1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_MacroAssembler_h
#define jit_MacroAssembler_h
#include "mozilla/MacroForEach.h"
#include "mozilla/MathAlgorithms.h"
#include "jscompartment.h"
#if defined(JS_CODEGEN_X86)
# include "jit/x86/MacroAssembler-x86.h"
#elif defined(JS_CODEGEN_X64)
# include "jit/x64/MacroAssembler-x64.h"
#elif defined(JS_CODEGEN_ARM)
# include "jit/arm/MacroAssembler-arm.h"
#elif defined(JS_CODEGEN_ARM64)
# include "jit/arm64/MacroAssembler-arm64.h"
#elif defined(JS_CODEGEN_MIPS32)
# include "jit/mips32/MacroAssembler-mips32.h"
#elif defined(JS_CODEGEN_MIPS64)
# include "jit/mips64/MacroAssembler-mips64.h"
#elif defined(JS_CODEGEN_NONE)
# include "jit/none/MacroAssembler-none.h"
#else
# error "Unknown architecture!"
#endif
#include "jit/AtomicOp.h"
#include "jit/IonInstrumentation.h"
#include "jit/JitCompartment.h"
#include "jit/VMFunctions.h"
#include "vm/ProxyObject.h"
#include "vm/Shape.h"
#include "vm/TypedArrayObject.h"
#include "vm/UnboxedObject.h"
using mozilla::FloatingPoint;
// * How to read/write MacroAssembler method declarations:
//
// The following macros are made to avoid #ifdef around each method declarations
// of the Macro Assembler, and they are also used as an hint on the location of
// the implementations of each method. For example, the following declaration
//
// void Pop(FloatRegister t) DEFINED_ON(x86_shared, arm);
//
// suggests the MacroAssembler::Pop(FloatRegister) method is implemented in
// x86-shared/MacroAssembler-x86-shared.h, and also in arm/MacroAssembler-arm.h.
//
// - If there is no annotation, then there is only one generic definition in
// MacroAssembler.cpp.
//
// - If the declaration is "inline", then the method definition(s) would be in
// the "-inl.h" variant of the same file(s).
//
// The script check_macroassembler_style.py (check-masm target of the Makefile)
// is used to verify that method definitions are matching the annotation added
// to the method declarations. If there is any difference, then you either
// forgot to define the method in one of the macro assembler, or you forgot to
// update the annotation of the macro assembler declaration.
//
// Some convenient short-cuts are used to avoid repeating the same list of
// architectures on each method declaration, such as PER_ARCH and
// PER_SHARED_ARCH.
# define ALL_ARCH mips32, mips64, arm, arm64, x86, x64
# define ALL_SHARED_ARCH arm, arm64, x86_shared, mips_shared
// * How this macro works:
//
// DEFINED_ON is a macro which check if, for the current architecture, the
// method is defined on the macro assembler or not.
//
// For each architecture, we have a macro named DEFINED_ON_arch. This macro is
// empty if this is not the current architecture. Otherwise it must be either
// set to "define" or "crash" (only use for the none target so-far).
//
// The DEFINED_ON macro maps the list of architecture names given as argument to
// a list of macro names. For example,
//
// DEFINED_ON(arm, x86_shared)
//
// is expanded to
//
// DEFINED_ON_none DEFINED_ON_arm DEFINED_ON_x86_shared
//
// which are later expanded on ARM, x86, x64 by DEFINED_ON_EXPAND_ARCH_RESULTS
// to
//
// define
//
// or if the JIT is disabled or set to no architecture to
//
// crash
//
// or to nothing, if the current architecture is not listed in the list of
// arguments of DEFINED_ON. Note, only one of the DEFINED_ON_arch macro
// contributes to the non-empty result, which is the macro of the current
// architecture if it is listed in the arguments of DEFINED_ON.
//
// This result is appended to DEFINED_ON_RESULT_ before expanding the macro,
// which result is either no annotation, a MOZ_CRASH(), or a "= delete"
// annotation on the method declaration.
# define DEFINED_ON_x86
# define DEFINED_ON_x64
# define DEFINED_ON_x86_shared
# define DEFINED_ON_arm
# define DEFINED_ON_arm64
# define DEFINED_ON_mips32
# define DEFINED_ON_mips64
# define DEFINED_ON_mips_shared
# define DEFINED_ON_none
// Specialize for each architecture.
#if defined(JS_CODEGEN_X86)
# undef DEFINED_ON_x86
# define DEFINED_ON_x86 define
# undef DEFINED_ON_x86_shared
# define DEFINED_ON_x86_shared define
#elif defined(JS_CODEGEN_X64)
# undef DEFINED_ON_x64
# define DEFINED_ON_x64 define
# undef DEFINED_ON_x86_shared
# define DEFINED_ON_x86_shared define
#elif defined(JS_CODEGEN_ARM)
# undef DEFINED_ON_arm
# define DEFINED_ON_arm define
#elif defined(JS_CODEGEN_ARM64)
# undef DEFINED_ON_arm64
# define DEFINED_ON_arm64 define
#elif defined(JS_CODEGEN_MIPS32)
# undef DEFINED_ON_mips32
# define DEFINED_ON_mips32 define
# undef DEFINED_ON_mips_shared
# define DEFINED_ON_mips_shared define
#elif defined(JS_CODEGEN_MIPS64)
# undef DEFINED_ON_mips64
# define DEFINED_ON_mips64 define
# undef DEFINED_ON_mips_shared
# define DEFINED_ON_mips_shared define
#elif defined(JS_CODEGEN_NONE)
# undef DEFINED_ON_none
# define DEFINED_ON_none crash
#else
# error "Unknown architecture!"
#endif
# define DEFINED_ON_RESULT_crash { MOZ_CRASH(); }
# define DEFINED_ON_RESULT_define
# define DEFINED_ON_RESULT_ = delete
# define DEFINED_ON_DISPATCH_RESULT_2(Macro, Result) \
Macro ## Result
# define DEFINED_ON_DISPATCH_RESULT(...) \
DEFINED_ON_DISPATCH_RESULT_2(DEFINED_ON_RESULT_, __VA_ARGS__)
// We need to let the evaluation of MOZ_FOR_EACH terminates.
