summaryrefslogtreecommitdiffstats
path: root/layout/base/nsBidi_noICU.cpp
blob: 0b9c58e55e6c5a6efb535c420940492ff27d92bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
/* -*- Mode: C; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsBidi.h"
#include "nsUnicodeProperties.h"
#include "nsCRTGlue.h"

using namespace mozilla::unicode;

static_assert(mozilla::kBidiLevelNone > NSBIDI_MAX_EXPLICIT_LEVEL + 1,
              "The pseudo embedding level should be out-of-range");

// These are #defined in <sys/regset.h> under Solaris 10 x86
#undef CS
#undef ES

/*  Comparing the description of the Bidi algorithm with this implementation
    is easier with the same names for the Bidi types in the code as there.
*/
enum {
    L =   eCharType_LeftToRight,
    R =   eCharType_RightToLeft,
    EN =  eCharType_EuropeanNumber,
    ES =  eCharType_EuropeanNumberSeparator,
    ET =  eCharType_EuropeanNumberTerminator,
    AN =  eCharType_ArabicNumber,
    CS =  eCharType_CommonNumberSeparator,
    B =   eCharType_BlockSeparator,
    S =   eCharType_SegmentSeparator,
    WS =  eCharType_WhiteSpaceNeutral,
    O_N = eCharType_OtherNeutral,
    LRE = eCharType_LeftToRightEmbedding,
    LRO = eCharType_LeftToRightOverride,
    AL =  eCharType_RightToLeftArabic,
    RLE = eCharType_RightToLeftEmbedding,
    RLO = eCharType_RightToLeftOverride,
    PDF = eCharType_PopDirectionalFormat,
    NSM = eCharType_DirNonSpacingMark,
    BN =  eCharType_BoundaryNeutral,
    LRI = eCharType_LeftToRightIsolate,
    RLI = eCharType_RightToLeftIsolate,
    FSI = eCharType_FirstStrongIsolate,
    PDI = eCharType_PopDirectionalIsolate,
    ENL,    /* EN after W7 */           /* 23 */
    ENR,    /* EN not subject to W7 */  /* 24 */
    dirPropCount
};

#define IS_STRONG_TYPE(dirProp) ((dirProp) <= R || (dirProp) == AL)

/* to avoid some conditional statements, use tiny constant arrays */
static Flags flagLR[2]={ DIRPROP_FLAG(L), DIRPROP_FLAG(R) };
static Flags flagE[2]={ DIRPROP_FLAG(LRE), DIRPROP_FLAG(RLE) };
static Flags flagO[2]={ DIRPROP_FLAG(LRO), DIRPROP_FLAG(RLO) };

#define DIRPROP_FLAG_LR(level) flagLR[(level)&1]
#define DIRPROP_FLAG_E(level) flagE[(level)&1]
#define DIRPROP_FLAG_O(level) flagO[(level)&1]

#define NO_OVERRIDE(level)  ((level)&~NSBIDI_LEVEL_OVERRIDE)

static inline uint8_t
DirFromStrong(uint8_t aDirProp)
{
  MOZ_ASSERT(IS_STRONG_TYPE(aDirProp));
  return aDirProp == L ? L : R;
}

/*
 * General implementation notes:
 *
 * Throughout the implementation, there are comments like (W2) that refer to
 * rules of the Bidi algorithm in its version 5, in this example to the second
 * rule of the resolution of weak types.
 *
 * For handling surrogate pairs, where two UChar's form one "abstract" (or UTF-32)
 * character according to UTF-16, the second UChar gets the directional property of
 * the entire character assigned, while the first one gets a BN, a boundary
 * neutral, type, which is ignored by most of the algorithm according to
 * rule (X9) and the implementation suggestions of the Bidi algorithm.
 *
 * Later, AdjustWSLevels() will set the level for each BN to that of the
 * following character (UChar), which results in surrogate pairs getting the
 * same level on each of their surrogates.
 *
 * In a UTF-8 implementation, the same thing could be done: the last byte of
 * a multi-byte sequence would get the "real" property, while all previous
 * bytes of that sequence would get BN.
 *
 * It is not possible to assign all those parts of a character the same real
 * property because this would fail in the resolution of weak types with rules
 * that look at immediately surrounding types.
 *
 * As a related topic, this implementation does not remove Boundary Neutral
 * types from the input, but ignores them whenever this is relevant.
 * For example, the loop for the resolution of the weak types reads
 * types until it finds a non-BN.
 * Also, explicit embedding codes are neither changed into BN nor removed.
 * They are only treated the same way real BNs are.
 * As stated before, AdjustWSLevels() takes care of them at the end.
 * For the purpose of conformance, the levels of all these codes
 * do not matter.
 *
 * Note that this implementation never modifies the dirProps
 * after the initial setup, except for FSI which is changed to either
 * LRI or RLI in GetDirProps(), and paired brackets which may be changed
 * to L or R according to N0.
 *
 *
 * In this implementation, the resolution of weak types (Wn),
 * neutrals (Nn), and the assignment of the resolved level (In)
 * are all done in one single loop, in ResolveImplicitLevels().
 * Changes of dirProp values are done on the fly, without writing
 * them back to the dirProps array.
 *
 *
 * This implementation contains code that allows to bypass steps of the
 * algorithm that are not needed on the specific paragraph
 * in order to speed up the most common cases considerably,
 * like text that is entirely LTR, or RTL text without numbers.
 *
 * Most of this is done by setting a bit for each directional property
 * in a flags variable and later checking for whether there are
 * any LTR characters or any RTL characters, or both, whether
 * there are any explicit embedding codes, etc.
 *
 * If the (Xn) steps are performed, then the flags are re-evaluated,
 * because they will then not contain the embedding codes any more
 * and will be adjusted for override codes, so that subsequently
 * more bypassing may be possible than what the initial flags suggested.
 *
 * If the text is not mixed-directional, then the
 * algorithm steps for the weak type resolution are not performed,
 * and all levels are set to the paragraph level.
 *
 * If there are no explicit embedding codes, then the (Xn) steps
 * are not performed.
 *
 * If embedding levels are supplied as a parameter, then all
 * explicit embedding codes are ignored, and the (Xn) steps
 * are not performed.
 *
 * White Space types could get the level of the run they belong to,
 * and are checked with a test of (flags&MASK_EMBEDDING) to
 * consider if the paragraph direction should be considered in
 * the flags variable.
 *
 * If there are no White Space types in the paragraph, then
 * (L1) is not necessary in AdjustWSLevels().
 */
nsBidi::nsBidi()
{
  Init();
}

nsBidi::~nsBidi()
{
  Free();
}

void nsBidi::Init()
{
  /* reset the object, all pointers nullptr, all flags false, all sizes 0 */
  mLength = 0;
  mParaLevel = 0;
  mFlags = 0;
  mDirection = NSBIDI_LTR;
  mTrailingWSStart = 0;

  mDirPropsSize = 0;
  mLevelsSize = 0;
  mRunsSize = 0;
  mIsolatesSize = 0;

  mRunCount = -1;
  mIsolateCount = -1;

  mDirProps=nullptr;
  mLevels=nullptr;
  mRuns=nullptr;
  mIsolates=nullptr;

  mDirPropsMemory=nullptr;
  mLevelsMemory=nullptr;
  mRunsMemory=nullptr;
  mIsolatesMemory=nullptr;
}

/*
 * We are allowed to allocate memory if aMemory==nullptr
 * for each array that we need.
 * We also try to grow and shrink memory as needed if we
 * allocate it.
 *
 * Assume aSizeNeeded>0.
 * If *aMemory!=nullptr, then assume *aSize>0.
 *
 * ### this realloc() may unnecessarily copy the old data,
 * which we know we don't need any more;
 * is this the best way to do this??
 */
/*static*/
bool
nsBidi::GetMemory(void **aMemory, size_t *aSize, size_t aSizeNeeded)
{
  /* check for existing memory */
  if(*aMemory==nullptr) {
    /* we need to allocate memory */
    *aMemory=malloc(aSizeNeeded);
    if (*aMemory!=nullptr) {
      *aSize=aSizeNeeded;
      return true;
    } else {
      *aSize=0;
      return false;
    }
  } else {
    /* there is some memory, is it enough or too much? */
    if(aSizeNeeded!=*aSize) {
      /* we may try to grow or shrink */
      void *memory=realloc(*aMemory, aSizeNeeded);

      if(memory!=nullptr) {
        *aMemory=memory;
        *aSize=aSizeNeeded;
        return true;
      } else {
        /* we failed to grow */
        return false;
      }
    } else {
      /* we have at least enough memory and must not allocate */
      return true;
    }
  }
}

void nsBidi::Free()
{
  free(mDirPropsMemory);
  mDirPropsMemory = nullptr;
  free(mLevelsMemory);
  mLevelsMemory = nullptr;
  free(mRunsMemory);
  mRunsMemory = nullptr;
  free(mIsolatesMemory);
  mIsolatesMemory = nullptr;
}

/* SetPara ------------------------------------------------------------ */

nsresult nsBidi::SetPara(const char16_t *aText, int32_t aLength,
                         nsBidiLevel aParaLevel)
{
  nsBidiDirection direction;

  /* check the argument values */
  if(aText==nullptr ||
     ((NSBIDI_MAX_EXPLICIT_LEVEL<aParaLevel) && !IS_DEFAULT_LEVEL(aParaLevel)) ||
     aLength<-1
    ) {
    return NS_ERROR_INVALID_ARG;
  }

  if(aLength==-1) {
    aLength = NS_strlen(aText);
  }

  /* initialize member data */
  mLength = aLength;
  mParaLevel=aParaLevel;
  mDirection=aParaLevel & 1 ? NSBIDI_RTL : NSBIDI_LTR;
  mTrailingWSStart=aLength;  /* the levels[] will reflect the WS run */

  mDirProps=nullptr;
  mLevels=nullptr;
  mRuns=nullptr;

  if(aLength==0) {
    /*
     * For an empty paragraph, create an nsBidi object with the aParaLevel and
     * the flags and the direction set but without allocating zero-length arrays.
     * There is nothing more to do.
     */
    if(IS_DEFAULT_LEVEL(aParaLevel)) {
      mParaLevel&=1;
    }
    mFlags=DIRPROP_FLAG_LR(aParaLevel);
    mRunCount=0;
    return NS_OK;
  }

  mRunCount=-1;

