1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_shared_Assembler_shared_h
#define jit_shared_Assembler_shared_h
#include <limits.h>
#include "jit/AtomicOp.h"
#include "jit/JitAllocPolicy.h"
#include "jit/Label.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"
#include "vm/HelperThreads.h"
#include "wasm/WasmTypes.h"
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64)
// Push return addresses callee-side.
# define JS_USE_LINK_REGISTER
#endif
#if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64)
// JS_SMALL_BRANCH means the range on a branch instruction
// is smaller than the whole address space
# define JS_SMALL_BRANCH
#endif
namespace js {
namespace jit {
namespace Disassembler {
class HeapAccess;
} // namespace Disassembler
static const uint32_t Simd128DataSize = 4 * sizeof(int32_t);
static_assert(Simd128DataSize == 4 * sizeof(int32_t), "SIMD data should be able to contain int32x4");
static_assert(Simd128DataSize == 4 * sizeof(float), "SIMD data should be able to contain float32x4");
static_assert(Simd128DataSize == 2 * sizeof(double), "SIMD data should be able to contain float64x2");
enum Scale {
TimesOne = 0,
TimesTwo = 1,
TimesFour = 2,
TimesEight = 3
};
static_assert(sizeof(JS::Value) == 8,
"required for TimesEight and 3 below to be correct");
static const Scale ValueScale = TimesEight;
static const size_t ValueShift = 3;
static inline unsigned
ScaleToShift(Scale scale)
{
return unsigned(scale);
}
static inline bool
IsShiftInScaleRange(int i)
{
return i >= TimesOne && i <= TimesEight;
}
static inline Scale
ShiftToScale(int i)
{
MOZ_ASSERT(IsShiftInScaleRange(i));
return Scale(i);
}
static inline Scale
ScaleFromElemWidth(int shift)
{
switch (shift) {
case 1:
return TimesOne;
case 2:
return TimesTwo;
case 4:
return TimesFour;
case 8:
return TimesEight;
}
MOZ_CRASH("Invalid scale");
}
// Used for 32-bit immediates which do not require relocation.
struct Imm32
{
int32_t value;
explicit Imm32(int32_t value) : value(value)
{ }
static inline Imm32 ShiftOf(enum Scale s) {
switch (s) {
case TimesOne:
return Imm32(0);
case TimesTwo:
return Imm32(1);
case TimesFour:
return Imm32(2);
case TimesEight:
return Imm32(3);
};
MOZ_CRASH("Invalid scale");
}
static inline Imm32 FactorOf(enum Scale s) {
return Imm32(1 << ShiftOf(s).value);
}
};
// Pointer-sized integer to be embedded as an immediate in an instruction.
struct ImmWord
{
uintptr_t value;
explicit ImmWord(uintptr_t value) : value(value)
{ }
};
// Used for 64-bit immediates which do not require relocation.
struct Imm64
{
uint64_t value;
explicit Imm64(int64_t value) : value(value)
{ }
Imm32 low() const {
return Imm32(int32_t(value));
}
Imm32 hi() const {
return Imm32(int32_t(value >> 32));
}
inline Imm32 firstHalf() const;
inline Imm32 secondHalf() const;
};
#ifdef DEBUG
static inline bool
IsCompilingWasm()
{
// wasm compilation pushes a JitContext with a null JSCompartment.
return GetJitContext()->compartment == nullptr;
}
#endif
// Pointer to be embedded as an immediate in an instruction.
struct ImmPtr
{
void* value;
explicit ImmPtr(const void* value) : value(const_cast<void*>(value))
{
// To make code serialization-safe, wasm compilation should only
// compile pointer immediates using a SymbolicAddress.