# define DEFINED_ON_EXPAND_ARCH_RESULTS_3(ParenResult) \
DEFINED_ON_DISPATCH_RESULT ParenResult
# define DEFINED_ON_EXPAND_ARCH_RESULTS_2(ParenResult) \
DEFINED_ON_EXPAND_ARCH_RESULTS_3 (ParenResult)
# define DEFINED_ON_EXPAND_ARCH_RESULTS(ParenResult) \
DEFINED_ON_EXPAND_ARCH_RESULTS_2 (ParenResult)
# define DEFINED_ON_FWDARCH(Arch) DEFINED_ON_ ## Arch
# define DEFINED_ON_MAP_ON_ARCHS(ArchList) \
DEFINED_ON_EXPAND_ARCH_RESULTS( \
(MOZ_FOR_EACH(DEFINED_ON_FWDARCH, (), ArchList)))
# define DEFINED_ON(...) \
DEFINED_ON_MAP_ON_ARCHS((none, __VA_ARGS__))
# define PER_ARCH DEFINED_ON(ALL_ARCH)
# define PER_SHARED_ARCH DEFINED_ON(ALL_SHARED_ARCH)
#if MOZ_LITTLE_ENDIAN
#define IMM32_16ADJ(X) X << 16
#else
#define IMM32_16ADJ(X) X
#endif
namespace js {
namespace jit {
// Defined in JitFrames.h
enum ExitFrameTokenValues;
// The public entrypoint for emitting assembly. Note that a MacroAssembler can
// use cx->lifoAlloc, so take care not to interleave masm use with other
// lifoAlloc use if one will be destroyed before the other.
class MacroAssembler : public MacroAssemblerSpecific
{
MacroAssembler* thisFromCtor() {
return this;
}
public:
class AutoRooter : public JS::AutoGCRooter
{
MacroAssembler* masm_;
public:
AutoRooter(JSContext* cx, MacroAssembler* masm)
: JS::AutoGCRooter(cx, IONMASM),
masm_(masm)
{ }
MacroAssembler* masm() const {
return masm_;
}
};
/*
* Base class for creating a branch.
*/
class Branch
{
bool init_;
Condition cond_;
Label* jump_;
Register reg_;
public:
Branch()
: init_(false),
cond_(Equal),
jump_(nullptr),
reg_(Register::FromCode(0)) // Quell compiler warnings.
{ }
Branch(Condition cond, Register reg, Label* jump)
: init_(true),
cond_(cond),
jump_(jump),
reg_(reg)
{ }
bool isInitialized() const {
return init_;
}
Condition cond() const {
return cond_;
}
Label* jump() const {
return jump_;
}
Register reg() const {
return reg_;
}
void invertCondition() {
cond_ = InvertCondition(cond_);
}
void relink(Label* jump) {
jump_ = jump;
}
virtual void emit(MacroAssembler& masm) = 0;
};
/*
* Creates a branch based on a specific TypeSet::Type.
* Note: emits number test (int/double) for TypeSet::DoubleType()
*/
class BranchType : public Branch
{
TypeSet::Type type_;
public:
BranchType()
: Branch(),
type_(TypeSet::UnknownType())
{ }
BranchType(Condition cond, Register reg, TypeSet::Type type, Label* jump)
: Branch(cond, reg, jump),
type_(type)
{ }
void emit(MacroAssembler& masm);
};
/*
* Creates a branch based on a GCPtr.
*/
class BranchGCPtr : public Branch
{
ImmGCPtr ptr_;
public:
BranchGCPtr()
: Branch(),
ptr_(ImmGCPtr(nullptr))
{ }
BranchGCPtr(Condition cond, Register reg, ImmGCPtr ptr, Label* jump)
: Branch(cond, reg, jump),
ptr_(ptr)
{ }
void emit(MacroAssembler& masm);
};
mozilla::Maybe<AutoRooter> autoRooter_;
mozilla::Maybe<JitContext> jitContext_;
mozilla::Maybe<AutoJitContextAlloc> alloc_;
private:
// Labels for handling exceptions and failures.