  /*
   * Get the directional properties,
   * the flags bit-set, and
   * determine the partagraph level if necessary.
   */
  if(GETDIRPROPSMEMORY(aLength)) {
    mDirProps=mDirPropsMemory;
    GetDirProps(aText);
  } else {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  /* determine explicit levels according to the (Xn) rules */
  if(GETLEVELSMEMORY(aLength)) {
    mLevels=mLevelsMemory;
    ResolveExplicitLevels(&direction, aText);
  } else {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  /* allocate isolate memory */
  if (mIsolateCount <= SIMPLE_ISOLATES_SIZE) {
    mIsolates = mSimpleIsolates;
  } else {
    if (mIsolateCount * sizeof(Isolate) <= mIsolatesSize) {
      mIsolates = mIsolatesMemory;
    } else {
      if (GETISOLATESMEMORY(mIsolateCount)) {
        mIsolates = mIsolatesMemory;
      } else {
        return NS_ERROR_OUT_OF_MEMORY;
      }
    }
  }
  mIsolateCount = -1;  /* current isolates stack entry == none */

  /*
   * The steps after (X9) in the Bidi algorithm are performed only if
   * the paragraph text has mixed directionality!
   */
  mDirection = direction;
  switch(direction) {
    case NSBIDI_LTR:
      /* make sure paraLevel is even */
      mParaLevel=(mParaLevel+1)&~1;

      /* all levels are implicitly at paraLevel (important for GetLevels()) */
      mTrailingWSStart=0;
      break;
    case NSBIDI_RTL:
      /* make sure paraLevel is odd */
      mParaLevel|=1;

      /* all levels are implicitly at paraLevel (important for GetLevels()) */
      mTrailingWSStart=0;
      break;
    default:
      /*
       * If there are no external levels specified and there
       * are no significant explicit level codes in the text,
       * then we can treat the entire paragraph as one run.
       * Otherwise, we need to perform the following rules on runs of
       * the text with the same embedding levels. (X10)
       * "Significant" explicit level codes are ones that actually
       * affect non-BN characters.
       * Examples for "insignificant" ones are empty embeddings
       * LRE-PDF, LRE-RLE-PDF-PDF, etc.
       */
      if(!(mFlags&DIRPROP_FLAG_MULTI_RUNS)) {
        ResolveImplicitLevels(0, aLength,
                    GET_LR_FROM_LEVEL(mParaLevel),
                    GET_LR_FROM_LEVEL(mParaLevel));
      } else {
        /* sor, eor: start and end types of same-level-run */
        nsBidiLevel *levels=mLevels;
        int32_t start, limit=0;
        nsBidiLevel level, nextLevel;
        DirProp sor, eor;

        /* determine the first sor and set eor to it because of the loop body (sor=eor there) */
        level=mParaLevel;
        nextLevel=levels[0];
        if(level<nextLevel) {
          eor=GET_LR_FROM_LEVEL(nextLevel);
        } else {
          eor=GET_LR_FROM_LEVEL(level);
        }

        do {
          /* determine start and limit of the run (end points just behind the run) */

          /* the values for this run's start are the same as for the previous run's end */
          sor=eor;
          start=limit;
          level=nextLevel;

          /* search for the limit of this run */
          while(++limit<aLength &&
                (levels[limit]==level ||
                 (DIRPROP_FLAG(mDirProps[limit])&MASK_BN_EXPLICIT))) {}

          /* get the correct level of the next run */
          if(limit<aLength) {
            nextLevel=levels[limit];
          } else {
            nextLevel=mParaLevel;
          }

          /* determine eor from max(level, nextLevel); sor is last run's eor */
          if((level&~NSBIDI_LEVEL_OVERRIDE)<(nextLevel&~NSBIDI_LEVEL_OVERRIDE)) {
            eor=GET_LR_FROM_LEVEL(nextLevel);
          } else {
            eor=GET_LR_FROM_LEVEL(level);
          }

          /* if the run consists of overridden directional types, then there
          are no implicit types to be resolved */
          if(!(level&NSBIDI_LEVEL_OVERRIDE)) {
            ResolveImplicitLevels(start, limit, sor, eor);
          } else {
            do {
              levels[start++] &= ~NSBIDI_LEVEL_OVERRIDE;
            } while (start < limit);
          }
        } while(limit<aLength);
      }

      /* reset the embedding levels for some non-graphic characters (L1), (X9) */
      AdjustWSLevels();
      break;
  }

  return NS_OK;
}

/* perform (P2)..(P3) ------------------------------------------------------- */

/*
 * Get the directional properties for the text,
 * calculate the flags bit-set, and
 * determine the partagraph level if necessary.
 */
void nsBidi::GetDirProps(const char16_t *aText)
{
  DirProp *dirProps=mDirPropsMemory;    /* mDirProps is const */

  int32_t i=0, length=mLength;
  Flags flags=0;      /* collect all directionalities in the text */
  char16_t uchar;
  DirProp dirProp;

  bool isDefaultLevel = IS_DEFAULT_LEVEL(mParaLevel);

  enum State {
    NOT_SEEKING_STRONG,       /* 0: not after FSI */
    SEEKING_STRONG_FOR_PARA,  /* 1: looking for first strong char in para */
    SEEKING_STRONG_FOR_FSI,   /* 2: looking for first strong after FSI */
    LOOKING_FOR_PDI           /* 3: found strong after FSI, looking for PDI */
  };
  State state;

  /* The following stacks are used to manage isolate sequences. Those
     sequences may be nested, but obviously never more deeply than the
     maximum explicit embedding level.
     lastStack is the index of the last used entry in the stack. A value of -1
     means that there is no open isolate sequence. */
  /* The following stack contains the position of the initiator of
     each open isolate sequence */
  int32_t isolateStartStack[NSBIDI_MAX_EXPLICIT_LEVEL + 1];
  /* The following stack contains the last known state before
     encountering the initiator of an isolate sequence */
  State previousStateStack[NSBIDI_MAX_EXPLICIT_LEVEL + 1];
  int32_t stackLast = -1;

  if(isDefaultLevel) {
    /*
     * see comment in nsBidi.h:
     * the DEFAULT_XXX values are designed so that
     * their bit 0 alone yields the intended default
     */
    mParaLevel &= 1;
    state = SEEKING_STRONG_FOR_PARA;
  } else {
    state = NOT_SEEKING_STRONG;
  }

  /* determine the paragraph level (P2..P3) */
  for(/* i = 0 above */; i < length;) {
    uchar=aText[i];
    if(!IS_FIRST_SURROGATE(uchar) || i+1==length || !IS_SECOND_SURROGATE(aText[i+1])) {
      /* not a surrogate pair */
      flags|=DIRPROP_FLAG(dirProps[i]=dirProp=GetBidiCat((uint32_t)uchar));
    } else {
      /* a surrogate pair */
      dirProps[i++]=BN;   /* first surrogate in the pair gets the BN type */
      flags|=DIRPROP_FLAG(dirProps[i]=dirProp=GetBidiCat(GET_UTF_32(uchar, aText[i])))|DIRPROP_FLAG(BN);
    }
    ++i;

    switch (dirProp) {
    case L:
      if (state == SEEKING_STRONG_FOR_PARA) {
        mParaLevel = 0;
        state = NOT_SEEKING_STRONG;
      } else if  (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = LRI;
          flags |= DIRPROP_FLAG(LRI);
        }
        state = LOOKING_FOR_PDI;
      }
      break;

    case R: case AL:
      if (state == SEEKING_STRONG_FOR_PARA) {
        mParaLevel = 1;
        state = NOT_SEEKING_STRONG;
      } else if  (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = RLI;
          flags |= DIRPROP_FLAG(RLI);
        }
        state = LOOKING_FOR_PDI;
      }
      break;

    case FSI: case LRI: case RLI:
      stackLast++;
      if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
        isolateStartStack[stackLast] = i - 1;
        previousStateStack[stackLast] = state;
      }
      if (dirProp == FSI) {
        state = SEEKING_STRONG_FOR_FSI;
      } else {
        state = LOOKING_FOR_PDI;
      }
      break;

    case PDI:
      if (state == SEEKING_STRONG_FOR_FSI) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          dirProps[isolateStartStack[stackLast]] = LRI;
          flags |= DIRPROP_FLAG(LRI);
        }
      }
      if (stackLast >= 0) {
        if (stackLast <= NSBIDI_MAX_EXPLICIT_LEVEL) {
          state = previousStateStack[stackLast];
        }
        stackLast--;
      }
      break;

    case B:
      // This shouldn't happen, since we don't support multiple paragraphs.
      NS_NOTREACHED("Unexpected paragraph separator");
      break;

    default:
      break;
    }
  }

  /* Ignore still open isolate sequences with overflow */
  if (stackLast > NSBIDI_MAX_EXPLICIT_LEVEL) {
    stackLast = NSBIDI_MAX_EXPLICIT_LEVEL;
    if (dirProps[previousStateStack[NSBIDI_MAX_EXPLICIT_LEVEL]] != FSI) {
      state = LOOKING_FOR_PDI;
    }
  }