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R>
explicit ImmPtr(R (*pf)())
: value(JS_FUNC_TO_DATA_PTR(void*, pf))
{
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1>
explicit ImmPtr(R (*pf)(A1))
: value(JS_FUNC_TO_DATA_PTR(void*, pf))
{
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2>
explicit ImmPtr(R (*pf)(A1, A2))
: value(JS_FUNC_TO_DATA_PTR(void*, pf))
{
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2, class A3>
explicit ImmPtr(R (*pf)(A1, A2, A3))
: value(JS_FUNC_TO_DATA_PTR(void*, pf))
{
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2, class A3, class A4>
explicit ImmPtr(R (*pf)(A1, A2, A3, A4))
: value(JS_FUNC_TO_DATA_PTR(void*, pf))
{
MOZ_ASSERT(!IsCompilingWasm());
}
};
// The same as ImmPtr except that the intention is to patch this
// instruction. The initial value of the immediate is 'addr' and this value is
// either clobbered or used in the patching process.
struct PatchedImmPtr {
void* value;
explicit PatchedImmPtr()
: value(nullptr)
{ }
explicit PatchedImmPtr(const void* value)
: value(const_cast<void*>(value))
{ }
};
class AssemblerShared;
class ImmGCPtr;
// Used for immediates which require relocation.
class ImmGCPtr
{
public:
const gc::Cell* value;
explicit ImmGCPtr(const gc::Cell* ptr) : value(ptr)
{
// Nursery pointers can't be used if the main thread might be currently
// performing a minor GC.
MOZ_ASSERT_IF(ptr && !ptr->isTenured(),
!CurrentThreadIsIonCompilingSafeForMinorGC());
// wasm shouldn't be creating GC things
MOZ_ASSERT(!IsCompilingWasm());
}
private:
ImmGCPtr() : value(0) {}
};
// Pointer to be embedded as an immediate that is loaded/stored from by an
// instruction.
struct AbsoluteAddress
{
void* addr;
explicit AbsoluteAddress(const void* addr)
: addr(const_cast<void*>(addr))
{
MOZ_ASSERT(!IsCompilingWasm());
}
AbsoluteAddress offset(ptrdiff_t delta) {
return AbsoluteAddress(((uint8_t*) addr) + delta);
}
};
// The same as AbsoluteAddress except that the intention is to patch this
// instruction. The initial value of the immediate is 'addr' and this value is
// either clobbered or used in the patching process.
struct PatchedAbsoluteAddress
{
void* addr;
explicit PatchedAbsoluteAddress()
: addr(nullptr)
{ }
explicit PatchedAbsoluteAddress(const void* addr)
: addr(const_cast<void*>(addr))
{ }
explicit PatchedAbsoluteAddress(uintptr_t addr)
: addr(reinterpret_cast<void*>(addr))
{ }
};
// Specifies an address computed in the form of a register base and a constant,
// 32-bit offset.
struct Address
{
Register base;
int32_t offset;
Address(Register base, int32_t offset) : base(base), offset(offset)
{ }
Address() { mozilla::PodZero(this); }
};
// Specifies an address computed in the form of a register base, a register
// index with a scale, and a constant, 32-bit offset.
struct BaseIndex
{
Register base;
Register index;
Scale scale;
int32_t offset;
BaseIndex(Register base, Register index, Scale scale, int32_t offset = 0)
: base(base), index(index), scale(scale), offset(offset)
{ }
BaseIndex() { mozilla::PodZero(this); }
};
// A BaseIndex used to access Values. Note that |offset| is *not* scaled by
// sizeof(Value). Use this *only* if you're indexing into a series of Values
// that aren't object elements or object slots (for example, values on the
// stack, values in an arguments object, &c.). If you're indexing into an
// object's elements or slots, don't use this directly! Use
// BaseObject{Element,Slot}Index instead.
struct BaseValueIndex : BaseIndex
{
BaseValueIndex(Register base, Register index, int32_t offset = 0)
: BaseIndex(base, index, ValueScale, offset)
{ }
};
// Specifies the address of an indexed Value within object elements from a
// base. The index must not already be scaled by sizeof(Value)!
struct BaseObjectElementIndex : BaseValueIndex
{
BaseObjectElementIndex(Register base, Register index, int32_t offset = 0)
: BaseValueIndex(base, index, offset)
{
NativeObject::elementsSizeMustNotOverflow();
}
};
// Like BaseObjectElementIndex, except for object slots.
struct BaseObjectSlotIndex : BaseValueIndex
{
BaseObjectSlotIndex(Register base, Register index)
: BaseValueIndex(base, index)
{
NativeObject::slotsSizeMustNotOverflow();
}
};
class Relocation {
public:
enum Kind {
// The target is immovable, so patching is only needed if the source
// buffer is relocated and the reference is relative.