NonAssertingLabel failureLabel_;
public:
MacroAssembler()
: framePushed_(0),
#ifdef DEBUG
inCall_(false),
#endif
emitProfilingInstrumentation_(false)
{
JitContext* jcx = GetJitContext();
JSContext* cx = jcx->cx;
if (cx)
constructRoot(cx);
if (!jcx->temp) {
MOZ_ASSERT(cx);
alloc_.emplace(cx);
}
moveResolver_.setAllocator(*jcx->temp);
#if defined(JS_CODEGEN_ARM)
initWithAllocator();
m_buffer.id = jcx->getNextAssemblerId();
#elif defined(JS_CODEGEN_ARM64)
initWithAllocator();
armbuffer_.id = jcx->getNextAssemblerId();
#endif
}
// This constructor should only be used when there is no JitContext active
// (for example, Trampoline-$(ARCH).cpp and IonCaches.cpp).
explicit MacroAssembler(JSContext* cx, IonScript* ion = nullptr,
JSScript* script = nullptr, jsbytecode* pc = nullptr);
// wasm compilation handles its own JitContext-pushing
struct WasmToken {};
explicit MacroAssembler(WasmToken, TempAllocator& alloc)
: framePushed_(0),
#ifdef DEBUG
inCall_(false),
#endif
emitProfilingInstrumentation_(false)
{
moveResolver_.setAllocator(alloc);
#if defined(JS_CODEGEN_ARM)
initWithAllocator();
m_buffer.id = 0;
#elif defined(JS_CODEGEN_ARM64)
initWithAllocator();
armbuffer_.id = 0;
#endif
}
void constructRoot(JSContext* cx) {
autoRooter_.emplace(cx, this);
}
MoveResolver& moveResolver() {
return moveResolver_;
}
size_t instructionsSize() const {
return size();
}
//{{{ check_macroassembler_style
public:
// ===============================================================
// MacroAssembler high-level usage.
// Flushes the assembly buffer, on platforms that need it.
void flush() PER_SHARED_ARCH;
// Add a comment that is visible in the pretty printed assembly code.
void comment(const char* msg) PER_SHARED_ARCH;
// ===============================================================
// Frame manipulation functions.
inline uint32_t framePushed() const;
inline void setFramePushed(uint32_t framePushed);
inline void adjustFrame(int32_t value);
// Adjust the frame, to account for implicit modification of the stack
// pointer, such that callee can remove arguments on the behalf of the
// caller.
inline void implicitPop(uint32_t bytes);
private:
// This field is used to statically (at compilation time) emulate a frame
// pointer by keeping track of stack manipulations.
//
// It is maintained by all stack manipulation functions below.
uint32_t framePushed_;
public:
// ===============================================================
// Stack manipulation functions.
void PushRegsInMask(LiveRegisterSet set)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
void PushRegsInMask(LiveGeneralRegisterSet set);
void PopRegsInMask(LiveRegisterSet set);
void PopRegsInMask(LiveGeneralRegisterSet set);
void PopRegsInMaskIgnore(LiveRegisterSet set, LiveRegisterSet ignore)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
void Push(const Operand op) DEFINED_ON(x86_shared);
void Push(Register reg) PER_SHARED_ARCH;
void Push(Register reg1, Register reg2, Register reg3, Register reg4) DEFINED_ON(arm64);
void Push(const Imm32 imm) PER_SHARED_ARCH;
void Push(const ImmWord imm) PER_SHARED_ARCH;
void Push(const ImmPtr imm) PER_SHARED_ARCH;
void Push(const ImmGCPtr ptr) PER_SHARED_ARCH;
void Push(FloatRegister reg) PER_SHARED_ARCH;
void Push(jsid id, Register scratchReg);
void Push(TypedOrValueRegister v);
void Push(const ConstantOrRegister& v);
void Push(const ValueOperand& val);
void Push(const Value& val);
void Push(JSValueType type, Register reg);
void PushValue(const Address& addr);
void PushEmptyRooted(VMFunction::RootType rootType);
inline CodeOffset PushWithPatch(ImmWord word);
inline CodeOffset PushWithPatch(ImmPtr imm);
void Pop(const Operand op) DEFINED_ON(x86_shared);
void Pop(Register reg) PER_SHARED_ARCH;
void Pop(FloatRegister t) PER_SHARED_ARCH;
void Pop(const ValueOperand& val) PER_SHARED_ARCH;
void popRooted(VMFunction::RootType rootType, Register cellReg, const ValueOperand& valueReg);
// Move the stack pointer based on the requested amount.
void adjustStack(int amount);
void freeStack(uint32_t amount);
// Warning: This method does not update the framePushed() counter.
void freeStack(Register amount);
private:
// ===============================================================
// Register allocation fields.
#ifdef DEBUG
friend AutoRegisterScope;
friend AutoFloatRegisterScope;
// Used to track register scopes for debug builds.
// Manipulated by the AutoGenericRegisterScope class.
AllocatableRegisterSet debugTrackedRegisters_;
#endif // DEBUG
public:
// ===============================================================
// Simple call functions.
CodeOffset call(Register reg) PER_SHARED_ARCH;
CodeOffset call(Label* label) PER_SHARED_ARCH;
void call(const Address& addr) DEFINED_ON(x86_shared);
void call(ImmWord imm) PER_SHARED_ARCH;
// Call a target native function, which is neither traceable nor movable.
void call(ImmPtr imm) PER_SHARED_ARCH;
void call(wasm::SymbolicAddress imm) PER_SHARED_ARCH;
// Call a target JitCode, which must be traceable, and may be movable.
void call(JitCode* c) PER_SHARED_ARCH;
inline void call(const wasm::CallSiteDesc& desc, const Register reg);
inline void call(const wasm::CallSiteDesc& desc, uint32_t funcDefIndex);
inline void call(const wasm::CallSiteDesc& desc, wasm::Trap trap);
CodeOffset callWithPatch() PER_SHARED_ARCH;
void patchCall(uint32_t callerOffset, uint32_t calleeOffset) PER_SHARED_ARCH;
// Push the return address and make a call. On platforms where this function
// is not defined, push the link register (pushReturnAddress) at the entry
// point of the callee.
void callAndPushReturnAddress(Register reg) DEFINED_ON(x86_shared);
void callAndPushReturnAddress(Label* label) DEFINED_ON(x86_shared);
void pushReturnAddress() DEFINED_ON(mips_shared, arm, arm64);
void popReturnAddress() DEFINED_ON(mips_shared, arm, arm64);
public:
// ===============================================================
// Patchable near/far jumps.