  /* Resolve direction of still unresolved open FSI sequences */
  while (stackLast >= 0) {
    if (state == SEEKING_STRONG_FOR_FSI) {
      dirProps[isolateStartStack[stackLast]] = LRI;
      flags |= DIRPROP_FLAG(LRI);
    }
    state = previousStateStack[stackLast];
    stackLast--;
  }

  flags|=DIRPROP_FLAG_LR(mParaLevel);

  mFlags = flags;
}

/* Functions for handling paired brackets ----------------------------------- */

/* In the mIsoRuns array, the first entry is used for text outside of any
   isolate sequence.  Higher entries are used for each more deeply nested
   isolate sequence.
   mIsoRunLast is the index of the last used entry.
   The mOpenings array is used to note the data of opening brackets not yet
   matched by a closing bracket, or matched but still susceptible to change
   level.
   Each isoRun entry contains the index of the first and
   one-after-last openings entries for pending opening brackets it
   contains.  The next mOpenings entry to use is the one-after-last of the
   most deeply nested isoRun entry.
   mIsoRuns entries also contain their current embedding level and the bidi
   class of the last-encountered strong character, since these will be needed
   to resolve the level of paired brackets.  */

nsBidi::BracketData::BracketData(const nsBidi *aBidi)
{
  mIsoRunLast = 0;
  mIsoRuns[0].start = 0;
  mIsoRuns[0].limit = 0;
  mIsoRuns[0].level = aBidi->mParaLevel;
  mIsoRuns[0].lastStrong = mIsoRuns[0].lastBase = mIsoRuns[0].contextDir =
    GET_LR_FROM_LEVEL(aBidi->mParaLevel);
  mIsoRuns[0].contextPos = 0;
  mOpenings = mSimpleOpenings;
  mOpeningsCount = SIMPLE_OPENINGS_COUNT;
  mOpeningsMemory = nullptr;
}

nsBidi::BracketData::~BracketData()
{
  free(mOpeningsMemory);
}

/* LRE, LRO, RLE, RLO, PDF */
void
nsBidi::BracketData::ProcessBoundary(int32_t aLastDirControlCharPos,
                                     nsBidiLevel aContextLevel,
                                     nsBidiLevel aEmbeddingLevel,
                                     const DirProp* aDirProps)
{
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  if (DIRPROP_FLAG(aDirProps[aLastDirControlCharPos]) & MASK_ISO) { /* after an isolate */
    return;
  }
  if (NO_OVERRIDE(aEmbeddingLevel) > NO_OVERRIDE(aContextLevel)) {  /* not PDF */
    aContextLevel = aEmbeddingLevel;
  }
  lastIsoRun.limit = lastIsoRun.start;
  lastIsoRun.level = aEmbeddingLevel;
  lastIsoRun.lastStrong = lastIsoRun.lastBase = lastIsoRun.contextDir =
    GET_LR_FROM_LEVEL(aContextLevel);
  lastIsoRun.contextPos = aLastDirControlCharPos;
}

/* LRI or RLI */
void
nsBidi::BracketData::ProcessLRI_RLI(nsBidiLevel aLevel)
{
  MOZ_ASSERT(mIsoRunLast <= NSBIDI_MAX_EXPLICIT_LEVEL);
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  lastIsoRun.lastBase = O_N;
  IsoRun& currIsoRun = mIsoRuns[++mIsoRunLast];
  currIsoRun.start = currIsoRun.limit = lastIsoRun.limit;
  currIsoRun.level = aLevel;
  currIsoRun.lastStrong = currIsoRun.lastBase = currIsoRun.contextDir =
    GET_LR_FROM_LEVEL(aLevel);
  currIsoRun.contextPos = 0;
}

/* PDI */
void
nsBidi::BracketData::ProcessPDI()
{
  MOZ_ASSERT(mIsoRunLast > 0);
  mIsoRuns[--mIsoRunLast].lastBase = O_N;
}

/* newly found opening bracket: create an openings entry */
bool                            /* return true if success */
nsBidi::BracketData::AddOpening(char16_t aMatch, int32_t aPosition)
{
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  if (lastIsoRun.limit >= mOpeningsCount) {  /* no available new entry */
    if (!GETOPENINGSMEMORY(lastIsoRun.limit * 2)) {
      return false;
    }
    if (mOpenings == mSimpleOpenings) {
      memcpy(mOpeningsMemory, mSimpleOpenings,
             SIMPLE_OPENINGS_COUNT * sizeof(Opening));
    }
    mOpenings = mOpeningsMemory;     /* may have changed */
    mOpeningsCount = mOpeningsSize / sizeof(Opening);
  }
  Opening& o = mOpenings[lastIsoRun.limit];
  o.position = aPosition;
  o.match = aMatch;
  o.contextDir = lastIsoRun.contextDir;
  o.contextPos = lastIsoRun.contextPos;
  o.flags = 0;
  lastIsoRun.limit++;
  return true;
}

/* change N0c1 to N0c2 when a preceding bracket is assigned the embedding level */
void
nsBidi::BracketData::FixN0c(int32_t aOpeningIndex, int32_t aNewPropPosition,
                            DirProp aNewProp, DirProp* aDirProps)
{
  /* This function calls itself recursively */
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  for (int32_t k = aOpeningIndex + 1; k < lastIsoRun.limit; k++) {
    Opening& o = mOpenings[k];
    if (o.match >= 0) {     /* not an N0c match */
      continue;
    }
    if (aNewPropPosition < o.contextPos) {
      break;
    }
    int32_t openingPosition = o.position;
    if (aNewPropPosition >= openingPosition) {
      continue;
    }
    if (aNewProp == o.contextDir) {
      break;
    }
    aDirProps[openingPosition] = aNewProp;
    int32_t closingPosition = -(o.match);
    aDirProps[closingPosition] = aNewProp;
    o.match = 0;                    /* prevent further changes */
    FixN0c(k, openingPosition, aNewProp, aDirProps);
    FixN0c(k, closingPosition, aNewProp, aDirProps);
  }
}

/* process closing bracket */
DirProp              /* return L or R if N0b or N0c, ON if N0d */
nsBidi::BracketData::ProcessClosing(int32_t aOpenIdx, int32_t aPosition,
                                    DirProp* aDirProps)
{
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  Opening& o = mOpenings[aOpenIdx];
  DirProp newProp;
  DirProp direction = GET_LR_FROM_LEVEL(lastIsoRun.level);
  bool stable = true; // assume stable until proved otherwise

  /* The stable flag is set when brackets are paired and their
     level is resolved and cannot be changed by what will be
     found later in the source string.
     An unstable match can occur only when applying N0c, where
     the resolved level depends on the preceding context, and
     this context may be affected by text occurring later.
     Example: RTL paragraph containing:  abc[(latin) HEBREW]
     When the closing parenthesis is encountered, it appears
     that N0c1 must be applied since 'abc' sets an opposite
     direction context and both parentheses receive level 2.
     However, when the closing square bracket is processed,
     N0b applies because of 'HEBREW' being included within the
     brackets, thus the square brackets are treated like R and
     receive level 1. However, this changes the preceding
     context of the opening parenthesis, and it now appears
     that N0c2 must be applied to the parentheses rather than
     N0c1. */

  if ((direction == 0 && o.flags & FOUND_L) ||
      (direction == 1 && o.flags & FOUND_R)) { /* N0b */
    newProp = direction;
  } else if (o.flags & (FOUND_L|FOUND_R)) {    /* N0c */
    /* it is stable if there is no containing pair or in
       conditions too complicated and not worth checking */
    stable = (aOpenIdx == lastIsoRun.start);
    if (direction != o.contextDir) {
      newProp = o.contextDir;           /* N0c1 */
    } else {
      newProp = direction;                     /* N0c2 */
    }
  } else {
    /* forget this and any brackets nested within this pair */
    lastIsoRun.limit = aOpenIdx;
    return O_N;                                 /* N0d */
  }
  aDirProps[o.position] = newProp;
  aDirProps[aPosition] = newProp;
  /* Update nested N0c pairs that may be affected */
  FixN0c(aOpenIdx, o.position, newProp, aDirProps);
  if (stable) {
    /* forget any brackets nested within this pair */
    lastIsoRun.limit = aOpenIdx;
  } else {
    int32_t k;
    o.match = -aPosition;
    /* neutralize any unmatched opening between the current pair */
    for (k = aOpenIdx + 1; k < lastIsoRun.limit; k++) {
      Opening& oo = mOpenings[k];
      if (oo.position > aPosition) {
        break;
      }
      if (oo.match > 0) {
        oo.match = 0;
      }
    }
  }
  return newProp;
}

static inline bool
IsMatchingCloseBracket(char16_t aCh1, char16_t aCh2)
{
  // U+232A RIGHT-POINTING ANGLE BRACKET and U+3009 RIGHT ANGLE BRACKET
  // are canonical equivalents, so we special-case them here.
  return (aCh1 == aCh2) ||
         (aCh1 == 0x232A && aCh2 == 0x3009) ||
         (aCh2 == 0x232A && aCh1 == 0x3009);
}

