summaryrefslogtreecommitdiffstats
path: root/js/src/threading/posix/ConditionVariable.cpp
blob: 35a90c604cefe5fc81ac8e55269c3b77877d8d4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"

#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include "threading/ConditionVariable.h"
#include "threading/Mutex.h"
#include "threading/posix/MutexPlatformData.h"

using mozilla::CheckedInt;
using mozilla::TimeDuration;
using mozilla::TimeStamp;

static const long NanoSecPerSec = 1000000000;

// Android 32-bit & macOS 10.12 has the clock functions, but not pthread_condattr_setclock.
#if defined(HAVE_CLOCK_MONOTONIC) && \
    !(defined(__ANDROID__) && !defined(__LP64__)) && !defined(__APPLE__)
# define USE_CLOCK_API
#endif

#ifdef USE_CLOCK_API
// The C++ specification defines std::condition_variable::wait_for in terms of
// std::chrono::steady_clock, which is closest to CLOCK_MONOTONIC.
static const clockid_t WhichClock = CLOCK_MONOTONIC;

// While timevaladd is widely available to work with timevals, the newer
// timespec structure is largely lacking such conveniences. Thankfully, the
// utilities available in MFBT make implementing our own quite easy.
static void
moz_timespecadd(struct timespec* lhs, struct timespec* rhs, struct timespec* result)
{
  // Add nanoseconds. This may wrap, but not above 2 billion.
  MOZ_RELEASE_ASSERT(lhs->tv_nsec < NanoSecPerSec);
  MOZ_RELEASE_ASSERT(rhs->tv_nsec < NanoSecPerSec);
  result->tv_nsec = lhs->tv_nsec + rhs->tv_nsec;

  // Add seconds, checking for overflow in the platform specific time_t type.
  CheckedInt<time_t> sec = CheckedInt<time_t>(lhs->tv_sec) + rhs->tv_sec;

  // If nanoseconds overflowed, carry the result over into seconds.
  if (result->tv_nsec >= NanoSecPerSec) {
    MOZ_RELEASE_ASSERT(result->tv_nsec < 2 * NanoSecPerSec);
    result->tv_nsec -= NanoSecPerSec;
    sec += 1;
  }

  // Extracting the value asserts that there was no overflow.
  MOZ_RELEASE_ASSERT(sec.isValid());
  result->tv_sec = sec.value();
}
#endif

struct js::ConditionVariable::PlatformData
{
  pthread_cond_t ptCond;
};

js::ConditionVariable::ConditionVariable()
{
  pthread_cond_t* ptCond = &platformData()->ptCond;

#ifdef USE_CLOCK_API
  pthread_condattr_t attr;
  int r0 = pthread_condattr_init(&attr);
  MOZ_RELEASE_ASSERT(!r0);

  int r1 = pthread_condattr_setclock(&attr, WhichClock);
  MOZ_RELEASE_ASSERT(!r1);

  int r2 = pthread_cond_init(ptCond, &attr);
  MOZ_RELEASE_ASSERT(!r2);

  int r3 = pthread_condattr_destroy(&attr);
  MOZ_RELEASE_ASSERT(!r3);
#else
  int r = pthread_cond_init(ptCond, NULL);
  MOZ_RELEASE_ASSERT(!r);
#endif
}

js::ConditionVariable::~ConditionVariable()
{
  int r = pthread_cond_destroy(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
js::ConditionVariable::notify_one()
{
  int r = pthread_cond_signal(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
js::ConditionVariable::notify_all()
{
  int r = pthread_cond_broadcast(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
js::ConditionVariable::wait(UniqueLock<Mutex>& lock)
{
  pthread_cond_t* ptCond = &platformData()->ptCond;
  pthread_mutex_t* ptMutex = &lock.lock.platformData()->ptMutex;

  int r = pthread_cond_wait(ptCond, ptMutex);
  MOZ_RELEASE_ASSERT(r == 0);
}

js::CVStatus
js::ConditionVariable::wait_until(UniqueLock<Mutex>& lock,
                                  const TimeStamp& abs_time)
{
  return wait_for(lock, abs_time - TimeStamp::Now());
}

js::CVStatus
js::ConditionVariable::wait_for(UniqueLock<Mutex>& lock,
                                const TimeDuration& a_rel_time)
{
  if (a_rel_time == TimeDuration::Forever()) {
    wait(lock);
    return CVStatus::NoTimeout;
  }

  pthread_cond_t* ptCond = &platformData()->ptCond;
  pthread_mutex_t* ptMutex = &lock.lock.platformData()->ptMutex;
  int r;

  // Clamp to 0, as time_t is unsigned.
  TimeDuration rel_time = a_rel_time < TimeDuration::FromSeconds(0)
                          ? TimeDuration::FromSeconds(0)
                          : a_rel_time;

  // Convert the duration to a timespec.
  struct timespec rel_ts;
  rel_ts.tv_sec = static_cast<time_t>(rel_time.ToSeconds());
  rel_ts.tv_nsec = static_cast<uint64_t>(rel_time.ToMicroseconds() * 1000.0) % NanoSecPerSec;

#ifdef USE_CLOCK_API
  struct timespec now_ts;
  r = clock_gettime(WhichClock, &now_ts);
  MOZ_RELEASE_ASSERT(!r);

  struct timespec abs_ts;
  moz_timespecadd(&now_ts, &rel_ts, &abs_ts);

  r = pthread_cond_timedwait(ptCond, ptMutex, &abs_ts);
#else
  // Our non-clock-supporting platforms, OS X and Android, do support waiting
  // on a condition variable with a relative timeout.
  r = pthread_cond_timedwait_relative_np(ptCond, ptMutex, &rel_ts);
#endif

  if (r == 0) {
    return CVStatus::NoTimeout;
  }
  MOZ_RELEASE_ASSERT(r == ETIMEDOUT);
  return CVStatus::Timeout;
}

js::ConditionVariable::PlatformData*
js::ConditionVariable::platformData()
{
  static_assert(sizeof platformData_ >= sizeof(PlatformData),
                "platformData_ is too small");
  return reinterpret_cast<PlatformData*>(platformData_);
}