1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/* -*- tab-width: 2; indent-tabs-mode: nil; js-indent-level: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
File Name: 15.1.2.4.js
ECMA Section: 15.1.2.4 Function properties of the global object
escape( string )
Description:
The escape function computes a new version of a string value in which
certain characters have been replaced by a hexadecimal escape sequence.
The result thus contains no special characters that might have special
meaning within a URL.
For characters whose Unicode encoding is 0xFF or less, a two-digit
escape sequence of the form %xx is used in accordance with RFC1738.
For characters whose Unicode encoding is greater than 0xFF, a four-
digit escape sequence of the form %uxxxx is used.
When the escape function is called with one argument string, the
following steps are taken:
1. Call ToString(string).
2. Compute the number of characters in Result(1).
3. Let R be the empty string.
4. Let k be 0.
5. If k equals Result(2), return R.
6. Get the character at position k within Result(1).
7. If Result(6) is one of the 69 nonblank ASCII characters
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz
0123456789 @*_+-./, go to step 14.
8. Compute the 16-bit unsigned integer that is the Unicode character
encoding of Result(6).
9. If Result(8), is less than 256, go to step 12.
10. Let S be a string containing six characters "%uwxyz" where wxyz are
four hexadecimal digits encoding the value of Result(8).
11. Go to step 15.
12. Let S be a string containing three characters "%xy" where xy are two
hexadecimal digits encoding the value of Result(8).
13. Go to step 15.
14. Let S be a string containing the single character Result(6).
15. Let R be a new string value computed by concatenating the previous value
of R and S.
16. Increase k by 1.
17. Go to step 5.
Author: christine@netscape.com
Date: 28 october 1997
*/
var SECTION = "15.1.2.4";
var VERSION = "ECMA_1";
startTest();
var TITLE = "escape(string)";
writeHeaderToLog( SECTION + " "+ TITLE);
new TestCase( SECTION, "escape.length", 1, escape.length );
new TestCase( SECTION, "escape.length = null; escape.length", 1, eval("escape.length = null; escape.length") );
new TestCase( SECTION, "var MYPROPS=''; for ( var p in escape ) { MYPROPS+= p}; MYPROPS", "", eval("var MYPROPS=''; for ( var p in escape ) { MYPROPS+= p}; MYPROPS") );
new TestCase( SECTION, "escape()", "undefined", escape() );
new TestCase( SECTION, "escape('')", "", escape('') );
new TestCase( SECTION, "escape( null )", "null", escape(null) );
new TestCase( SECTION, "escape( void 0 )", "undefined", escape(void 0) );
new TestCase( SECTION, "escape( true )", "true", escape( true ) );
new TestCase( SECTION, "escape( false )", "false", escape( false ) );
new TestCase( SECTION, "escape( new Boolean(true) )", "true", escape(new Boolean(true)) );
new TestCase( SECTION, "escape( new Boolean(false) )", "false", escape(new Boolean(false)) );
new TestCase( SECTION, "escape( Number.NaN )", "NaN", escape(Number.NaN) );
new TestCase( SECTION, "escape( -0 )", "0", escape( -0 ) );
new TestCase( SECTION, "escape( 'Infinity' )", "Infinity", escape( "Infinity" ) );
new TestCase( SECTION, "escape( Number.POSITIVE_INFINITY )", "Infinity", escape( Number.POSITIVE_INFINITY ) );
new TestCase( SECTION, "escape( Number.NEGATIVE_INFINITY )", "-Infinity", escape( Number.NEGATIVE_INFINITY ) );
var ASCII_TEST_STRING = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789@*_+-./";
new TestCase( SECTION, "escape( " +ASCII_TEST_STRING+" )", ASCII_TEST_STRING, escape( ASCII_TEST_STRING ) );
// ASCII value less than
for ( var CHARCODE = 0; CHARCODE < 32; CHARCODE++ ) {
new TestCase( SECTION,
"escape(String.fromCharCode("+CHARCODE+"))",
"%"+ToHexString(CHARCODE),
escape(String.fromCharCode(CHARCODE)) );
}
for ( var CHARCODE = 128; CHARCODE < 256; CHARCODE++ ) {
new TestCase( SECTION,
"escape(String.fromCharCode("+CHARCODE+"))",
"%"+ToHexString(CHARCODE),
escape(String.fromCharCode(CHARCODE)) );
}
for ( var CHARCODE = 256; CHARCODE < 1024; CHARCODE++ ) {
new TestCase( SECTION,
"escape(String.fromCharCode("+CHARCODE+"))",
"%u"+ ToUnicodeString(CHARCODE),
escape(String.fromCharCode(CHARCODE)) );
}
for ( var CHARCODE = 65500; CHARCODE < 65536; CHARCODE++ ) {
new TestCase( SECTION,
"escape(String.fromCharCode("+CHARCODE+"))",
"%u"+ ToUnicodeString(CHARCODE),
escape(String.fromCharCode(CHARCODE)) );
}
test();
function ToUnicodeString( n ) {
var string = ToHexString(n);
for ( var PAD = (4 - string.length ); PAD > 0; PAD-- ) {
string = "0" + string;
}
return string;
}
function ToHexString( n ) {
var hex = new Array();
for ( var mag = 1; Math.pow(16,mag) <= n ; mag++ ) {
;
}
for ( index = 0, mag -= 1; mag > 0; index++, mag-- ) {
hex[index] = Math.floor( n / Math.pow(16,mag) );
n -= Math.pow(16,mag) * Math.floor( n/Math.pow(16,mag) );
}
hex[hex.length] = n % 16;
var string ="";
for ( var index = 0 ; index < hex.length ; index++ ) {
switch ( hex[index] ) {
case 10:
string += "A";
break;
case 11:
string += "B";
break;
case 12:
string += "C";
break;
case 13:
string += "D";
break;
case 14:
string += "E";
break;
case 15:
string += "F";
break;
default:
string += hex[index];
}
}
if ( string.length == 1 ) {
string = "0" + string;
}
return string;
}
|