/* Handle strong characters, digits and candidates for closing brackets. */
/* Returns true if success. (The only failure mode is an OOM when trying
   to allocate memory for the Openings array.) */
bool
nsBidi::BracketData::ProcessChar(int32_t aPosition, char16_t aCh,
                                 DirProp* aDirProps, nsBidiLevel* aLevels)
{
  IsoRun& lastIsoRun = mIsoRuns[mIsoRunLast];
  DirProp newProp;
  DirProp dirProp = aDirProps[aPosition];
  nsBidiLevel level = aLevels[aPosition];
  if (dirProp == O_N) {
    /* First see if it is a matching closing bracket. Hopefully, this is
       more efficient than checking if it is a closing bracket at all */
    for (int32_t idx = lastIsoRun.limit - 1; idx >= lastIsoRun.start; idx--) {
      if (!IsMatchingCloseBracket(aCh, mOpenings[idx].match)) {
        continue;
      }
      /* We have a match */
      newProp = ProcessClosing(idx, aPosition, aDirProps);
      if (newProp == O_N) {           /* N0d */
        aCh = 0;        /* prevent handling as an opening */
        break;
      }
      lastIsoRun.lastBase = O_N;
      lastIsoRun.contextDir = newProp;
      lastIsoRun.contextPos = aPosition;
      if (level & NSBIDI_LEVEL_OVERRIDE) {    /* X4, X5 */
        newProp = GET_LR_FROM_LEVEL(level);
        lastIsoRun.lastStrong = newProp;
        uint16_t flag = DIRPROP_FLAG(newProp);
        for (int32_t i = lastIsoRun.start; i < idx; i++) {
          mOpenings[i].flags |= flag;
        }
        /* matching brackets are not overridden by LRO/RLO */
        aLevels[aPosition] &= ~NSBIDI_LEVEL_OVERRIDE;
      }
      /* matching brackets are not overridden by LRO/RLO */
      aLevels[mOpenings[idx].position] &= ~NSBIDI_LEVEL_OVERRIDE;
      return true;
    }
    /* We get here only if the ON character is not a matching closing
       bracket or it is a case of N0d */
    /* Now see if it is an opening bracket */
    char16_t match = GetPairedBracket(aCh);
    if (match != aCh &&                 /* has a matching char */
        GetPairedBracketType(aCh) == PAIRED_BRACKET_TYPE_OPEN) { /* opening bracket */
      if (!AddOpening(match, aPosition)) {
        return false;
      }
    }
  }
  if (level & NSBIDI_LEVEL_OVERRIDE) {    /* X4, X5 */
    newProp = GET_LR_FROM_LEVEL(level);
    if (dirProp != S && dirProp != WS && dirProp != O_N) {
      aDirProps[aPosition] = newProp;
    }
    lastIsoRun.lastBase = newProp;
    lastIsoRun.lastStrong = newProp;
    lastIsoRun.contextDir = newProp;
    lastIsoRun.contextPos = aPosition;
  } else if (IS_STRONG_TYPE(dirProp)) {
    newProp = DirFromStrong(dirProp);
    lastIsoRun.lastBase = dirProp;
    lastIsoRun.lastStrong = dirProp;
    lastIsoRun.contextDir = newProp;
    lastIsoRun.contextPos = aPosition;
  } else if (dirProp == EN) {
    lastIsoRun.lastBase = EN;
    if (lastIsoRun.lastStrong == L) {
      newProp = L;                  /* W7 */
      aDirProps[aPosition] = ENL;
      lastIsoRun.contextDir = L;
      lastIsoRun.contextPos = aPosition;
    } else {
      newProp = R;                  /* N0 */
      if (lastIsoRun.lastStrong == AL) {
        aDirProps[aPosition] = AN;  /* W2 */
      } else {
        aDirProps[aPosition] = ENR;
      }
      lastIsoRun.contextDir = R;
      lastIsoRun.contextPos = aPosition;
    }
  } else if (dirProp == AN) {
    newProp = R;                      /* N0 */
    lastIsoRun.lastBase = AN;
    lastIsoRun.contextDir = R;
    lastIsoRun.contextPos = aPosition;
  } else if (dirProp == NSM) {
    /* if the last real char was ON, change NSM to ON so that it
       will stay ON even if the last real char is a bracket which
       may be changed to L or R */
    newProp = lastIsoRun.lastBase;
    if (newProp == O_N) {
      aDirProps[aPosition] = newProp;
    }
  } else {
    newProp = dirProp;
    lastIsoRun.lastBase = dirProp;
  }
  if (IS_STRONG_TYPE(newProp)) {
    uint16_t flag = DIRPROP_FLAG(DirFromStrong(newProp));
    for (int32_t i = lastIsoRun.start; i < lastIsoRun.limit; i++) {
      if (aPosition > mOpenings[i].position) {
        mOpenings[i].flags |= flag;
      }
    }
  }
  return true;
}

/* perform (X1)..(X9) ------------------------------------------------------- */

/*
 * Resolve the explicit levels as specified by explicit embedding codes.
 * Recalculate the flags to have them reflect the real properties
 * after taking the explicit embeddings into account.
 *
 * The Bidi algorithm is designed to result in the same behavior whether embedding
 * levels are externally specified (from "styled text", supposedly the preferred
 * method) or set by explicit embedding codes (LRx, RLx, PDF, FSI, PDI) in the plain text.
 * That is why (X9) instructs to remove all not-isolate explicit codes (and BN).
 * However, in a real implementation, this removal of these codes and their index
 * positions in the plain text is undesirable since it would result in
 * reallocated, reindexed text.
 * Instead, this implementation leaves the codes in there and just ignores them
 * in the subsequent processing.
 * In order to get the same reordering behavior, positions with a BN or a not-isolate
 * explicit embedding code just get the same level assigned as the last "real"
 * character.
 *
 * Some implementations, not this one, then overwrite some of these
 * directionality properties at "real" same-level-run boundaries by
 * L or R codes so that the resolution of weak types can be performed on the
 * entire paragraph at once instead of having to parse it once more and
 * perform that resolution on same-level-runs.
 * This limits the scope of the implicit rules in effectively
 * the same way as the run limits.
 *
 * Instead, this implementation does not modify these codes.
 * On one hand, the paragraph has to be scanned for same-level-runs, but
 * on the other hand, this saves another loop to reset these codes,
 * or saves making and modifying a copy of dirProps[].
 *
 *
 * Note that (Pn) and (Xn) changed significantly from version 4 of the Bidi algorithm.
 *
 *
 * Handling the stack of explicit levels (Xn):
 *
 * With the Bidi stack of explicit levels, as pushed with each
 * LRE, RLE, LRO, and RLO, LRI, RLI, and FSI and popped with each PDF and PDI,
 * the explicit level must never exceed NSBIDI_MAX_EXPLICIT_LEVEL.
 *
 * In order to have a correct push-pop semantics even in the case of overflows,
 * overflow counters and a valid isolate counter are used as described in UAX#9
 * section 3.3.2 "Explicit Levels and Direction".
 *
 * This implementation assumes that NSBIDI_MAX_EXPLICIT_LEVEL is odd.
 */

void nsBidi::ResolveExplicitLevels(nsBidiDirection *aDirection, const char16_t *aText)
{
  DirProp *dirProps=mDirProps;
  nsBidiLevel *levels=mLevels;

  int32_t i=0, length=mLength;
  Flags flags=mFlags;       /* collect all directionalities in the text */
  DirProp dirProp;
  nsBidiLevel level=mParaLevel;
  nsBidiDirection direction;

  mIsolateCount = 0;

  /* determine if the text is mixed-directional or single-directional */
  direction=DirectionFromFlags(flags);

  /* we may not need to resolve any explicit levels */
  if(direction!=NSBIDI_MIXED) {
    /* not mixed directionality: levels don't matter - trailingWSStart will be 0 */
  } else if(!(flags&(MASK_EXPLICIT|MASK_ISO))) {
    BracketData bracketData(this);
    /* no embeddings, set all levels to the paragraph level */
    for(i=0; i<length; ++i) {
      levels[i]=level;
      if (dirProps[i] == BN) {
        continue;
      }
      if (!bracketData.ProcessChar(i, aText[i], mDirProps, mLevels)) {
        NS_WARNING("BracketData::ProcessChar failed, out of memory?");
        // Ran out of memory for deeply-nested openings; give up and
        // return LTR. This could presumably result in incorrect display,
        // but in practice it won't happen except in some artificially-
        // constructed torture test -- which is just as likely to die
        // altogether with an OOM failure.
        *aDirection = NSBIDI_LTR;
        return;
      }
    }
  } else {
    /* continue to perform (Xn) */

    /* (X1) level is set for all codes, embeddingLevel keeps track of the push/pop operations */
    /* both variables may carry the NSBIDI_LEVEL_OVERRIDE flag to indicate the override status */
    nsBidiLevel embeddingLevel = level, newLevel;
    nsBidiLevel previousLevel = level;     /* previous level for regular (not CC) characters */
    int32_t lastDirControlCharPos = 0;     /* index of last effective LRx,RLx, PDx */

    uint16_t stack[NSBIDI_MAX_EXPLICIT_LEVEL + 2];   /* we never push anything >=NSBIDI_MAX_EXPLICIT_LEVEL
                                                        but we need one more entry as base */
    int32_t stackLast = 0;
    int32_t overflowIsolateCount = 0;
    int32_t overflowEmbeddingCount = 0;
    int32_t validIsolateCount = 0;

    BracketData bracketData(this);

    stack[0] = level;

    /* recalculate the flags */
    flags=0;

    /* since we assume that this is a single paragraph, we ignore (X8) */
    for(i=0; i<length; ++i) {
      dirProp=dirProps[i];
      switch(dirProp) {
        case LRE:
        case RLE:
        case LRO:
        case RLO:
          /* (X2, X3, X4, X5) */
          flags |= DIRPROP_FLAG(BN);
          levels[i] = previousLevel;
          if (dirProp == LRE || dirProp == LRO) {
            newLevel = (embeddingLevel + 2) & ~(NSBIDI_LEVEL_OVERRIDE | 1);    /* least greater even level */
          } else {
            newLevel = ((embeddingLevel & ~NSBIDI_LEVEL_OVERRIDE) + 1) | 1;    /* least greater odd level */
          }
          if(newLevel <= NSBIDI_MAX_EXPLICIT_LEVEL && overflowIsolateCount == 0 && overflowEmbeddingCount == 0) {
            lastDirControlCharPos = i;
            embeddingLevel = newLevel;
            if (dirProp == LRO || dirProp == RLO) {
              embeddingLevel |= NSBIDI_LEVEL_OVERRIDE;
            }
            stackLast++;
            stack[stackLast] = embeddingLevel;
            /* we don't need to set NSBIDI_LEVEL_OVERRIDE off for LRE and RLE
               since this has already been done for newLevel which is
               the source for embeddingLevel.
             */
          } else {
            if (overflowIsolateCount == 0) {
              overflowEmbeddingCount++;
            }
          }
          break;

        case PDF:
          /* (X7) */
          flags |= DIRPROP_FLAG(BN);
          levels[i] = previousLevel;
          /* handle all the overflow cases first */
          if (overflowIsolateCount) {
            break;
          }
          if (overflowEmbeddingCount) {
            overflowEmbeddingCount--;
            break;
          }
          if (stackLast > 0 && stack[stackLast] < ISOLATE) {   /* not an isolate entry */
            lastDirControlCharPos = i;
            stackLast--;
            embeddingLevel = stack[stackLast];
          }
          break;