// "Far jumps" provide the ability to jump to any uint32_t offset from any
// other uint32_t offset without using a constant pool (thus returning a
// simple CodeOffset instead of a CodeOffsetJump).
CodeOffset farJumpWithPatch() PER_SHARED_ARCH;
void patchFarJump(CodeOffset farJump, uint32_t targetOffset) PER_SHARED_ARCH;
static void repatchFarJump(uint8_t* code, uint32_t farJumpOffset, uint32_t targetOffset) PER_SHARED_ARCH;
// Emit a nop that can be patched to and from a nop and a jump with an int8
// relative displacement.
CodeOffset nopPatchableToNearJump() PER_SHARED_ARCH;
static void patchNopToNearJump(uint8_t* jump, uint8_t* target) PER_SHARED_ARCH;
static void patchNearJumpToNop(uint8_t* jump) PER_SHARED_ARCH;
public:
// ===============================================================
// ABI function calls.
// Setup a call to C/C++ code, given the assumption that the framePushed
// accruately define the state of the stack, and that the top of the stack
// was properly aligned. Note that this only supports cdecl.
void setupAlignedABICall(); // CRASH_ON(arm64)
// Setup an ABI call for when the alignment is not known. This may need a
// scratch register.
void setupUnalignedABICall(Register scratch) PER_ARCH;
// Arguments must be assigned to a C/C++ call in order. They are moved
// in parallel immediately before performing the call. This process may
// temporarily use more stack, in which case esp-relative addresses will be
// automatically adjusted. It is extremely important that esp-relative
// addresses are computed *after* setupABICall(). Furthermore, no
// operations should be emitted while setting arguments.
void passABIArg(const MoveOperand& from, MoveOp::Type type);
inline void passABIArg(Register reg);
inline void passABIArg(FloatRegister reg, MoveOp::Type type);
template <typename T>
inline void callWithABI(const T& fun, MoveOp::Type result = MoveOp::GENERAL);
private:
// Reinitialize the variables which have to be cleared before making a call
// with callWithABI.
void setupABICall();
// Reserve the stack and resolve the arguments move.
void callWithABIPre(uint32_t* stackAdjust, bool callFromWasm = false) PER_ARCH;
// Emits a call to a C/C++ function, resolving all argument moves.
void callWithABINoProfiler(void* fun, MoveOp::Type result);
void callWithABINoProfiler(wasm::SymbolicAddress imm, MoveOp::Type result);
void callWithABINoProfiler(Register fun, MoveOp::Type result) PER_ARCH;
void callWithABINoProfiler(const Address& fun, MoveOp::Type result) PER_ARCH;
// Restore the stack to its state before the setup function call.
void callWithABIPost(uint32_t stackAdjust, MoveOp::Type result) PER_ARCH;
// Create the signature to be able to decode the arguments of a native
// function, when calling a function within the simulator.
inline void appendSignatureType(MoveOp::Type type);
inline ABIFunctionType signature() const;
// Private variables used to handle moves between registers given as
// arguments to passABIArg and the list of ABI registers expected for the
// signature of the function.
MoveResolver moveResolver_;
// Architecture specific implementation which specify how registers & stack
// offsets are used for calling a function.
ABIArgGenerator abiArgs_;
#ifdef DEBUG
// Flag use to assert that we use ABI function in the right context.
bool inCall_;
#endif
// If set by setupUnalignedABICall then callWithABI will pop the stack
// register which is on the stack.
bool dynamicAlignment_;
#ifdef JS_SIMULATOR
// The signature is used to accumulate all types of arguments which are used
// by the caller. This is used by the simulators to decode the arguments
// properly, and cast the function pointer to the right type.
uint32_t signature_;
#endif
public:
// ===============================================================
// Jit Frames.
//
// These functions are used to build the content of the Jit frames. See
// CommonFrameLayout class, and all its derivatives. The content should be
// pushed in the opposite order as the fields of the structures, such that
// the structures can be used to interpret the content of the stack.
// Call the Jit function, and push the return address (or let the callee
// push the return address).
//
// These functions return the offset of the return address, in order to use
// the return address to index the safepoints, which are used to list all
// live registers.
inline uint32_t callJitNoProfiler(Register callee);
inline uint32_t callJit(Register callee);
inline uint32_t callJit(JitCode* code);
// The frame descriptor is the second field of all Jit frames, pushed before
// calling the Jit function. It is a composite value defined in JitFrames.h
inline void makeFrameDescriptor(Register frameSizeReg, FrameType type, uint32_t headerSize);
// Push the frame descriptor, based on the statically known framePushed.
inline void pushStaticFrameDescriptor(FrameType type, uint32_t headerSize);
// Push the callee token of a JSFunction which pointer is stored in the
// |callee| register. The callee token is packed with a |constructing| flag
// which correspond to the fact that the JS function is called with "new" or
// not.
inline void PushCalleeToken(Register callee, bool constructing);
// Unpack a callee token located at the |token| address, and return the
// JSFunction pointer in the |dest| register.
inline void loadFunctionFromCalleeToken(Address token, Register dest);
// This function emulates a call by pushing an exit frame on the stack,
// except that the fake-function is inlined within the body of the caller.