HARDCODED,
// The target is the start of a JitCode buffer, which must be traced
// during garbage collection. Relocations and patching may be needed.
JITCODE
};
};
class RepatchLabel
{
static const int32_t INVALID_OFFSET = 0xC0000000;
int32_t offset_ : 31;
uint32_t bound_ : 1;
public:
RepatchLabel() : offset_(INVALID_OFFSET), bound_(0) {}
void use(uint32_t newOffset) {
MOZ_ASSERT(offset_ == INVALID_OFFSET);
MOZ_ASSERT(newOffset != (uint32_t)INVALID_OFFSET);
offset_ = newOffset;
}
bool bound() const {
return bound_;
}
void bind(int32_t dest) {
MOZ_ASSERT(!bound_);
MOZ_ASSERT(dest != INVALID_OFFSET);
offset_ = dest;
bound_ = true;
}
int32_t target() {
MOZ_ASSERT(bound());
int32_t ret = offset_;
offset_ = INVALID_OFFSET;
return ret;
}
int32_t offset() {
MOZ_ASSERT(!bound());
return offset_;
}
bool used() const {
return !bound() && offset_ != (INVALID_OFFSET);
}
};
// An absolute label is like a Label, except it represents an absolute
// reference rather than a relative one. Thus, it cannot be patched until after
// linking.
struct AbsoluteLabel : public LabelBase
{
public:
AbsoluteLabel()
{ }
AbsoluteLabel(const AbsoluteLabel& label) : LabelBase(label)
{ }
int32_t prev() const {
MOZ_ASSERT(!bound());
if (!used())
return INVALID_OFFSET;
return offset();
}
void setPrev(int32_t offset) {
use(offset);
}
void bind() {
bound_ = true;
// These labels cannot be used after being bound.
offset_ = -1;
}
};
class CodeOffset
{
size_t offset_;
static const size_t NOT_BOUND = size_t(-1);
public:
explicit CodeOffset(size_t offset) : offset_(offset) {}
CodeOffset() : offset_(NOT_BOUND) {}
size_t offset() const {
MOZ_ASSERT(bound());
return offset_;
}
void bind(size_t offset) {
MOZ_ASSERT(!bound());
offset_ = offset;
MOZ_ASSERT(bound());
}
bool bound() const {
return offset_ != NOT_BOUND;
}
void offsetBy(size_t delta) {
MOZ_ASSERT(bound());
MOZ_ASSERT(offset_ + delta >= offset_, "no overflow");
offset_ += delta;
}
};
// A code label contains an absolute reference to a point in the code. Thus, it
// cannot be patched until after linking.
// When the source label is resolved into a memory address, this address is
// patched into the destination address.
class CodeLabel
{
// The destination position, where the absolute reference should get
// patched into.
CodeOffset patchAt_;
// The source label (relative) in the code to where the destination should
// get patched to.
CodeOffset target_;
public:
CodeLabel()
{ }
explicit CodeLabel(const CodeOffset& patchAt)
: patchAt_(patchAt)
{ }
CodeLabel(const CodeOffset& patchAt, const CodeOffset& target)
: patchAt_(patchAt),
target_(target)
{ }
CodeOffset* patchAt() {
return &patchAt_;
}
CodeOffset* target() {
return &target_;
}
void offsetBy(size_t delta) {
patchAt_.offsetBy(delta);
target_.offsetBy(delta);
}
};
// Location of a jump or label in a generated JitCode block, relative to the
// start of the block.
class CodeOffsetJump
{
size_t offset_ = 0;
#ifdef JS_SMALL_BRANCH
size_t jumpTableIndex_ = 0;
#endif
public:
#ifdef JS_SMALL_BRANCH
CodeOffsetJump(size_t offset, size_t jumpTableIndex)
: offset_(offset), jumpTableIndex_(jumpTableIndex)
{}
size_t jumpTableIndex() const {
return jumpTableIndex_;
}
#else
explicit CodeOffsetJump(size_t offset) : offset_(offset) {}
#endif
CodeOffsetJump() = default;
size_t offset() const {
return offset_;
}
void fixup(MacroAssembler* masm);
};
// Absolute location of a jump or a label in some generated JitCode block.