        case LRI:
        case RLI:
          flags |= DIRPROP_FLAG(O_N) | DIRPROP_FLAG_LR(embeddingLevel);
          levels[i] = NO_OVERRIDE(embeddingLevel);
          if (NO_OVERRIDE(embeddingLevel) != NO_OVERRIDE(previousLevel)) {
            bracketData.ProcessBoundary(lastDirControlCharPos, previousLevel,
                                        embeddingLevel, mDirProps);
            flags |= DIRPROP_FLAG_MULTI_RUNS;
          }
          previousLevel = embeddingLevel;
          /* (X5a, X5b) */
          if (dirProp == LRI) {
            newLevel = (embeddingLevel + 2) & ~(NSBIDI_LEVEL_OVERRIDE | 1); /* least greater even level */
          } else {
            newLevel = ((embeddingLevel & ~NSBIDI_LEVEL_OVERRIDE) + 1) | 1;  /* least greater odd level */
          }
          if (newLevel <= NSBIDI_MAX_EXPLICIT_LEVEL && overflowIsolateCount == 0 && overflowEmbeddingCount == 0) {
            flags |= DIRPROP_FLAG(dirProp);
            lastDirControlCharPos = i;
            previousLevel = embeddingLevel;
            validIsolateCount++;
            if (validIsolateCount > mIsolateCount) {
              mIsolateCount = validIsolateCount;
            }
            embeddingLevel = newLevel;
            stackLast++;
            stack[stackLast] = embeddingLevel + ISOLATE;
            bracketData.ProcessLRI_RLI(embeddingLevel);
          } else {
            /* make it so that it is handled by AdjustWSLevels() */
            dirProps[i] = WS;
            overflowIsolateCount++;
          }
          break;

        case PDI:
          if (NO_OVERRIDE(embeddingLevel) != NO_OVERRIDE(previousLevel)) {
            bracketData.ProcessBoundary(lastDirControlCharPos, previousLevel,
                                        embeddingLevel, mDirProps);
            flags |= DIRPROP_FLAG_MULTI_RUNS;
          }
          /* (X6a) */
          if (overflowIsolateCount) {
            overflowIsolateCount--;
            /* make it so that it is handled by AdjustWSLevels() */
            dirProps[i] = WS;
          } else if (validIsolateCount) {
            flags |= DIRPROP_FLAG(PDI);
            lastDirControlCharPos = i;
            overflowEmbeddingCount = 0;
            while (stack[stackLast] < ISOLATE) {
              /* pop embedding entries        */
              /* until the last isolate entry */
              stackLast--;

              // Since validIsolateCount is true, there must be an isolate entry
              // on the stack, so the stack is guaranteed to not be empty.
              // Still, to eliminate a warning from coverity, we use an assertion.
              MOZ_ASSERT(stackLast > 0);
            }
            stackLast--;  /* pop also the last isolate entry */
            MOZ_ASSERT(stackLast >= 0);  // For coverity
            validIsolateCount--;
            bracketData.ProcessPDI();
          } else {
            /* make it so that it is handled by AdjustWSLevels() */
            dirProps[i] = WS;
          }
          embeddingLevel = stack[stackLast] & ~ISOLATE;
          flags |= DIRPROP_FLAG(O_N) | DIRPROP_FLAG_LR(embeddingLevel);
          previousLevel = embeddingLevel;
          levels[i] = NO_OVERRIDE(embeddingLevel);
          break;

        case B:
          /*
           * We do not expect to see a paragraph separator (B),
           */
          NS_NOTREACHED("Unexpected paragraph separator");
          break;

        case BN:
          /* BN, LRE, RLE, and PDF are supposed to be removed (X9) */
          /* they will get their levels set correctly in AdjustWSLevels() */
          levels[i] = previousLevel;
          flags |= DIRPROP_FLAG(BN);
          break;

        default:
          /* all other types get the "real" level */
          if (NO_OVERRIDE(embeddingLevel) != NO_OVERRIDE(previousLevel)) {
            bracketData.ProcessBoundary(lastDirControlCharPos, previousLevel,
                                        embeddingLevel, mDirProps);
            flags |= DIRPROP_FLAG_MULTI_RUNS;
            if (embeddingLevel & NSBIDI_LEVEL_OVERRIDE) {
              flags |= DIRPROP_FLAG_O(embeddingLevel);
            } else {
              flags |= DIRPROP_FLAG_E(embeddingLevel);
            }
          }
          previousLevel = embeddingLevel;
          levels[i] = embeddingLevel;
          if (!bracketData.ProcessChar(i, aText[i], mDirProps, mLevels)) {
            NS_WARNING("BracketData::ProcessChar failed, out of memory?");
            *aDirection = NSBIDI_LTR;
            return;
          }
          flags |= DIRPROP_FLAG(dirProps[i]);
          break;
      }
    }

    if(flags&MASK_EMBEDDING) {
      flags|=DIRPROP_FLAG_LR(mParaLevel);
    }

    /* subsequently, ignore the explicit codes and BN (X9) */

    /* again, determine if the text is mixed-directional or single-directional */
    mFlags=flags;
    direction=DirectionFromFlags(flags);
  }

  *aDirection = direction;
}

/* determine if the text is mixed-directional or single-directional */
nsBidiDirection nsBidi::DirectionFromFlags(Flags aFlags)
{
  /* if the text contains AN and neutrals, then some neutrals may become RTL */
  if(!(aFlags&MASK_RTL || (aFlags&DIRPROP_FLAG(AN) && aFlags&MASK_POSSIBLE_N))) {
    return NSBIDI_LTR;
  } else if(!(aFlags&MASK_LTR)) {
    return NSBIDI_RTL;
  } else {
    return NSBIDI_MIXED;
  }
}

/******************************************************************
 The Properties state machine table
*******************************************************************

 All table cells are 8 bits:
      bits 0..4:  next state
      bits 5..7:  action to perform (if > 0)

 Cells may be of format "n" where n represents the next state
 (except for the rightmost column).
 Cells may also be of format "s(x,y)" where x represents an action
 to perform and y represents the next state.

*******************************************************************
 Definitions and type for properties state table
*******************************************************************
*/
#define IMPTABPROPS_COLUMNS 16
#define IMPTABPROPS_RES (IMPTABPROPS_COLUMNS - 1)
#define GET_STATEPROPS(cell) ((cell)&0x1f)
#define GET_ACTIONPROPS(cell) ((cell)>>5)
#undef s
#define s(action, newState) ((uint8_t)(newState+(action<<5)))

static const uint8_t groupProp[] =          /* dirProp regrouped */
{
/*  L   R   EN  ES  ET  AN  CS  B   S   WS  ON  LRE LRO AL  RLE RLO PDF NSM BN  FSI LRI RLI PDI ENL ENR */
    0,  1,  2,  7,  8,  3,  9,  6,  5,  4,  4,  10, 10, 12, 10, 10, 10, 11, 10, 4,  4,  4,  4,  13, 14
};

/******************************************************************

      PROPERTIES  STATE  TABLE

 In table impTabProps,
      - the ON column regroups ON and WS, FSI, RLI, LRI and PDI
      - the BN column regroups BN, LRE, RLE, LRO, RLO, PDF
      - the Res column is the reduced property assigned to a run

 Action 1: process current run1, init new run1
        2: init new run2
        3: process run1, process run2, init new run1
        4: process run1, set run1=run2, init new run2

 Notes:
  1) This table is used in ResolveImplicitLevels().
  2) This table triggers actions when there is a change in the Bidi
     property of incoming characters (action 1).
  3) Most such property sequences are processed immediately (in
     fact, passed to ProcessPropertySeq().
  4) However, numbers are assembled as one sequence. This means
     that undefined situations (like CS following digits, until
     it is known if the next char will be a digit) are held until
     following chars define them.
     Example: digits followed by CS, then comes another CS or ON;
              the digits will be processed, then the CS assigned
              as the start of an ON sequence (action 3).
  5) There are cases where more than one sequence must be
     processed, for instance digits followed by CS followed by L:
     the digits must be processed as one sequence, and the CS
     must be processed as an ON sequence, all this before starting
     assembling chars for the opening L sequence.