//
// This function assumes that the current frame is an IonJS frame.
//
// This function returns the offset of the /fake/ return address, in order to use
// the return address to index the safepoints, which are used to list all
// live registers.
//
// This function should be balanced with a call to adjustStack, to pop the
// exit frame and emulate the return statement of the inlined function.
inline uint32_t buildFakeExitFrame(Register scratch);
private:
// This function is used by buildFakeExitFrame to push a fake return address
// on the stack. This fake return address should never be used for resuming
// any execution, and can even be an invalid pointer into the instruction
// stream, as long as it does not alias any other.
uint32_t pushFakeReturnAddress(Register scratch) PER_SHARED_ARCH;
public:
// ===============================================================
// Exit frame footer.
//
// When calling outside the Jit we push an exit frame. To mark the stack
// correctly, we have to push additional information, called the Exit frame
// footer, which is used to identify how the stack is marked.
//
// See JitFrames.h, and MarkJitExitFrame in JitFrames.cpp.
// If the current piece of code might be garbage collected, then the exit
// frame footer must contain a pointer to the current JitCode, such that the
// garbage collector can keep the code alive as long this code is on the
// stack. This function pushes a placeholder which is replaced when the code
// is linked.
inline void PushStubCode();
// Return true if the code contains a self-reference which needs to be
// patched when the code is linked.
inline bool hasSelfReference() const;
// Push stub code and the VMFunction pointer.
inline void enterExitFrame(const VMFunction* f = nullptr);
// Push an exit frame token to identify which fake exit frame this footer
// corresponds to.
inline void enterFakeExitFrame(enum ExitFrameTokenValues token);
// Push an exit frame token for a native call.
inline void enterFakeExitFrameForNative(bool isConstructing);
// Pop ExitFrame footer in addition to the extra frame.
inline void leaveExitFrame(size_t extraFrame = 0);
private:
// Save the top of the stack into PerThreadData::jitTop of the main thread,
// which should be the location of the latest exit frame.
void linkExitFrame();
// Patch the value of PushStubCode with the pointer to the finalized code.
void linkSelfReference(JitCode* code);
// If the JitCode that created this assembler needs to transition into the VM,
// we want to store the JitCode on the stack in order to mark it during a GC.
// This is a reference to a patch location where the JitCode* will be written.
CodeOffset selfReferencePatch_;
public:
// ===============================================================
// Move instructions
inline void move64(Imm64 imm, Register64 dest) PER_ARCH;
inline void move64(Register64 src, Register64 dest) PER_ARCH;
inline void moveFloat32ToGPR(FloatRegister src, Register dest) PER_SHARED_ARCH;
inline void moveGPRToFloat32(Register src, FloatRegister dest) PER_SHARED_ARCH;
inline void move8SignExtend(Register src, Register dest) PER_SHARED_ARCH;
inline void move16SignExtend(Register src, Register dest) PER_SHARED_ARCH;
// ===============================================================
// Logical instructions
inline void not32(Register reg) PER_SHARED_ARCH;
inline void and32(Register src, Register dest) PER_SHARED_ARCH;
inline void and32(Imm32 imm, Register dest) PER_SHARED_ARCH;
inline void and32(Imm32 imm, Register src, Register dest) DEFINED_ON(arm64);
inline void and32(Imm32 imm, const Address& dest) PER_SHARED_ARCH;
inline void and32(const Address& src, Register dest) PER_SHARED_ARCH;
inline void andPtr(Register src, Register dest) PER_ARCH;
inline void andPtr(Imm32 imm, Register dest) PER_ARCH;
inline void and64(Imm64 imm, Register64 dest) PER_ARCH;
inline void or64(Imm64 imm, Register64 dest) PER_ARCH;
inline void xor64(Imm64 imm, Register64 dest) PER_ARCH;
inline void or32(Register src, Register dest) PER_SHARED_ARCH;
inline void or32(Imm32 imm, Register dest) PER_SHARED_ARCH;
inline void or32(Imm32 imm, const Address& dest) PER_SHARED_ARCH;
inline void orPtr(Register src, Register dest) PER_ARCH;
inline void orPtr(Imm32 imm, Register dest) PER_ARCH;
inline void and64(Register64 src, Register64 dest) PER_ARCH;
inline void or64(Register64 src, Register64 dest) PER_ARCH;
inline void xor64(Register64 src, Register64 dest) PER_ARCH;
inline void xor32(Register src, Register dest) PER_SHARED_ARCH;
inline void xor32(Imm32 imm, Register dest) PER_SHARED_ARCH;
inline void xorPtr(Register src, Register dest) PER_ARCH;
inline void xorPtr(Imm32 imm, Register dest) PER_ARCH;
inline void and64(const Operand& src, Register64 dest) DEFINED_ON(x64, mips64);
inline void or64(const Operand& src, Register64 dest) DEFINED_ON(x64, mips64);
inline void xor64(const Operand& src, Register64 dest) DEFINED_ON(x64, mips64);
// ===============================================================
// Arithmetic functions
inline void add32(Register src, Register dest) PER_SHARED_ARCH;
inline void add32(Imm32 imm, Register dest) PER_SHARED_ARCH;
inline void add32(Imm32 imm, const Address& dest) PER_SHARED_ARCH;
inline void add32(Imm32 imm, const AbsoluteAddress& dest) DEFINED_ON(x86_shared);