// Can also encode a CodeOffset{Jump,Label}, such that the offset is initially
// set and the absolute location later filled in after the final JitCode is
// allocated.
class CodeLocationJump
{
uint8_t* raw_;
#ifdef DEBUG
enum State { Uninitialized, Absolute, Relative };
State state_;
void setUninitialized() {
state_ = Uninitialized;
}
void setAbsolute() {
state_ = Absolute;
}
void setRelative() {
state_ = Relative;
}
#else
void setUninitialized() const {
}
void setAbsolute() const {
}
void setRelative() const {
}
#endif
#ifdef JS_SMALL_BRANCH
uint8_t* jumpTableEntry_;
#endif
public:
CodeLocationJump() {
raw_ = nullptr;
setUninitialized();
#ifdef JS_SMALL_BRANCH
jumpTableEntry_ = (uint8_t*) uintptr_t(0xdeadab1e);
#endif
}
CodeLocationJump(JitCode* code, CodeOffsetJump base) {
*this = base;
repoint(code);
}
void operator = (CodeOffsetJump base) {
raw_ = (uint8_t*) base.offset();
setRelative();
#ifdef JS_SMALL_BRANCH
jumpTableEntry_ = (uint8_t*) base.jumpTableIndex();
#endif
}
void repoint(JitCode* code, MacroAssembler* masm = nullptr);
uint8_t* raw() const {
MOZ_ASSERT(state_ == Absolute);
return raw_;
}
uint8_t* offset() const {
MOZ_ASSERT(state_ == Relative);
return raw_;
}
#ifdef JS_SMALL_BRANCH
uint8_t* jumpTableEntry() const {
MOZ_ASSERT(state_ == Absolute);
return jumpTableEntry_;
}
#endif
};
class CodeLocationLabel
{
uint8_t* raw_;
#ifdef DEBUG
enum State { Uninitialized, Absolute, Relative };
State state_;
void setUninitialized() {
state_ = Uninitialized;
}
void setAbsolute() {
state_ = Absolute;
}
void setRelative() {
state_ = Relative;
}
#else
void setUninitialized() const {
}
void setAbsolute() const {
}
void setRelative() const {
}
#endif
public:
CodeLocationLabel() {
raw_ = nullptr;
setUninitialized();
}
CodeLocationLabel(JitCode* code, CodeOffset base) {
*this = base;
repoint(code);
}
explicit CodeLocationLabel(JitCode* code) {
raw_ = code->raw();
setAbsolute();
}
explicit CodeLocationLabel(uint8_t* raw) {
raw_ = raw;
setAbsolute();
}
void operator = (CodeOffset base) {
raw_ = (uint8_t*)base.offset();
setRelative();
}
ptrdiff_t operator - (const CodeLocationLabel& other) {
return raw_ - other.raw_;
}
void repoint(JitCode* code, MacroAssembler* masm = nullptr);
#ifdef DEBUG
bool isSet() const {
return state_ != Uninitialized;
}
#endif
uint8_t* raw() const {
MOZ_ASSERT(state_ == Absolute);
return raw_;
}
uint8_t* offset() const {
MOZ_ASSERT(state_ == Relative);
return raw_;
}
};
} // namespace jit
namespace wasm {
// As an invariant across architectures, within wasm code:
// $sp % WasmStackAlignment = (sizeof(wasm::Frame) + masm.framePushed) % WasmStackAlignment
// Thus, wasm::Frame represents the bytes pushed after the call (which occurred
// with a WasmStackAlignment-aligned StackPointer) that are not included in
// masm.framePushed.