*/
static const uint8_t impTabProps[][IMPTABPROPS_COLUMNS] =
{
/*                        L ,     R ,    EN ,    AN ,    ON ,     S ,     B ,    ES ,    ET ,    CS ,    BN ,   NSM ,    AL ,   ENL ,   ENR , Res */
/* 0 Init        */ {     1 ,     2 ,     4 ,     5 ,     7 ,    15 ,    17 ,     7 ,     9 ,     7 ,     0 ,     7 ,     3 ,    18 ,    21 , DirProp_ON },
/* 1 L           */ {     1 , s(1,2), s(1,4), s(1,5), s(1,7),s(1,15),s(1,17), s(1,7), s(1,9), s(1,7),     1 ,     1 , s(1,3),s(1,18),s(1,21),  DirProp_L },
/* 2 R           */ { s(1,1),     2 , s(1,4), s(1,5), s(1,7),s(1,15),s(1,17), s(1,7), s(1,9), s(1,7),     2 ,     2 , s(1,3),s(1,18),s(1,21),  DirProp_R },
/* 3 AL          */ { s(1,1), s(1,2), s(1,6), s(1,6), s(1,8),s(1,16),s(1,17), s(1,8), s(1,8), s(1,8),     3 ,     3 ,     3 ,s(1,18),s(1,21),  DirProp_R },
/* 4 EN          */ { s(1,1), s(1,2),     4 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,10),    11 ,s(2,10),     4 ,     4 , s(1,3),    18 ,    21 , DirProp_EN },
/* 5 AN          */ { s(1,1), s(1,2), s(1,4),     5 , s(1,7),s(1,15),s(1,17), s(1,7), s(1,9),s(2,12),     5 ,     5 , s(1,3),s(1,18),s(1,21), DirProp_AN },
/* 6 AL:EN/AN    */ { s(1,1), s(1,2),     6 ,     6 , s(1,8),s(1,16),s(1,17), s(1,8), s(1,8),s(2,13),     6 ,     6 , s(1,3),    18 ,    21 , DirProp_AN },
/* 7 ON          */ { s(1,1), s(1,2), s(1,4), s(1,5),     7 ,s(1,15),s(1,17),     7 ,s(2,14),     7 ,     7 ,     7 , s(1,3),s(1,18),s(1,21), DirProp_ON },
/* 8 AL:ON       */ { s(1,1), s(1,2), s(1,6), s(1,6),     8 ,s(1,16),s(1,17),     8 ,     8 ,     8 ,     8 ,     8 , s(1,3),s(1,18),s(1,21), DirProp_ON },
/* 9 ET          */ { s(1,1), s(1,2),     4 , s(1,5),     7 ,s(1,15),s(1,17),     7 ,     9 ,     7 ,     9 ,     9 , s(1,3),    18 ,    21 , DirProp_ON },
/*10 EN+ES/CS    */ { s(3,1), s(3,2),     4 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    10 , s(4,7), s(3,3),    18 ,    21 , DirProp_EN },
/*11 EN+ET       */ { s(1,1), s(1,2),     4 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    11 , s(1,7),    11 ,    11 , s(1,3),    18 ,    21 , DirProp_EN },
/*12 AN+CS       */ { s(3,1), s(3,2), s(3,4),     5 , s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    12 , s(4,7), s(3,3),s(3,18),s(3,21), DirProp_AN },
/*13 AL:EN/AN+CS */ { s(3,1), s(3,2),     6 ,     6 , s(4,8),s(3,16),s(3,17), s(4,8), s(4,8), s(4,8),    13 , s(4,8), s(3,3),    18 ,    21 , DirProp_AN },
/*14 ON+ET       */ { s(1,1), s(1,2), s(4,4), s(1,5),     7 ,s(1,15),s(1,17),     7 ,    14 ,     7 ,    14 ,    14 , s(1,3),s(4,18),s(4,21), DirProp_ON },
/*15 S           */ { s(1,1), s(1,2), s(1,4), s(1,5), s(1,7),    15 ,s(1,17), s(1,7), s(1,9), s(1,7),    15 , s(1,7), s(1,3),s(1,18),s(1,21),  DirProp_S },
/*16 AL:S        */ { s(1,1), s(1,2), s(1,6), s(1,6), s(1,8),    16 ,s(1,17), s(1,8), s(1,8), s(1,8),    16 , s(1,8), s(1,3),s(1,18),s(1,21),  DirProp_S },
/*17 B           */ { s(1,1), s(1,2), s(1,4), s(1,5), s(1,7),s(1,15),    17 , s(1,7), s(1,9), s(1,7),    17 , s(1,7), s(1,3),s(1,18),s(1,21),  DirProp_B },
/*18 ENL         */ { s(1,1), s(1,2),    18 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,19),    20 ,s(2,19),    18 ,    18 , s(1,3),    18 ,    21 ,  DirProp_L },
/*19 ENL+ES/CS   */ { s(3,1), s(3,2),    18 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    19 , s(4,7), s(3,3),    18 ,    21 ,  DirProp_L },
/*20 ENL+ET      */ { s(1,1), s(1,2),    18 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    20 , s(1,7),    20 ,    20 , s(1,3),    18 ,    21 ,  DirProp_L },
/*21 ENR         */ { s(1,1), s(1,2),    21 , s(1,5), s(1,7),s(1,15),s(1,17),s(2,22),    23 ,s(2,22),    21 ,    21 , s(1,3),    18 ,    21 , DirProp_AN },
/*22 ENR+ES/CS   */ { s(3,1), s(3,2),    21 , s(3,5), s(4,7),s(3,15),s(3,17), s(4,7),s(4,14), s(4,7),    22 , s(4,7), s(3,3),    18 ,    21 , DirProp_AN },
/*23 ENR+ET      */ { s(1,1), s(1,2),    21 , s(1,5), s(1,7),s(1,15),s(1,17), s(1,7),    23 , s(1,7),    23 ,    23 , s(1,3),    18 ,    21 , DirProp_AN }
};

/*  we must undef macro s because the levels table have a different
 *  structure (4 bits for action and 4 bits for next state.
 */
#undef s

/******************************************************************
 The levels state machine tables
*******************************************************************

 All table cells are 8 bits:
      bits 0..3:  next state
      bits 4..7:  action to perform (if > 0)

 Cells may be of format "n" where n represents the next state
 (except for the rightmost column).
 Cells may also be of format "s(x,y)" where x represents an action
 to perform and y represents the next state.

 This format limits each table to 16 states each and to 15 actions.

*******************************************************************
 Definitions and type for levels state tables
*******************************************************************
*/
#define IMPTABLEVELS_RES (IMPTABLEVELS_COLUMNS - 1)
#define GET_STATE(cell) ((cell)&0x0f)
#define GET_ACTION(cell) ((cell)>>4)
#define s(action, newState) ((uint8_t)(newState+(action<<4)))

/******************************************************************

      LEVELS  STATE  TABLES

 In all levels state tables,
      - state 0 is the initial state
      - the Res column is the increment to add to the text level
        for this property sequence.

 The impAct arrays for each table of a pair map the local action
 numbers of the table to the total list of actions. For instance,
 action 2 in a given table corresponds to the action number which
 appears in entry [2] of the impAct array for that table.
 The first entry of all impAct arrays must be 0.

 Action 1: init conditional sequence
        2: prepend conditional sequence to current sequence
        3: set ON sequence to new level - 1
        4: init EN/AN/ON sequence
        5: fix EN/AN/ON sequence followed by R
        6: set previous level sequence to level 2

 Notes:
  1) These tables are used in ProcessPropertySeq(). The input
     is property sequences as determined by ResolveImplicitLevels.
  2) Most such property sequences are processed immediately
     (levels are assigned).
  3) However, some sequences cannot be assigned a final level till
     one or more following sequences are received. For instance,
     ON following an R sequence within an even-level paragraph.
     If the following sequence is R, the ON sequence will be
     assigned basic run level+1, and so will the R sequence.
  4) S is generally handled like ON, since its level will be fixed
     to paragraph level in AdjustWSLevels().

*/

static const ImpTab impTabL =   /* Even paragraph level */
/*  In this table, conditional sequences receive the higher possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     0 ,     1 ,     0 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : R          */ {     0 ,     1 ,     3 ,     3 , s(1,4), s(1,4),     0 ,  1 },
/* 2 : AN         */ {     0 ,     1 ,     0 ,     2 , s(1,5), s(1,5),     0 ,  2 },
/* 3 : R+EN/AN    */ {     0 ,     1 ,     3 ,     3 , s(1,4), s(1,4),     0 ,  2 },
/* 4 : R+ON       */ { s(2,0),     1 ,     3 ,     3 ,     4 ,     4 , s(2,0),  1 },
/* 5 : AN+ON      */ { s(2,0),     1 , s(2,0),     2 ,     5 ,     5 , s(2,0),  1 }
};
static const ImpTab impTabR =   /* Odd  paragraph level */
/*  In this table, conditional sequences receive the lower possible level
    until proven otherwise.
*/
{
/*                         L ,     R ,    EN ,    AN ,    ON ,     S ,     B , Res */
/* 0 : init       */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  0 },
/* 1 : L          */ {     1 ,     0 ,     1 ,     3 , s(1,4), s(1,4),     0 ,  1 },
/* 2 : EN/AN      */ {     1 ,     0 ,     2 ,     2 ,     0 ,     0 ,     0 ,  1 },
/* 3 : L+AN       */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  1 },
/* 4 : L+ON       */ { s(2,1),     0 , s(2,1),     3 ,     4 ,     4 ,     0 ,  0 },
/* 5 : L+AN+ON    */ {     1 ,     0 ,     1 ,     3 ,     5 ,     5 ,     0 ,  0 }
};

#undef s

static ImpAct impAct0 = {0,1,2,3,4,5,6};
static PImpTab impTab[2] = {impTabL, impTabR};

/*------------------------------------------------------------------------*/

/* perform rules (Wn), (Nn), and (In) on a run of the text ------------------ */

/*
 * This implementation of the (Wn) rules applies all rules in one pass.
 * In order to do so, it needs a look-ahead of typically 1 character
 * (except for W5: sequences of ET) and keeps track of changes
 * in a rule Wp that affect a later Wq (p<q).
 *
 * The (Nn) and (In) rules are also performed in that same single loop,
 * but effectively one iteration behind for white space.
 *
 * Since all implicit rules are performed in one step, it is not necessary
 * to actually store the intermediate directional properties in dirProps[].
 */

void nsBidi::ProcessPropertySeq(LevState *pLevState, uint8_t _prop, int32_t start, int32_t limit)
{
  uint8_t cell, oldStateSeq, actionSeq;
  PImpTab pImpTab = pLevState->pImpTab;
  PImpAct pImpAct = pLevState->pImpAct;
  nsBidiLevel* levels = mLevels;
  nsBidiLevel level, addLevel;
  int32_t start0, k;

  start0 = start;                         /* save original start position */
  oldStateSeq = (uint8_t)pLevState->state;
  cell = pImpTab[oldStateSeq][_prop];
  pLevState->state = GET_STATE(cell);       /* isolate the new state */
  actionSeq = pImpAct[GET_ACTION(cell)]; /* isolate the action */
  addLevel = pImpTab[pLevState->state][IMPTABLEVELS_RES];

  if(actionSeq) {
    switch(actionSeq) {
    case 1:                         /* init ON seq */
      pLevState->startON = start0;
      break;

    case 2:                         /* prepend ON seq to current seq */
      MOZ_ASSERT(pLevState->startON >= 0, "no valid ON sequence start!");
      start = pLevState->startON;
      break;

    default:                        /* we should never get here */
      MOZ_ASSERT(false);
      break;
    }
  }
  if(addLevel || (start < start0)) {
    level = pLevState->runLevel + addLevel;
    if (start >= pLevState->runStart) {
      for (k = start; k < limit; k++) {
        levels[k] = level;
      }
    } else {
      DirProp *dirProps = mDirProps, dirProp;
      int32_t isolateCount = 0;
      for (k = start; k < limit; k++) {
        dirProp = dirProps[k];
        if (dirProp == PDI) {
          isolateCount--;
        }
        if (isolateCount == 0) {
          levels[k]=level;
        }
        if (dirProp == LRI || dirProp == RLI) {
          isolateCount++;
        }
      }
    }
  }
}

void nsBidi::ResolveImplicitLevels(int32_t aStart, int32_t aLimit,
                   DirProp aSOR, DirProp aEOR)
{
  const DirProp *dirProps = mDirProps;
  DirProp dirProp;
  LevState levState;
  int32_t i, start1, start2;
  uint16_t oldStateImp, stateImp, actionImp;
  uint8_t gprop, resProp, cell;