inline void addPtr(Register src, Register dest) PER_ARCH;
inline void addPtr(Register src1, Register src2, Register dest) DEFINED_ON(arm64);
inline void addPtr(Imm32 imm, Register dest) PER_ARCH;
inline void addPtr(Imm32 imm, Register src, Register dest) DEFINED_ON(arm64);
inline void addPtr(ImmWord imm, Register dest) PER_ARCH;
inline void addPtr(ImmPtr imm, Register dest);
inline void addPtr(Imm32 imm, const Address& dest) DEFINED_ON(mips_shared, arm, arm64, x86, x64);
inline void addPtr(Imm32 imm, const AbsoluteAddress& dest) DEFINED_ON(x86, x64);
inline void addPtr(const Address& src, Register dest) DEFINED_ON(mips_shared, arm, arm64, x86, x64);
inline void add64(Register64 src, Register64 dest) PER_ARCH;
inline void add64(Imm32 imm, Register64 dest) PER_ARCH;
inline void add64(Imm64 imm, Register64 dest) DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void add64(const Operand& src, Register64 dest) DEFINED_ON(x64, mips64);
inline void addFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void addDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void addConstantDouble(double d, FloatRegister dest) DEFINED_ON(x86);
inline void sub32(const Address& src, Register dest) PER_SHARED_ARCH;
inline void sub32(Register src, Register dest) PER_SHARED_ARCH;
inline void sub32(Imm32 imm, Register dest) PER_SHARED_ARCH;
inline void subPtr(Register src, Register dest) PER_ARCH;
inline void subPtr(Register src, const Address& dest) DEFINED_ON(mips_shared, arm, arm64, x86, x64);
inline void subPtr(Imm32 imm, Register dest) PER_ARCH;
inline void subPtr(ImmWord imm, Register dest) DEFINED_ON(x64);
inline void subPtr(const Address& addr, Register dest) DEFINED_ON(mips_shared, arm, arm64, x86, x64);
inline void sub64(Register64 src, Register64 dest) PER_ARCH;
inline void sub64(Imm64 imm, Register64 dest) DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void sub64(const Operand& src, Register64 dest) DEFINED_ON(x64, mips64);
inline void subFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void subDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
// On x86-shared, srcDest must be eax and edx will be clobbered.
inline void mul32(Register rhs, Register srcDest) PER_SHARED_ARCH;
inline void mul32(Register src1, Register src2, Register dest, Label* onOver, Label* onZero) DEFINED_ON(arm64);
inline void mul64(const Operand& src, const Register64& dest) DEFINED_ON(x64);
inline void mul64(const Operand& src, const Register64& dest, const Register temp)
DEFINED_ON(x64, mips64);
inline void mul64(Imm64 imm, const Register64& dest) PER_ARCH;
inline void mul64(Imm64 imm, const Register64& dest, const Register temp)
DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void mul64(const Register64& src, const Register64& dest, const Register temp)
PER_ARCH;
inline void mulBy3(Register src, Register dest) PER_ARCH;
inline void mulFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void mulDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void mulDoublePtr(ImmPtr imm, Register temp, FloatRegister dest) DEFINED_ON(mips_shared, arm, arm64, x86, x64);
// Perform an integer division, returning the integer part rounded toward zero.
// rhs must not be zero, and the division must not overflow.
//
// On x86_shared, srcDest must be eax and edx will be clobbered.
// On ARM, the chip must have hardware division instructions.
inline void quotient32(Register rhs, Register srcDest, bool isUnsigned) PER_SHARED_ARCH;
// Perform an integer division, returning the remainder part.
// rhs must not be zero, and the division must not overflow.
//
// On x86_shared, srcDest must be eax and edx will be clobbered.
// On ARM, the chip must have hardware division instructions.
inline void remainder32(Register rhs, Register srcDest, bool isUnsigned) PER_SHARED_ARCH;
inline void divFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void divDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void inc32(RegisterOrInt32Constant* key);
inline void inc64(AbsoluteAddress dest) PER_ARCH;
inline void dec32(RegisterOrInt32Constant* key);
inline void neg32(Register reg) PER_SHARED_ARCH;
inline void neg64(Register64 reg) DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void negateFloat(FloatRegister reg) PER_SHARED_ARCH;
inline void negateDouble(FloatRegister reg) PER_SHARED_ARCH;
inline void absFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void absDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void sqrtFloat32(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
inline void sqrtDouble(FloatRegister src, FloatRegister dest) PER_SHARED_ARCH;
// srcDest = {min,max}{Float32,Double}(srcDest, other)
// For min and max, handle NaN specially if handleNaN is true.
inline void minFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) PER_SHARED_ARCH;
inline void minDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) PER_SHARED_ARCH;
inline void maxFloat32(FloatRegister other, FloatRegister srcDest, bool handleNaN) PER_SHARED_ARCH;
inline void maxDouble(FloatRegister other, FloatRegister srcDest, bool handleNaN) PER_SHARED_ARCH;
// ===============================================================
// Shift functions
// For shift-by-register there may be platform-specific
// variations, for example, x86 will perform the shift mod 32 but
// ARM will perform the shift mod 256.
