summaryrefslogtreecommitdiffstats
path: root/media/kiss_fft/kiss_fft.c
blob: df818dad34d02d860f8bce13cd3ce7a719852370 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*
Copyright (c) 2003-2010 Mark Borgerding
Copyright (c) 2017 Mark Straver BASc

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice,
      this list of conditions and the following disclaimer in the documentation
      and/or other materials provided with the distribution.
    * Neither the author nor the names of any contributors may be used to
      endorse or promote products derived from this software without specific
      prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
*/


#include "_kiss_fft_guts.h"
/* The guts header contains all the multiplication and addition macros that are defined for
 fixed or floating point complex numbers.  It also delares the kf_ internal functions.
 */

static void kf_bfly2(
        kiss_fft_cpx * Fout,
        const size_t fstride,
        const kiss_fft_cfg st,
        int m
        )
{
    kiss_fft_cpx * Fout2;
    kiss_fft_cpx * tw1 = st->twiddles;
    kiss_fft_cpx t;
    Fout2 = Fout + m;
    do{
        C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);

        C_MUL (t,  *Fout2 , *tw1);
        tw1 += fstride;
        C_SUB( *Fout2 ,  *Fout , t );
        C_ADDTO( *Fout ,  t );
        ++Fout2;
        ++Fout;
    }while (--m);
}

static void kf_bfly4(
        kiss_fft_cpx * Fout,
        const size_t fstride,
        const kiss_fft_cfg st,
        const size_t m
        )
{
    kiss_fft_cpx *tw1,*tw2,*tw3;
    kiss_fft_cpx scratch[6];
    size_t k=m;
    const size_t m2=2*m;
    const size_t m3=3*m;


    tw3 = tw2 = tw1 = st->twiddles;

    do {
        C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);

        C_MUL(scratch[0],Fout[m] , *tw1 );
        C_MUL(scratch[1],Fout[m2] , *tw2 );
        C_MUL(scratch[2],Fout[m3] , *tw3 );

        C_SUB( scratch[5] , *Fout, scratch[1] );
        C_ADDTO(*Fout, scratch[1]);
        C_ADD( scratch[3] , scratch[0] , scratch[2] );
        C_SUB( scratch[4] , scratch[0] , scratch[2] );
        C_SUB( Fout[m2], *Fout, scratch[3] );
        tw1 += fstride;
        tw2 += fstride*2;
        tw3 += fstride*3;
        C_ADDTO( *Fout , scratch[3] );

        if(st->inverse) {
            Fout[m].r = scratch[5].r - scratch[4].i;
            Fout[m].i = scratch[5].i + scratch[4].r;
            Fout[m3].r = scratch[5].r + scratch[4].i;
            Fout[m3].i = scratch[5].i - scratch[4].r;
        }else{
            Fout[m].r = scratch[5].r + scratch[4].i;
            Fout[m].i = scratch[5].i - scratch[4].r;
            Fout[m3].r = scratch[5].r - scratch[4].i;
            Fout[m3].i = scratch[5].i + scratch[4].r;
        }
        ++Fout;
    }while(--k);
}

static void kf_bfly3(
         kiss_fft_cpx * Fout,
         const size_t fstride,
         const kiss_fft_cfg st,
         size_t m
         )
{
     size_t k=m;
     const size_t m2 = 2*m;
     kiss_fft_cpx *tw1,*tw2;
     kiss_fft_cpx scratch[5];
     kiss_fft_cpx epi3;
     epi3 = st->twiddles[fstride*m];

     tw1=tw2=st->twiddles;

     do{
         C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);

         C_MUL(scratch[1],Fout[m] , *tw1);
         C_MUL(scratch[2],Fout[m2] , *tw2);

         C_ADD(scratch[3],scratch[1],scratch[2]);
         C_SUB(scratch[0],scratch[1],scratch[2]);
         tw1 += fstride;
         tw2 += fstride*2;

         Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
         Fout[m].i = Fout->i - HALF_OF(scratch[3].i);

         C_MULBYSCALAR( scratch[0] , epi3.i );

         C_ADDTO(*Fout,scratch[3]);

         Fout[m2].r = Fout[m].r + scratch[0].i;
         Fout[m2].i = Fout[m].i - scratch[0].r;

         Fout[m].r -= scratch[0].i;
         Fout[m].i += scratch[0].r;

         ++Fout;
     }while(--k);
}

static void kf_bfly5(
        kiss_fft_cpx * Fout,
        const size_t fstride,
        const kiss_fft_cfg st,
        int m
        )
{
    kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
    int u;
    kiss_fft_cpx scratch[13];
    kiss_fft_cpx * twiddles = st->twiddles;
    kiss_fft_cpx *tw;
    kiss_fft_cpx ya,yb;
    ya = twiddles[fstride*m];
    yb = twiddles[fstride*2*m];

    Fout0=Fout;
    Fout1=Fout0+m;
    Fout2=Fout0+2*m;
    Fout3=Fout0+3*m;
    Fout4=Fout0+4*m;

    tw=st->twiddles;
    for ( u=0; u<m; ++u ) {
        C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
        scratch[0] = *Fout0;

        C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
        C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
        C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
        C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);

        C_ADD( scratch[7],scratch[1],scratch[4]);
        C_SUB( scratch[10],scratch[1],scratch[4]);
        C_ADD( scratch[8],scratch[2],scratch[3]);
        C_SUB( scratch[9],scratch[2],scratch[3]);

        Fout0->r += scratch[7].r + scratch[8].r;
        Fout0->i += scratch[7].i + scratch[8].i;

        scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
        scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);

        scratch[6].r =  S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
        scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);

        C_SUB(*Fout1,scratch[5],scratch[6]);
        C_ADD(*Fout4,scratch[5],scratch[6]);

        scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
        scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
        scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
        scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);

        C_ADD(*Fout2,scratch[11],scratch[12]);
        C_SUB(*Fout3,scratch[11],scratch[12]);

        ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
    }
}

/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
        kiss_fft_cpx * Fout,
        const size_t fstride,
        const kiss_fft_cfg st,
        int m,
        int p
        )
{
#ifdef _OPENMP
#pragma omp critical (bfly_generic)
  {
#endif
    int u,k,q1,q;
    kiss_fft_cpx * twiddles = st->twiddles;
    kiss_fft_cpx t;
    int Norig = st->nfft;

    kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);

    for ( u=0; u<m; ++u ) {
        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
            scratch[q1] = Fout[ k  ];
            C_FIXDIV(scratch[q1],p);
            k += m;
        }

        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
            int twidx=0;
            Fout[ k ] = scratch[0];
            for (q=1;q<p;++q ) {
                twidx += fstride * k;
                if (twidx>=Norig) twidx-=Norig;
                C_MUL(t,scratch[q] , twiddles[twidx] );
                C_ADDTO( Fout[ k ] ,t);
            }
            k += m;
        }
    }
    KISS_FFT_TMP_FREE(scratch);
#ifdef _OPENMP
  }
#endif
}

static
void kf_work(
        kiss_fft_cpx * Fout,
        const kiss_fft_cpx * f,
        const size_t fstride,
        int in_stride,
        int * factors,
        const kiss_fft_cfg st
        )
{
    kiss_fft_cpx * Fout_beg=Fout;
    const int p=*factors++; /* the radix  */
    const int m=*factors++; /* stage's fft length/p */
    const kiss_fft_cpx * Fout_end = Fout + p*m;

#ifdef _OPENMP
    // use openmp extensions at the 
    // top-level (not recursive)
    if (fstride==1 && p<=5 && m!=1)
    {
        int k;