  /* initialize for property and levels state tables */
  levState.runStart = aStart;
  levState.runLevel = mLevels[aStart];
  levState.pImpTab = impTab[levState.runLevel & 1];
  levState.pImpAct = impAct0;
  levState.startON = -1; /* initialize to invalid start position */

  /* The isolates[] entries contain enough information to
     resume the bidi algorithm in the same state as it was
     when it was interrupted by an isolate sequence. */
  if (dirProps[aStart] == PDI && mIsolateCount >= 0) {
    start1 = mIsolates[mIsolateCount].start1;
    stateImp = mIsolates[mIsolateCount].stateImp;
    levState.state = mIsolates[mIsolateCount].state;
    mIsolateCount--;
  } else {
    levState.startON = -1;
    start1 = aStart;
    if (dirProps[aStart] == NSM) {
      stateImp = 1 + aSOR;
    } else {
      stateImp = 0;
    }
    levState.state = 0;
    ProcessPropertySeq(&levState, aSOR, aStart, aStart);
  }
  start2 = aStart;

  for (i = aStart; i <= aLimit; i++) {
    if (i >= aLimit) {
      int32_t k;
      for (k = aLimit - 1;
           k > aStart && (DIRPROP_FLAG(dirProps[k]) & MASK_BN_EXPLICIT); k--) {
        // empty loop body
      }
      dirProp = mDirProps[k];
      if (dirProp == LRI || dirProp == RLI) {
        break;  /* no forced closing for sequence ending with LRI/RLI */
      }
      gprop = aEOR;
    } else {
      DirProp prop;
      prop = dirProps[i];
      gprop = groupProp[prop];
    }
    oldStateImp = stateImp;
    cell = impTabProps[oldStateImp][gprop];
    stateImp = GET_STATEPROPS(cell);      /* isolate the new state */
    actionImp = GET_ACTIONPROPS(cell);    /* isolate the action */
    if ((i == aLimit) && (actionImp == 0)) {
      /* there is an unprocessed sequence if its property == eor   */
      actionImp = 1;                      /* process the last sequence */
    }
    if (actionImp) {
      resProp = impTabProps[oldStateImp][IMPTABPROPS_RES];
      switch (actionImp) {
      case 1:             /* process current seq1, init new seq1 */
        ProcessPropertySeq(&levState, resProp, start1, i);
        start1 = i;
        break;
      case 2:             /* init new seq2 */
        start2 = i;
        break;
      case 3:             /* process seq1, process seq2, init new seq1 */
        ProcessPropertySeq(&levState, resProp, start1, start2);
        ProcessPropertySeq(&levState, DirProp_ON, start2, i);
        start1 = i;
        break;
      case 4:             /* process seq1, set seq1=seq2, init new seq2 */
        ProcessPropertySeq(&levState, resProp, start1, start2);
        start1 = start2;
        start2 = i;
        break;
      default:            /* we should never get here */
        MOZ_ASSERT(false);
        break;
      }
    }
  }

  for (i = aLimit - 1;
       i > aStart && (DIRPROP_FLAG(dirProps[i]) & MASK_BN_EXPLICIT); i--) {
    // empty loop body
  }
  dirProp = dirProps[i];
  if ((dirProp == LRI || dirProp == RLI) && aLimit < mLength) {
    mIsolateCount++;
    mIsolates[mIsolateCount].stateImp = stateImp;
    mIsolates[mIsolateCount].state = levState.state;
    mIsolates[mIsolateCount].start1 = start1;
  } else {
    ProcessPropertySeq(&levState, aEOR, aLimit, aLimit);
  }
}


/* perform (L1) and (X9) ---------------------------------------------------- */

/*
 * Reset the embedding levels for some non-graphic characters (L1).
 * This function also sets appropriate levels for BN, and
 * explicit embedding types that are supposed to have been removed
 * from the paragraph in (X9).
 */
void nsBidi::AdjustWSLevels()
{
  const DirProp *dirProps=mDirProps;
  nsBidiLevel *levels=mLevels;
  int32_t i;

  if(mFlags&MASK_WS) {
    nsBidiLevel paraLevel=mParaLevel;
    Flags flag;

    i=mTrailingWSStart;
    while(i>0) {
      /* reset a sequence of WS/BN before eop and B/S to the paragraph paraLevel */
      while (i > 0 && DIRPROP_FLAG(dirProps[--i]) & MASK_WS) {
        levels[i]=paraLevel;
      }

      /* reset BN to the next character's paraLevel until B/S, which restarts above loop */
      /* here, i+1 is guaranteed to be <length */
      while(i>0) {
        flag = DIRPROP_FLAG(dirProps[--i]);
        if(flag&MASK_BN_EXPLICIT) {
          levels[i]=levels[i+1];
        } else if(flag&MASK_B_S) {
          levels[i]=paraLevel;
          break;
        }
      }
    }
  }
}

nsresult nsBidi::GetDirection(nsBidiDirection* aDirection)
{
  *aDirection = mDirection;
  return NS_OK;
}

nsresult nsBidi::GetParaLevel(nsBidiLevel* aParaLevel)
{
  *aParaLevel = mParaLevel;
  return NS_OK;
}

nsresult nsBidi::GetLogicalRun(int32_t aLogicalStart, int32_t *aLogicalLimit, nsBidiLevel *aLevel)
{
  int32_t length = mLength;

  if(aLogicalStart<0 || length<=aLogicalStart) {
    return NS_ERROR_INVALID_ARG;
  }

  int32_t runCount, visualStart, logicalLimit, logicalFirst, i;
  Run iRun;

  /* CountRuns will check VALID_PARA_OR_LINE */
  nsresult rv = CountRuns(&runCount);
  if (NS_FAILED(rv)) {
    return rv;
  }

  visualStart = logicalLimit = 0;
  iRun = mRuns[0];

  for (i = 0; i < runCount; i++) {
    iRun = mRuns[i];
    logicalFirst = GET_INDEX(iRun.logicalStart);
    logicalLimit = logicalFirst + iRun.visualLimit - visualStart;
    if ((aLogicalStart >= logicalFirst) && (aLogicalStart < logicalLimit)) {
       break;
    }
    visualStart = iRun.visualLimit;
  }
  if (aLogicalLimit) {
    *aLogicalLimit = logicalLimit;
  }
  if (aLevel) {
    if (mDirection != NSBIDI_MIXED || aLogicalStart >= mTrailingWSStart) {
      *aLevel = mParaLevel;
    } else {
      *aLevel = mLevels[aLogicalStart];
    }
  }
  return NS_OK;
}

/* runs API functions ------------------------------------------------------- */

nsresult nsBidi::CountRuns(int32_t* aRunCount)
{
  if(mRunCount<0 && !GetRuns()) {
    return NS_ERROR_OUT_OF_MEMORY;
  } else {
    if (aRunCount)
      *aRunCount = mRunCount;
    return NS_OK;
  }
}

nsresult nsBidi::GetVisualRun(int32_t aRunIndex, int32_t *aLogicalStart, int32_t *aLength, nsBidiDirection *aDirection)
{
  if( aRunIndex<0 ||
      (mRunCount==-1 && !GetRuns()) ||
      aRunIndex>=mRunCount
    ) {
    *aDirection = NSBIDI_LTR;
    return NS_OK;
  } else {
    int32_t start=mRuns[aRunIndex].logicalStart;
    if(aLogicalStart!=nullptr) {
      *aLogicalStart=GET_INDEX(start);
    }
    if(aLength!=nullptr) {
      if(aRunIndex>0) {
        *aLength=mRuns[aRunIndex].visualLimit-
             mRuns[aRunIndex-1].visualLimit;
      } else {
        *aLength=mRuns[0].visualLimit;
      }
    }
    *aDirection = (nsBidiDirection)GET_ODD_BIT(start);
    return NS_OK;
  }
}

/* compute the runs array --------------------------------------------------- */

/*
 * Compute the runs array from the levels array.
 * After GetRuns() returns true, runCount is guaranteed to be >0
 * and the runs are reordered.
 * Odd-level runs have visualStart on their visual right edge and
 * they progress visually to the left.
 */
bool nsBidi::GetRuns()
{
  /*
   * This method returns immediately if the runs are already set. This
   * includes the case of length==0 (handled in setPara)..
   */
  if (mRunCount >= 0) {
    return true;
  }

  if(mDirection!=NSBIDI_MIXED) {
    /* simple, single-run case - this covers length==0 */
    GetSingleRun(mParaLevel);
  } else /* NSBIDI_MIXED, length>0 */ {
    /* mixed directionality */
    int32_t length=mLength, limit=mTrailingWSStart;

    /*
     * If there are WS characters at the end of the line
     * and the run preceding them has a level different from
     * paraLevel, then they will form their own run at paraLevel (L1).
     * Count them separately.
     * We need some special treatment for this in order to not
     * modify the levels array which a line nsBidi object shares
     * with its paragraph parent and its other line siblings.
     * In other words, for the trailing WS, it may be
     * levels[]!=paraLevel but we have to treat it like it were so.
     */
    nsBidiLevel *levels=mLevels;
    int32_t i, runCount;
    nsBidiLevel level=NSBIDI_DEFAULT_LTR;   /* initialize with no valid level */