//
// For shift-by-immediate the platform assembler may restrict the
// immediate, for example, the ARM assembler requires the count
// for 32-bit shifts to be in the range [0,31].
inline void lshift32(Imm32 shift, Register srcDest) PER_SHARED_ARCH;
inline void rshift32(Imm32 shift, Register srcDest) PER_SHARED_ARCH;
inline void rshift32Arithmetic(Imm32 shift, Register srcDest) PER_SHARED_ARCH;
inline void lshiftPtr(Imm32 imm, Register dest) PER_ARCH;
inline void rshiftPtr(Imm32 imm, Register dest) PER_ARCH;
inline void rshiftPtr(Imm32 imm, Register src, Register dest) DEFINED_ON(arm64);
inline void rshiftPtrArithmetic(Imm32 imm, Register dest) PER_ARCH;
inline void lshift64(Imm32 imm, Register64 dest) PER_ARCH;
inline void rshift64(Imm32 imm, Register64 dest) PER_ARCH;
inline void rshift64Arithmetic(Imm32 imm, Register64 dest) PER_ARCH;
// On x86_shared these have the constraint that shift must be in CL.
inline void lshift32(Register shift, Register srcDest) PER_SHARED_ARCH;
inline void rshift32(Register shift, Register srcDest) PER_SHARED_ARCH;
inline void rshift32Arithmetic(Register shift, Register srcDest) PER_SHARED_ARCH;
inline void lshift64(Register shift, Register64 srcDest) PER_ARCH;
inline void rshift64(Register shift, Register64 srcDest) PER_ARCH;
inline void rshift64Arithmetic(Register shift, Register64 srcDest) PER_ARCH;
// ===============================================================
// Rotation functions
// Note: - on x86 and x64 the count register must be in CL.
// - on x64 the temp register should be InvalidReg.
inline void rotateLeft(Imm32 count, Register input, Register dest) PER_SHARED_ARCH;
inline void rotateLeft(Register count, Register input, Register dest) PER_SHARED_ARCH;
inline void rotateLeft64(Imm32 count, Register64 input, Register64 dest) DEFINED_ON(x64);
inline void rotateLeft64(Register count, Register64 input, Register64 dest) DEFINED_ON(x64);
inline void rotateLeft64(Imm32 count, Register64 input, Register64 dest, Register temp)
DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void rotateLeft64(Register count, Register64 input, Register64 dest, Register temp)
PER_ARCH;
inline void rotateRight(Imm32 count, Register input, Register dest) PER_SHARED_ARCH;
inline void rotateRight(Register count, Register input, Register dest) PER_SHARED_ARCH;
inline void rotateRight64(Imm32 count, Register64 input, Register64 dest) DEFINED_ON(x64);
inline void rotateRight64(Register count, Register64 input, Register64 dest) DEFINED_ON(x64);
inline void rotateRight64(Imm32 count, Register64 input, Register64 dest, Register temp)
DEFINED_ON(x86, x64, arm, mips32, mips64);
inline void rotateRight64(Register count, Register64 input, Register64 dest, Register temp)
PER_ARCH;
// ===============================================================
// Bit counting functions
// knownNotZero may be true only if the src is known not to be zero.
inline void clz32(Register src, Register dest, bool knownNotZero) PER_SHARED_ARCH;
inline void ctz32(Register src, Register dest, bool knownNotZero) PER_SHARED_ARCH;
inline void clz64(Register64 src, Register dest) PER_ARCH;
inline void ctz64(Register64 src, Register dest) PER_ARCH;
// On x86_shared, temp may be Invalid only if the chip has the POPCNT instruction.
// On ARM, temp may never be Invalid.
inline void popcnt32(Register src, Register dest, Register temp) PER_SHARED_ARCH;
// temp may be invalid only if the chip has the POPCNT instruction.
inline void popcnt64(Register64 src, Register64 dest, Register temp) PER_ARCH;
// ===============================================================
// Condition functions
template <typename T1, typename T2>
inline void cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest)
DEFINED_ON(x86_shared, arm, arm64, mips32, mips64);
template <typename T1, typename T2>
inline void cmpPtrSet(Condition cond, T1 lhs, T2 rhs, Register dest)
PER_ARCH;
// ===============================================================
// Branch functions
template <class L>
inline void branch32(Condition cond, Register lhs, Register rhs, L label) PER_SHARED_ARCH;
template <class L>
inline void branch32(Condition cond, Register lhs, Imm32 rhs, L label) PER_SHARED_ARCH;
inline void branch32(Condition cond, Register length, const RegisterOrInt32Constant& key,
Label* label);
inline void branch32(Condition cond, const Address& lhs, Register rhs, Label* label) PER_SHARED_ARCH;
inline void branch32(Condition cond, const Address& lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
inline void branch32(Condition cond, const Address& length, const RegisterOrInt32Constant& key,
Label* label);
inline void branch32(Condition cond, const AbsoluteAddress& lhs, Register rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branch32(Condition cond, const AbsoluteAddress& lhs, Imm32 rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branch32(Condition cond, const BaseIndex& lhs, Register rhs, Label* label)
DEFINED_ON(x86_shared);
inline void branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
inline void branch32(Condition cond, const Operand& lhs, Register rhs, Label* label) DEFINED_ON(x86_shared);
inline void branch32(Condition cond, const Operand& lhs, Imm32 rhs, Label* label) DEFINED_ON(x86_shared);
inline void branch32(Condition cond, wasm::SymbolicAddress lhs, Imm32 rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
// The supported condition are Equal, NotEqual, LessThan(orEqual), GreaterThan(orEqual),
// Below(orEqual) and Above(orEqual).
