summaryrefslogtreecommitdiffstats
path: root/js/src/regexp/regexp-macro-assembler.cc
blob: 4a8dcd3ce8cf062a83100672f47f052cfcc0b216 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "regexp/regexp-macro-assembler.h"

#include "regexp/regexp-stack.h"

#ifdef V8_INTL_SUPPORT
#include "unicode/uchar.h"
#include "unicode/unistr.h"
#endif  // V8_INTL_SUPPORT

namespace v8 {
namespace internal {

RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone)
    : slow_safe_compiler_(false),
      global_mode_(NOT_GLOBAL),
      isolate_(isolate),
      zone_(zone) {}

RegExpMacroAssembler::~RegExpMacroAssembler() = default;

int RegExpMacroAssembler::CaseInsensitiveCompareUC16(Address byte_offset1,
                                                     Address byte_offset2,
                                                     size_t byte_length,
                                                     Isolate* isolate) {
  // This function is not allowed to cause a garbage collection.
  // A GC might move the calling generated code and invalidate the
  // return address on the stack.
  DCHECK_EQ(0, byte_length % 2);

#ifdef V8_INTL_SUPPORT
  int32_t length = (int32_t)(byte_length >> 1);
  icu::UnicodeString uni_str_1(reinterpret_cast<const char16_t*>(byte_offset1),
                               length);
  return uni_str_1.caseCompare(reinterpret_cast<const char16_t*>(byte_offset2),
                               length, U_FOLD_CASE_DEFAULT) == 0;
#else
  uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1);
  uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2);
  size_t length = byte_length >> 1;
  DCHECK_NOT_NULL(isolate);
  unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
      isolate->regexp_macro_assembler_canonicalize();
  for (size_t i = 0; i < length; i++) {
    unibrow::uchar c1 = substring1[i];
    unibrow::uchar c2 = substring2[i];
    if (c1 != c2) {
      unibrow::uchar s1[1] = {c1};
      canonicalize->get(c1, '\0', s1);
      if (s1[0] != c2) {
        unibrow::uchar s2[1] = {c2};
        canonicalize->get(c2, '\0', s2);
        if (s1[0] != s2[0]) {
          return 0;
        }
      }
    }
  }
  return 1;
#endif  // V8_INTL_SUPPORT
}


void RegExpMacroAssembler::CheckNotInSurrogatePair(int cp_offset,
                                                   Label* on_failure) {
  Label ok;
  // Check that current character is not a trail surrogate.
  LoadCurrentCharacter(cp_offset, &ok);
  CheckCharacterNotInRange(kTrailSurrogateStart, kTrailSurrogateEnd, &ok);
  // Check that previous character is not a lead surrogate.
  LoadCurrentCharacter(cp_offset - 1, &ok);
  CheckCharacterInRange(kLeadSurrogateStart, kLeadSurrogateEnd, on_failure);
  Bind(&ok);
}

void RegExpMacroAssembler::CheckPosition(int cp_offset,
                                         Label* on_outside_input) {
  LoadCurrentCharacter(cp_offset, on_outside_input, true);
}

void RegExpMacroAssembler::LoadCurrentCharacter(int cp_offset,
                                                Label* on_end_of_input,
                                                bool check_bounds,
                                                int characters,
                                                int eats_at_least) {
  // By default, eats_at_least = characters.
  if (eats_at_least == kUseCharactersValue) {
    eats_at_least = characters;
  }

  LoadCurrentCharacterImpl(cp_offset, on_end_of_input, check_bounds, characters,
                           eats_at_least);
}

bool RegExpMacroAssembler::CheckSpecialCharacterClass(uc16 type,
                                                      Label* on_no_match) {
  return false;
}

NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate,
                                                       Zone* zone)
    : RegExpMacroAssembler(isolate, zone) {}

NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() = default;

bool NativeRegExpMacroAssembler::CanReadUnaligned() {
  return FLAG_enable_regexp_unaligned_accesses && !slow_safe();
}

const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
    String subject, int start_index, const DisallowHeapAllocation& no_gc) {
  if (subject.IsConsString()) {
    subject = ConsString::cast(subject).first();
  } else if (subject.IsSlicedString()) {
    start_index += SlicedString::cast(subject).offset();
    subject = SlicedString::cast(subject).parent();
  }
  if (subject.IsThinString()) {
    subject = ThinString::cast(subject).actual();
  }
  DCHECK_LE(0, start_index);
  DCHECK_LE(start_index, subject.length());
  if (subject.IsSeqOneByteString()) {
    return reinterpret_cast<const byte*>(
        SeqOneByteString::cast(subject).GetChars(no_gc) + start_index);
  } else if (subject.IsSeqTwoByteString()) {
    return reinterpret_cast<const byte*>(
        SeqTwoByteString::cast(subject).GetChars(no_gc) + start_index);
  } else if (subject.IsExternalOneByteString()) {
    return reinterpret_cast<const byte*>(
        ExternalOneByteString::cast(subject).GetChars() + start_index);
  } else {
    DCHECK(subject.IsExternalTwoByteString());
    return reinterpret_cast<const byte*>(
        ExternalTwoByteString::cast(subject).GetChars() + start_index);
  }
}

// This method may only be called after an interrupt.
int NativeRegExpMacroAssembler::CheckStackGuardState(
    Isolate* isolate, int start_index, RegExp::CallOrigin call_origin,
    Address* return_address, Code re_code, Address* subject,
    const byte** input_start, const byte** input_end) {
  DisallowHeapAllocation no_gc;

  DCHECK(re_code.raw_instruction_start() <= *return_address);
  DCHECK(*return_address <= re_code.raw_instruction_end());
  StackLimitCheck check(isolate);
  bool js_has_overflowed = check.JsHasOverflowed();

  if (call_origin == RegExp::CallOrigin::kFromJs) {
    // Direct calls from JavaScript can be interrupted in two ways:
    // 1. A real stack overflow, in which case we let the caller throw the
    //    exception.
    // 2. The stack guard was used to interrupt execution for another purpose,
    //    forcing the call through the runtime system.

    // Bug(v8:9540) Investigate why this method is called from JS although no
    // stackoverflow or interrupt is pending on ARM64. We return 0 in this case
    // to continue execution normally.
    if (js_has_overflowed) {
      return EXCEPTION;
    } else if (check.InterruptRequested()) {
      return RETRY;
    } else {
      return 0;
    }
  }
  DCHECK(call_origin == RegExp::CallOrigin::kFromRuntime);

  // Prepare for possible GC.
  HandleScope handles(isolate);
  Handle<Code> code_handle(re_code, isolate);
  Handle<String> subject_handle(String::cast(Object(*subject)), isolate);
  bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject_handle);
  int return_value = 0;

  if (js_has_overflowed) {
    AllowHeapAllocation yes_gc;
    isolate->StackOverflow();
    return_value = EXCEPTION;
  } else if (check.InterruptRequested()) {
    AllowHeapAllocation yes_gc;
    Object result = isolate->stack_guard()->HandleInterrupts();
    if (result.IsException(isolate)) return_value = EXCEPTION;
  }

  if (*code_handle != re_code) {  // Return address no longer valid
    intptr_t delta = code_handle->address() - re_code.address();
    // Overwrite the return address on the stack.
    *return_address += delta;
  }

  // If we continue, we need to update the subject string addresses.
  if (return_value == 0) {
    // String encoding might have changed.
    if (String::IsOneByteRepresentationUnderneath(*subject_handle) !=
        is_one_byte) {
      // If we changed between an LATIN1 and an UC16 string, the specialized
      // code cannot be used, and we need to restart regexp matching from
      // scratch (including, potentially, compiling a new version of the code).
      return_value = RETRY;
    } else {
      *subject = subject_handle->ptr();
      intptr_t byte_length = *input_end - *input_start;
      *input_start =
          StringCharacterPosition(*subject_handle, start_index, no_gc);
      *input_end = *input_start + byte_length;
    }
  }
  return return_value;
}

// Returns a {Result} sentinel, or the number of successful matches.
int NativeRegExpMacroAssembler::Match(Handle<JSRegExp> regexp,
                                      Handle<String> subject,
                                      int* offsets_vector,
                                      int offsets_vector_length,
                                      int previous_index, Isolate* isolate) {
  DCHECK(subject->IsFlat());
  DCHECK_LE(0, previous_index);
  DCHECK_LE(previous_index, subject->length());

  // No allocations before calling the regexp, but we can't use
  // DisallowHeapAllocation, since regexps might be preempted, and another
  // thread might do allocation anyway.