struct Frame
{
// The caller's saved frame pointer. In non-profiling mode, internal
// wasm-to-wasm calls don't update fp and thus don't save the caller's
// frame pointer; the space is reserved, however, so that profiling mode can
// reuse the same function body without recompiling.
uint8_t* callerFP;
// The return address pushed by the call (in the case of ARM/MIPS the return
// address is pushed by the first instruction of the prologue).
void* returnAddress;
};
static_assert(sizeof(Frame) == 2 * sizeof(void*), "?!");
static const uint32_t FrameBytesAfterReturnAddress = sizeof(void*);
// Represents an instruction to be patched and the intended pointee. These
// links are accumulated in the MacroAssembler, but patching is done outside
// the MacroAssembler (in Module::staticallyLink).
struct SymbolicAccess
{
SymbolicAccess(jit::CodeOffset patchAt, SymbolicAddress target)
: patchAt(patchAt), target(target) {}
jit::CodeOffset patchAt;
SymbolicAddress target;
};
typedef Vector<SymbolicAccess, 0, SystemAllocPolicy> SymbolicAccessVector;
// Describes a single wasm or asm.js memory access for the purpose of generating
// code and metadata.
class MemoryAccessDesc
{
uint32_t offset_;
uint32_t align_;
Scalar::Type type_;
unsigned numSimdElems_;
jit::MemoryBarrierBits barrierBefore_;
jit::MemoryBarrierBits barrierAfter_;
mozilla::Maybe<wasm::TrapOffset> trapOffset_;
public:
explicit MemoryAccessDesc(Scalar::Type type, uint32_t align, uint32_t offset,
mozilla::Maybe<TrapOffset> trapOffset,
unsigned numSimdElems = 0,
jit::MemoryBarrierBits barrierBefore = jit::MembarNobits,
jit::MemoryBarrierBits barrierAfter = jit::MembarNobits)
: offset_(offset),
align_(align),
type_(type),
numSimdElems_(numSimdElems),
barrierBefore_(barrierBefore),
barrierAfter_(barrierAfter),
trapOffset_(trapOffset)
{
MOZ_ASSERT(Scalar::isSimdType(type) == (numSimdElems > 0));
MOZ_ASSERT(numSimdElems <= jit::ScalarTypeToLength(type));
MOZ_ASSERT(mozilla::IsPowerOfTwo(align));
MOZ_ASSERT_IF(isSimd(), hasTrap());
MOZ_ASSERT_IF(isAtomic(), hasTrap());
}
uint32_t offset() const { return offset_; }
uint32_t align() const { return align_; }
Scalar::Type type() const { return type_; }
unsigned byteSize() const {
return Scalar::isSimdType(type())
? Scalar::scalarByteSize(type()) * numSimdElems()
: Scalar::byteSize(type());
}
unsigned numSimdElems() const { MOZ_ASSERT(isSimd()); return numSimdElems_; }
jit::MemoryBarrierBits barrierBefore() const { return barrierBefore_; }
jit::MemoryBarrierBits barrierAfter() const { return barrierAfter_; }
bool hasTrap() const { return !!trapOffset_; }
TrapOffset trapOffset() const { return *trapOffset_; }
bool isAtomic() const { return (barrierBefore_ | barrierAfter_) != jit::MembarNobits; }
bool isSimd() const { return Scalar::isSimdType(type_); }
bool isUnaligned() const { return align() && align() < byteSize(); }
bool isPlainAsmJS() const { return !hasTrap(); }
void clearOffset() { offset_ = 0; }
};
// Summarizes a global access for a mutable (in asm.js) or immutable value (in
// asm.js or the wasm MVP) that needs to get patched later.
struct GlobalAccess
{
GlobalAccess(jit::CodeOffset patchAt, unsigned globalDataOffset)
: patchAt(patchAt), globalDataOffset(globalDataOffset)
{}
jit::CodeOffset patchAt;
unsigned globalDataOffset;
};
typedef Vector<GlobalAccess, 0, SystemAllocPolicy> GlobalAccessVector;
// The TrapDesc struct describes a wasm trap that is about to be emitted. This
// includes the logical wasm bytecode offset to report, the kind of instruction
// causing the trap, and the stack depth right before control is transferred to
// the trap out-of-line path.