        // execute the p different work units in different threads
#       pragma omp parallel for
        for (k=0;k<p;++k) 
            kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
        // all threads have joined by this point

        switch (p) {
            case 2: kf_bfly2(Fout,fstride,st,m); break;
            case 3: kf_bfly3(Fout,fstride,st,m); break; 
            case 4: kf_bfly4(Fout,fstride,st,m); break;
            case 5: kf_bfly5(Fout,fstride,st,m); break; 
            default: kf_bfly_generic(Fout,fstride,st,m,p); break;
        }
        return;
    }
#endif

    if (m==1) {
        do{
            *Fout = *f;
            f += fstride*in_stride;
        }while(++Fout != Fout_end );
    }else{
        do{
            // recursive call:
            // DFT of size m*p performed by doing
            // p instances of smaller DFTs of size m, 
            // each one takes a decimated version of the input
            kf_work( Fout , f, fstride*p, in_stride, factors,st);
            f += fstride*in_stride;
        }while( (Fout += m) != Fout_end );
    }

    Fout=Fout_beg;

    // recombine the p smaller DFTs 
    switch (p) {
        case 2: kf_bfly2(Fout,fstride,st,m); break;
        case 3: kf_bfly3(Fout,fstride,st,m); break; 
        case 4: kf_bfly4(Fout,fstride,st,m); break;
        case 5: kf_bfly5(Fout,fstride,st,m); break; 
        default: kf_bfly_generic(Fout,fstride,st,m,p); break;
    }
}

/*  facbuf is populated by p1,m1,p2,m2, ...
    where 
    p[i] * m[i] = m[i-1]
    m0 = n                  */
static 
void kf_factor(int n,int * facbuf)
{
    int p=4;
    double floor_sqrt;
    floor_sqrt = floor( sqrt((double)n) );

    /*factor out powers of 4, powers of 2, then any remaining primes */
    do {
        while (n % p) {
            switch (p) {
                case 4: p = 2; break;
                case 2: p = 3; break;
                default: p += 2; break;
            }
            if (p > floor_sqrt)
                p = n;          /* no more factors, skip to end */
        }
        n /= p;
        *facbuf++ = p;
        *facbuf++ = n;
    } while (n > 1);
}

/*
 *
 * User-callable function to allocate all necessary storage space for the fft.
 *
 * The return value is a contiguous block of memory, allocated with malloc.  As such,
 * It can be freed with free(), rather than a kiss_fft-specific function.
 * */
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
{
    kiss_fft_cfg st=NULL;
    size_t memneeded = sizeof(struct kiss_fft_state)
        + sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/

    if ( lenmem==NULL ) {
        st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
    }else{
        if (mem != NULL && *lenmem >= memneeded)
            st = (kiss_fft_cfg)mem;
        *lenmem = memneeded;
    }
    if (st) {
        int i;
        st->nfft=nfft;
        st->inverse = inverse_fft;

        for (i=0;i<nfft;++i) {
            const double pi=3.141592653589793238462643383279502884197169399375105820974944;
            double phase = -2*pi*i / nfft;
            if (st->inverse)
                phase *= -1;
            kf_cexp(st->twiddles+i, phase );
        }

        kf_factor(nfft,st->factors);
    }
    return st;
}


void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
{
    if (fin == fout) {
        //NOTE: this is not really an in-place FFT algorithm.
        //It just performs an out-of-place FFT into a temp buffer
        kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
        kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
        memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
        KISS_FFT_TMP_FREE(tmpbuf);
    }else{
        kf_work( fout, fin, 1,in_stride, st->factors,st );
    }
}

void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
    kiss_fft_stride(cfg,fin,fout,1);
}


void kiss_fft_cleanup(void)
{
    // nothing needed any more
}

int kiss_fft_next_fast_size(int n)
{
    while(1) {
        int m=n;
        while ( (m%2) == 0 ) m/=2;
        while ( (m%3) == 0 ) m/=3;
        while ( (m%5) == 0 ) m/=5;
        if (m<=1)
            break; /* n is completely factorable by twos, threes, and fives */
        n++;
    }
    return n;
}