pnode_t *) gnode_ptr(rc_pnodelist);
else {
/* Link to the end of the sibling chain */
fsg_pnode_t *succ = pred->next.succ;
while (succ->sibling) succ = succ->sibling;
succ->sibling = (fsg_pnode_t*) gnode_ptr(rc_pnodelist);
/* Since all entries of lc_pnodelist point
to the same array, sufficient to update it once */
break;
}
}
}
else { /* Predecessor = word internal node */
if (!pred->next.succ)
pred->next.succ = (fsg_pnode_t *) gnode_ptr(rc_pnodelist);
else {
/* Link to the end of the sibling chain */
fsg_pnode_t *succ = pred->next.succ;
while (succ->sibling) succ = succ->sibling;
succ->sibling = (fsg_pnode_t *) gnode_ptr(rc_pnodelist);
}
}
}
}
ckd_free((void *) ssid_pnode_map);
/* glist_free(lc_pnodelist); Nope; this gets freed outside */
glist_free(rc_pnodelist);
}
E_DEBUG(2,("Allocated %d HMMs (%d lc, %d rc, %d internal)\n",
n_lc_alloc + n_rc_alloc + n_int_alloc,
n_lc_alloc, n_rc_alloc, n_int_alloc));
*alloc_head = head;
return root;
}
static fsg_pnode_t *
fsg_psubtree_init(fsg_lextree_t *lextree,
fsg_model_t * fsg, int32 from_state,
fsg_pnode_t ** alloc_head)
{
fsg_arciter_t *itor;
fsg_link_t *fsglink;
fsg_pnode_t *root;
int32 n_ci, n_arc;
fsg_glist_linklist_t *glist = NULL;
root = NULL;
assert(*alloc_head == NULL);
n_ci = bin_mdef_n_ciphone(lextree->mdef);
if (n_ci > (FSG_PNODE_CTXT_BVSZ * 32)) {
E_FATAL
("#phones > %d; increase FSG_PNODE_CTXT_BVSZ and recompile\n",
FSG_PNODE_CTXT_BVSZ * 32);
}
n_arc = 0;
for (itor = fsg_model_arcs(fsg, from_state); itor;
itor = fsg_arciter_next(itor)) {
int32 dst;
fsglink = fsg_arciter_get(itor);
dst = fsglink->to_state;
if (fsg_link_wid(fsglink) < 0)
continue;
E_DEBUG(2,("Building lextree for arc from %d to %d: %s\n",
from_state, dst, fsg_model_word_str(fsg, fsg_link_wid(fsglink))));
root = psubtree_add_trans(lextree, root, &glist, fsglink,
lextree->lc[from_state],
lextree->rc[dst],
alloc_head);
++n_arc;
}
E_DEBUG(2,("State %d has %d outgoing arcs\n", from_state, n_arc));
fsg_glist_linklist_free(glist);
return root;
}
static void
fsg_psubtree_free(fsg_pnode_t * head)
{
fsg_pnode_t *next;
while (head) {
next = head->alloc_next;
hmm_deinit(&head->hmm);
ckd_free(head);
head = next;
}
}
void fsg_psubtree_dump_node(fsg_lextree_t *tree, fsg_pnode_t *node, FILE *fp)
{
int32 i;
fsg_link_t *tl;
/* Indentation */
for (i = 0; i <= node->ppos; i++)
fprintf(fp, " ");
fprintf(fp, "%p.@", node); /* Pointer used as node
* ID */
fprintf(fp, " %5d.SS", hmm_nonmpx_ssid(&node->hmm));
fprintf(fp, " %10d.LP", node->logs2prob);
fprintf(fp, " %p.SIB", node->sibling);
fprintf(fp, " %s.%d", bin_mdef_ciphone_str(tree->mdef, node->ci_ext), node->ppos);
if ((node->ppos == 0) || node->leaf) {
fprintf(fp, " [");
for (i = 0; i < FSG_PNODE_CTXT_BVSZ; i++)
fprintf(fp, "%08x", node->ctxt.bv[i]);
fprintf(fp, "]");
}
if (node->leaf) {
tl = node->next.fsglink;
fprintf(fp, " {%s[%d->%d](%d)}",
fsg_model_word_str(tree->fsg, tl->wid),
tl->from_state, tl->to_state, tl->logs2prob);
} else {
fprintf(fp, " %p.NXT", node->next.succ);
}
fprintf(fp, "\n");
return;
}
void
fsg_psubtree_dump(fsg_lextree_t *tree, fsg_pnode_t *root, FILE * fp)
{
fsg_pnode_t *succ;
if (root == NULL) return;
if (root->ppos == 0) {
while(root->sibling && root->sibling->next.succ == root->next.succ) {
fsg_psubtree_dump_node(tree, root, fp);
root = root->sibling;
}
fflush(fp);
}
fsg_psubtree_dump_node(tree, root, fp);
if (root->leaf) {
if (root->ppos == 0 && root->sibling) { /* For single-phone words */
fsg_psubtree_dump(tree, root->sibling,fp);
}
return;
}
succ = root->next.succ;
while(succ) {
fsg_psubtree_dump(tree, succ,fp);
succ = succ->sibling;
}
if (root->ppos == 0) {
fsg_psubtree_dump(tree, root->sibling,fp);
fflush(fp);
}
return;
}
void
fsg_psubtree_pnode_deactivate(fsg_pnode_t * pnode)
{
hmm_clear(&pnode->hmm);
}
|