struct TrapDesc : TrapOffset
{
enum Kind { Jump, MemoryAccess };
Kind kind;
Trap trap;
uint32_t framePushed;
TrapDesc(TrapOffset offset, Trap trap, uint32_t framePushed, Kind kind = Jump)
: TrapOffset(offset), kind(kind), trap(trap), framePushed(framePushed)
{}
};
// A TrapSite captures all relevant information at the point of emitting the
// in-line trapping instruction for the purpose of generating the out-of-line
// trap code (at the end of the function).
struct TrapSite : TrapDesc
{
uint32_t codeOffset;
TrapSite(TrapDesc trap, uint32_t codeOffset)
: TrapDesc(trap), codeOffset(codeOffset)
{}
};
typedef Vector<TrapSite, 0, SystemAllocPolicy> TrapSiteVector;
// A TrapFarJump records the offset of a jump that needs to be patched to a trap
// exit at the end of the module when trap exits are emitted.
struct TrapFarJump
{
Trap trap;
jit::CodeOffset jump;
TrapFarJump(Trap trap, jit::CodeOffset jump)
: trap(trap), jump(jump)
{}
void offsetBy(size_t delta) {
jump.offsetBy(delta);
}
};
typedef Vector<TrapFarJump, 0, SystemAllocPolicy> TrapFarJumpVector;
} // namespace wasm
namespace jit {
// The base class of all Assemblers for all archs.
class AssemblerShared
{
wasm::CallSiteAndTargetVector callSites_;
wasm::TrapSiteVector trapSites_;
wasm::TrapFarJumpVector trapFarJumps_;
wasm::MemoryAccessVector memoryAccesses_;
wasm::MemoryPatchVector memoryPatches_;
wasm::BoundsCheckVector boundsChecks_;
wasm::GlobalAccessVector globalAccesses_;
wasm::SymbolicAccessVector symbolicAccesses_;
protected:
Vector<CodeLabel, 0, SystemAllocPolicy> codeLabels_;
bool enoughMemory_;
bool embedsNurseryPointers_;
public:
AssemblerShared()
: enoughMemory_(true),
embedsNurseryPointers_(false)
{}
void propagateOOM(bool success) {
enoughMemory_ &= success;
}
void setOOM() {
enoughMemory_ = false;
}
bool oom() const {
return !enoughMemory_;
}
bool embedsNurseryPointers() const {
return embedsNurseryPointers_;
}
template <typename... Args>
void append(const wasm::CallSiteDesc& desc, CodeOffset retAddr, size_t framePushed,
Args&&... args)
{
// framePushed does not include sizeof(wasm:Frame), so add it in explicitly when
// setting the CallSite::stackDepth.
wasm::CallSite cs(desc, retAddr.offset(), framePushed + sizeof(wasm::Frame));
enoughMemory_ &= callSites_.emplaceBack(cs, mozilla::Forward<Args>(args)...);
}
wasm::CallSiteAndTargetVector& callSites() { return callSites_; }
void append(wasm::TrapSite trapSite) {
enoughMemory_ &= trapSites_.append(trapSite);
}
const wasm::TrapSiteVector& trapSites() const { return trapSites_; }
void clearTrapSites() { trapSites_.clear(); }
void append(wasm::TrapFarJump jmp) {
enoughMemory_ &= trapFarJumps_.append(jmp);
}
const wasm::TrapFarJumpVector& trapFarJumps() const { return trapFarJumps_; }
void append(wasm::MemoryAccess access) { enoughMemory_ &= memoryAccesses_.append(access); }
wasm::MemoryAccessVector&& extractMemoryAccesses() { return Move(memoryAccesses_); }
void append(const wasm::MemoryAccessDesc& access, size_t codeOffset, size_t framePushed) {
if (access.hasTrap()) {
// If a memory access is trapping (wasm, SIMD.js, Atomics), create a
// TrapSite now which will generate a trap out-of-line path at the end
// of the function which will *then* append a MemoryAccess.
wasm::TrapDesc trap(access.trapOffset(), wasm::Trap::OutOfBounds, framePushed,
wasm::TrapSite::MemoryAccess);
append(wasm::TrapSite(trap, codeOffset));
} else {
// Otherwise, this is a plain asm.js access. On WASM_HUGE_MEMORY
// platforms, asm.js uses signal handlers to remove bounds checks
// and thus requires a MemoryAccess.