  String subject_ptr = *subject;
  // Character offsets into string.
  int start_offset = previous_index;
  int char_length = subject_ptr.length() - start_offset;
  int slice_offset = 0;

  // The string has been flattened, so if it is a cons string it contains the
  // full string in the first part.
  if (StringShape(subject_ptr).IsCons()) {
    DCHECK_EQ(0, ConsString::cast(subject_ptr).second().length());
    subject_ptr = ConsString::cast(subject_ptr).first();
  } else if (StringShape(subject_ptr).IsSliced()) {
    SlicedString slice = SlicedString::cast(subject_ptr);
    subject_ptr = slice.parent();
    slice_offset = slice.offset();
  }
  if (StringShape(subject_ptr).IsThin()) {
    subject_ptr = ThinString::cast(subject_ptr).actual();
  }
  // Ensure that an underlying string has the same representation.
  bool is_one_byte = subject_ptr.IsOneByteRepresentation();
  DCHECK(subject_ptr.IsExternalString() || subject_ptr.IsSeqString());
  // String is now either Sequential or External
  int char_size_shift = is_one_byte ? 0 : 1;

  DisallowHeapAllocation no_gc;
  const byte* input_start =
      StringCharacterPosition(subject_ptr, start_offset + slice_offset, no_gc);
  int byte_length = char_length << char_size_shift;
  const byte* input_end = input_start + byte_length;
  return Execute(*subject, start_offset, input_start, input_end, offsets_vector,
                 offsets_vector_length, isolate, *regexp);
}

// Returns a {Result} sentinel, or the number of successful matches.
// TODO(pthier): The JSRegExp object is passed to native irregexp code to match
// the signature of the interpreter. We should get rid of JS objects passed to
// internal methods.
int NativeRegExpMacroAssembler::Execute(
    String input,  // This needs to be the unpacked (sliced, cons) string.
    int start_offset, const byte* input_start, const byte* input_end,
    int* output, int output_size, Isolate* isolate, JSRegExp regexp) {
  // Ensure that the minimum stack has been allocated.
  RegExpStackScope stack_scope(isolate);
  Address stack_base = stack_scope.stack()->stack_base();

  bool is_one_byte = String::IsOneByteRepresentationUnderneath(input);
  Code code = Code::cast(regexp.Code(is_one_byte));
  RegExp::CallOrigin call_origin = RegExp::CallOrigin::kFromRuntime;

  using RegexpMatcherSig = int(
      Address input_string, int start_offset,  // NOLINT(readability/casting)
      const byte* input_start, const byte* input_end, int* output,
      int output_size, Address stack_base, int call_origin, Isolate* isolate,
      Address regexp);

  auto fn = GeneratedCode<RegexpMatcherSig>::FromCode(code);
  int result =
      fn.Call(input.ptr(), start_offset, input_start, input_end, output,
              output_size, stack_base, call_origin, isolate, regexp.ptr());
  DCHECK(result >= RETRY);

  if (result == EXCEPTION && !isolate->has_pending_exception()) {
    // We detected a stack overflow (on the backtrack stack) in RegExp code,
    // but haven't created the exception yet. Additionally, we allow heap
    // allocation because even though it invalidates {input_start} and
    // {input_end}, we are about to return anyway.
    AllowHeapAllocation allow_allocation;
    isolate->StackOverflow();
  }
  return result;
}

// clang-format off
const byte NativeRegExpMacroAssembler::word_character_map[] = {
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // '0' - '7'
    0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // '8' - '9'

    0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'A' - 'G'
    0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'H' - 'O'
    0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'P' - 'W'
    0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0xFFu,  // 'X' - 'Z', '_'

    0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'a' - 'g'
    0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'h' - 'o'
    0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu,  // 'p' - 'w'
    0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,  // 'x' - 'z'
    // Latin-1 range
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,

    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
    0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
};
// clang-format on

Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer,
                                              Address* stack_base,
                                              Isolate* isolate) {
  RegExpStack* regexp_stack = isolate->regexp_stack();
  size_t size = regexp_stack->stack_capacity();
  Address old_stack_base = regexp_stack->stack_base();
  DCHECK(old_stack_base == *stack_base);
  DCHECK(stack_pointer <= old_stack_base);
  DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size);
  Address new_stack_base = regexp_stack->EnsureCapacity(size * 2);
  if (new_stack_base == kNullAddress) {
    return kNullAddress;
  }
  *stack_base = new_stack_base;
  intptr_t stack_content_size = old_stack_base - stack_pointer;
  return new_stack_base - stack_content_size;
}

}  // namespace internal
}  // namespace v8