    /* count the runs, there is at least one non-WS run, and limit>0 */
    runCount=0;
    for(i=0; i<limit; ++i) {
      /* increment runCount at the start of each run */
      if(levels[i]!=level) {
        ++runCount;
        level=levels[i];
      }
    }

    /*
     * We don't need to see if the last run can be merged with a trailing
     * WS run because SetTrailingWSStart() would have done that.
     */
    if(runCount==1 && limit==length) {
      /* There is only one non-WS run and no trailing WS-run. */
      GetSingleRun(levels[0]);
    } else /* runCount>1 || limit<length */ {
      /* allocate and set the runs */
      Run *runs;
      int32_t runIndex, start;
      nsBidiLevel minLevel=NSBIDI_MAX_EXPLICIT_LEVEL+1, maxLevel=0;

      /* now, count a (non-mergable) WS run */
      if(limit<length) {
        ++runCount;
      }

      /* runCount>1 */
      if(GETRUNSMEMORY(runCount)) {
        runs=mRunsMemory;
      } else {
        return false;
      }

      /* set the runs */
      /* this could be optimized, e.g.: 464->444, 484->444, 575->555, 595->555 */
      /* however, that would take longer and make other functions more complicated */
      runIndex=0;

      /* search for the run ends */
      i = 0;
      do {
        /* prepare this run */
        start = i;
        level = levels[i];
        if(level<minLevel) {
          minLevel=level;
        }
        if(level>maxLevel) {
          maxLevel=level;
        }

        /* look for the run limit */
        while (++i < limit && levels[i] == level) {
        }

        /* i is another run limit */
        runs[runIndex].logicalStart = start;
        runs[runIndex].visualLimit = i - start;
        ++runIndex;
      } while (i < limit);

      if(limit<length) {
        /* there is a separate WS run */
        runs[runIndex].logicalStart=limit;
        runs[runIndex].visualLimit=length-limit;
        if(mParaLevel<minLevel) {
          minLevel=mParaLevel;
        }
      }

      /* set the object fields */
      mRuns=runs;
      mRunCount=runCount;

      ReorderLine(minLevel, maxLevel);

      /* now add the direction flags and adjust the visualLimit's to be just that */
      /* this loop will also handling the trailing WS run */
      limit = 0;
      for (i = 0; i < runCount; ++i) {
        ADD_ODD_BIT_FROM_LEVEL(runs[i].logicalStart, levels[runs[i].logicalStart]);
        limit += runs[i].visualLimit;
        runs[i].visualLimit = limit;
      }

      /* Set the "odd" bit for the trailing WS run. */
      /* For a RTL paragraph, it will be the *first* run in visual order. */
      if (runIndex < runCount) {
        int32_t trailingRun = (mParaLevel & 1) ? 0 : runIndex;
        ADD_ODD_BIT_FROM_LEVEL(runs[trailingRun].logicalStart, mParaLevel);
      }
    }
  }

  return true;
}

/* in trivial cases there is only one trivial run; called by GetRuns() */
void nsBidi::GetSingleRun(nsBidiLevel aLevel)
{
  /* simple, single-run case */
  mRuns=mSimpleRuns;
  mRunCount=1;

  /* fill and reorder the single run */
  mRuns[0].logicalStart=MAKE_INDEX_ODD_PAIR(0, aLevel);
  mRuns[0].visualLimit=mLength;
}

/* reorder the runs array (L2) ---------------------------------------------- */

/*
 * Reorder the same-level runs in the runs array.
 * Here, runCount>1 and maxLevel>=minLevel>=paraLevel.
 * All the visualStart fields=logical start before reordering.
 * The "odd" bits are not set yet.
 *
 * Reordering with this data structure lends itself to some handy shortcuts:
 *
 * Since each run is moved but not modified, and since at the initial maxLevel
 * each sequence of same-level runs consists of only one run each, we
 * don't need to do anything there and can predecrement maxLevel.
 * In many simple cases, the reordering is thus done entirely in the
 * index mapping.
 * Also, reordering occurs only down to the lowest odd level that occurs,
 * which is minLevel|1. However, if the lowest level itself is odd, then
 * in the last reordering the sequence of the runs at this level or higher
 * will be all runs, and we don't need the elaborate loop to search for them.
 * This is covered by ++minLevel instead of minLevel|=1 followed
 * by an extra reorder-all after the reorder-some loop.
 * About a trailing WS run:
 * Such a run would need special treatment because its level is not
 * reflected in levels[] if this is not a paragraph object.
 * Instead, all characters from trailingWSStart on are implicitly at
 * paraLevel.
 * However, for all maxLevel>paraLevel, this run will never be reordered
 * and does not need to be taken into account. maxLevel==paraLevel is only reordered
 * if minLevel==paraLevel is odd, which is done in the extra segment.
 * This means that for the main reordering loop we don't need to consider
 * this run and can --runCount. If it is later part of the all-runs
 * reordering, then runCount is adjusted accordingly.
 */
void nsBidi::ReorderLine(nsBidiLevel aMinLevel, nsBidiLevel aMaxLevel)
{
  Run *runs, tempRun;
  nsBidiLevel *levels;
  int32_t firstRun, endRun, limitRun, runCount;

  /* nothing to do? */
  if(aMaxLevel<=(aMinLevel|1)) {
    return;
  }

  /*
   * Reorder only down to the lowest odd level
   * and reorder at an odd aMinLevel in a separate, simpler loop.
   * See comments above for why aMinLevel is always incremented.
   */
  ++aMinLevel;

  runs=mRuns;
  levels=mLevels;
  runCount=mRunCount;

  /* do not include the WS run at paraLevel<=old aMinLevel except in the simple loop */
  if(mTrailingWSStart<mLength) {
    --runCount;
  }

  while(--aMaxLevel>=aMinLevel) {
    firstRun=0;

    /* loop for all sequences of runs */
    for(;;) {
      /* look for a sequence of runs that are all at >=aMaxLevel */
      /* look for the first run of such a sequence */
      while(firstRun<runCount && levels[runs[firstRun].logicalStart]<aMaxLevel) {
        ++firstRun;
      }
      if(firstRun>=runCount) {
        break;  /* no more such runs */
      }

      /* look for the limit run of such a sequence (the run behind it) */
      for(limitRun=firstRun; ++limitRun<runCount && levels[runs[limitRun].logicalStart]>=aMaxLevel;) {}

      /* Swap the entire sequence of runs from firstRun to limitRun-1. */
      endRun=limitRun-1;
      while(firstRun<endRun) {
        tempRun = runs[firstRun];
        runs[firstRun] = runs[endRun];
        runs[endRun] = tempRun;
        ++firstRun;
        --endRun;
      }

      if(limitRun==runCount) {
        break;  /* no more such runs */
      } else {
        firstRun=limitRun+1;
      }
    }
  }

  /* now do aMaxLevel==old aMinLevel (==odd!), see above */
  if(!(aMinLevel&1)) {
    firstRun=0;

    /* include the trailing WS run in this complete reordering */
    if(mTrailingWSStart==mLength) {
      --runCount;
    }

    /* Swap the entire sequence of all runs. (endRun==runCount) */
    while(firstRun<runCount) {
      tempRun = runs[firstRun];
      runs[firstRun] = runs[runCount];
      runs[runCount] = tempRun;
      ++firstRun;
      --runCount;
    }
  }
}

nsresult nsBidi::ReorderVisual(const nsBidiLevel *aLevels, int32_t aLength, int32_t *aIndexMap)
{
  int32_t start, end, limit, temp;
  nsBidiLevel minLevel, maxLevel;

  if(aIndexMap==nullptr ||
     !PrepareReorder(aLevels, aLength, aIndexMap, &minLevel, &maxLevel)) {
    return NS_OK;
  }

  /* nothing to do? */
  if(minLevel==maxLevel && (minLevel&1)==0) {
    return NS_OK;
  }

  /* reorder only down to the lowest odd level */
  minLevel|=1;

  /* loop maxLevel..minLevel */
  do {
    start=0;

    /* loop for all sequences of levels to reorder at the current maxLevel */
    for(;;) {
      /* look for a sequence of levels that are all at >=maxLevel */
      /* look for the first index of such a sequence */
      while(start<aLength && aLevels[start]<maxLevel) {
        ++start;
      }
      if(start>=aLength) {
        break;  /* no more such runs */
      }

      /* look for the limit of such a sequence (the index behind it) */
      for(limit=start; ++limit<aLength && aLevels[limit]>=maxLevel;) {}

      /*
       * Swap the entire interval of indexes from start to limit-1.
       * We don't need to swap the levels for the purpose of this
       * algorithm: the sequence of levels that we look at does not
       * move anyway.
       */
      end=limit-1;
      while(start<end) {
        temp=aIndexMap[start];
        aIndexMap[start]=aIndexMap[end];
        aIndexMap[end]=temp;

        ++start;
        --end;
      }

      if(limit==aLength) {
        break;  /* no more such sequences */
      } else {
        start=limit+1;
      }
    }
  } while(--maxLevel>=minLevel);

  return NS_OK;
}

bool nsBidi::PrepareReorder(const nsBidiLevel *aLevels, int32_t aLength,
                int32_t *aIndexMap,
                nsBidiLevel *aMinLevel, nsBidiLevel *aMaxLevel)
{
  int32_t start;
  nsBidiLevel level, minLevel, maxLevel;

  if(aLevels==nullptr || aLength<=0) {
    return false;
  }

  /* determine minLevel and maxLevel */
  minLevel=NSBIDI_MAX_EXPLICIT_LEVEL+1;
  maxLevel=0;
  for(start=aLength; start>0;) {
    level=aLevels[--start];
    if(level>NSBIDI_MAX_EXPLICIT_LEVEL+1) {
      return false;
    }
    if(level<minLevel) {
      minLevel=level;
    }
    if(level>maxLevel) {
      maxLevel=level;
    }
  }
  *aMinLevel=minLevel;
  *aMaxLevel=maxLevel;

  /* initialize the index map */
  for(start=aLength; start>0;) {
    --start;
    aIndexMap[start]=start;
  }

  return true;
}