MOZ_ASSERT(access.isPlainAsmJS());
#ifdef WASM_HUGE_MEMORY
append(wasm::MemoryAccess(codeOffset));
#endif
}
}
void append(wasm::MemoryPatch patch) { enoughMemory_ &= memoryPatches_.append(patch); }
wasm::MemoryPatchVector&& extractMemoryPatches() { return Move(memoryPatches_); }
void append(wasm::BoundsCheck check) { enoughMemory_ &= boundsChecks_.append(check); }
wasm::BoundsCheckVector&& extractBoundsChecks() { return Move(boundsChecks_); }
void append(wasm::GlobalAccess access) { enoughMemory_ &= globalAccesses_.append(access); }
const wasm::GlobalAccessVector& globalAccesses() const { return globalAccesses_; }
void append(wasm::SymbolicAccess access) { enoughMemory_ &= symbolicAccesses_.append(access); }
size_t numSymbolicAccesses() const { return symbolicAccesses_.length(); }
wasm::SymbolicAccess symbolicAccess(size_t i) const { return symbolicAccesses_[i]; }
static bool canUseInSingleByteInstruction(Register reg) { return true; }
void addCodeLabel(CodeLabel label) {
propagateOOM(codeLabels_.append(label));
}
size_t numCodeLabels() const {
return codeLabels_.length();
}
CodeLabel codeLabel(size_t i) {
return codeLabels_[i];
}
// Merge this assembler with the other one, invalidating it, by shifting all
// offsets by a delta.
bool asmMergeWith(size_t delta, const AssemblerShared& other) {
size_t i = callSites_.length();
enoughMemory_ &= callSites_.appendAll(other.callSites_);
for (; i < callSites_.length(); i++)
callSites_[i].offsetReturnAddressBy(delta);
MOZ_ASSERT(other.trapSites_.empty(), "should have been cleared by wasmEmitTrapOutOfLineCode");
i = trapFarJumps_.length();
enoughMemory_ &= trapFarJumps_.appendAll(other.trapFarJumps_);
for (; i < trapFarJumps_.length(); i++)
trapFarJumps_[i].offsetBy(delta);
i = memoryAccesses_.length();
enoughMemory_ &= memoryAccesses_.appendAll(other.memoryAccesses_);
for (; i < memoryAccesses_.length(); i++)
memoryAccesses_[i].offsetBy(delta);
i = memoryPatches_.length();
enoughMemory_ &= memoryPatches_.appendAll(other.memoryPatches_);
for (; i < memoryPatches_.length(); i++)
memoryPatches_[i].offsetBy(delta);
i = boundsChecks_.length();
enoughMemory_ &= boundsChecks_.appendAll(other.boundsChecks_);
for (; i < boundsChecks_.length(); i++)
boundsChecks_[i].offsetBy(delta);
i = globalAccesses_.length();
enoughMemory_ &= globalAccesses_.appendAll(other.globalAccesses_);
for (; i < globalAccesses_.length(); i++)
globalAccesses_[i].patchAt.offsetBy(delta);
i = symbolicAccesses_.length();
enoughMemory_ &= symbolicAccesses_.appendAll(other.symbolicAccesses_);
for (; i < symbolicAccesses_.length(); i++)
symbolicAccesses_[i].patchAt.offsetBy(delta);
i = codeLabels_.length();
enoughMemory_ &= codeLabels_.appendAll(other.codeLabels_);
for (; i < codeLabels_.length(); i++)
codeLabels_[i].offsetBy(delta);
return !oom();
}
};
} // namespace jit
} // namespace js
#endif /* jit_shared_Assembler_shared_h */
|