// When a fail label is not defined it will fall through to next instruction,
// else jump to the fail label.
inline void branch64(Condition cond, Register64 lhs, Imm64 val, Label* success,
Label* fail = nullptr) PER_ARCH;
inline void branch64(Condition cond, Register64 lhs, Register64 rhs, Label* success,
Label* fail = nullptr) DEFINED_ON(x86, x64, arm, mips32, mips64);
// On x86 and x64 NotEqual and Equal conditions are allowed for the branch64 variants
// with Address as lhs. On others only the NotEqual condition.
inline void branch64(Condition cond, const Address& lhs, Imm64 val, Label* label) PER_ARCH;
// Compare the value at |lhs| with the value at |rhs|. The scratch
// register *must not* be the base of |lhs| or |rhs|.
inline void branch64(Condition cond, const Address& lhs, const Address& rhs, Register scratch,
Label* label) PER_ARCH;
template <class L>
inline void branchPtr(Condition cond, Register lhs, Register rhs, L label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, Register lhs, ImmPtr rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, Register lhs, ImmGCPtr rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, Register lhs, ImmWord rhs, Label* label) PER_SHARED_ARCH;
template <class L>
inline void branchPtr(Condition cond, const Address& lhs, Register rhs, L label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, const Address& lhs, ImmPtr rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, const Address& lhs, ImmGCPtr rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, const Address& lhs, ImmWord rhs, Label* label) PER_SHARED_ARCH;
inline void branchPtr(Condition cond, const AbsoluteAddress& lhs, Register rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branchPtr(Condition cond, const AbsoluteAddress& lhs, ImmWord rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branchPtr(Condition cond, wasm::SymbolicAddress lhs, Register rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
template <typename T>
inline CodeOffsetJump branchPtrWithPatch(Condition cond, Register lhs, T rhs, RepatchLabel* label) PER_SHARED_ARCH;
template <typename T>
inline CodeOffsetJump branchPtrWithPatch(Condition cond, Address lhs, T rhs, RepatchLabel* label) PER_SHARED_ARCH;
void branchPtrInNurseryChunk(Condition cond, Register ptr, Register temp, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
void branchPtrInNurseryChunk(Condition cond, const Address& address, Register temp, Label* label)
DEFINED_ON(x86);
void branchValueIsNurseryObject(Condition cond, const Address& address, Register temp, Label* label) PER_ARCH;
void branchValueIsNurseryObject(Condition cond, ValueOperand value, Register temp, Label* label) PER_ARCH;
// This function compares a Value (lhs) which is having a private pointer
// boxed inside a js::Value, with a raw pointer (rhs).
inline void branchPrivatePtr(Condition cond, const Address& lhs, Register rhs, Label* label) PER_ARCH;
inline void branchFloat(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs,
Label* label) PER_SHARED_ARCH;
// Truncate a double/float32 to int32 and when it doesn't fit an int32 it will jump to
// the failure label. This particular variant is allowed to return the value module 2**32,
// which isn't implemented on all architectures.
// E.g. the x64 variants will do this only in the int64_t range.
inline void branchTruncateFloat32MaybeModUint32(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branchTruncateDoubleMaybeModUint32(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
// Truncate a double/float32 to intptr and when it doesn't fit jump to the failure label.
inline void branchTruncateFloat32ToPtr(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(x86, x64);
inline void branchTruncateDoubleToPtr(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(x86, x64);
// Truncate a double/float32 to int32 and when it doesn't fit jump to the failure label.
inline void branchTruncateFloat32ToInt32(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branchTruncateDoubleToInt32(FloatRegister src, Register dest, Label* fail)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
inline void branchDouble(DoubleCondition cond, FloatRegister lhs, FloatRegister rhs,
Label* label) PER_SHARED_ARCH;
inline void branchDoubleNotInInt64Range(Address src, Register temp, Label* fail);
inline void branchDoubleNotInUInt64Range(Address src, Register temp, Label* fail);
inline void branchFloat32NotInInt64Range(Address src, Register temp, Label* fail);
inline void branchFloat32NotInUInt64Range(Address src, Register temp, Label* fail);
template <typename T, typename L>
inline void branchAdd32(Condition cond, T src, Register dest, L label) PER_SHARED_ARCH;
template <typename T>
inline void branchSub32(Condition cond, T src, Register dest, Label* label) PER_SHARED_ARCH;
inline void decBranchPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
template <class L>
inline void branchTest32(Condition cond, Register lhs, Register rhs, L label) PER_SHARED_ARCH;
template <class L>
inline void branchTest32(Condition cond, Register lhs, Imm32 rhs, L label) PER_SHARED_ARCH;
inline void branchTest32(Condition cond, const Address& lhs, Imm32 rhh, Label* label) PER_SHARED_ARCH;
inline void branchTest32(Condition cond, const AbsoluteAddress& lhs, Imm32 rhs, Label* label)
DEFINED_ON(arm, arm64, mips_shared, x86, x64);
template <class L>
inline void branchTestPtr(Condition cond, Register lhs, Register rhs, L label) PER_SHARED_ARCH;
inline void branchTestPtr(Condition cond, Register lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
inline void branchTestPtr(Condition cond, const Address& lhs, Imm32 rhs, Label* label) PER_SHARED_ARCH;
template <class L>
inline void branchTest64(Condition cond, Register64 lhs, Register64 rhs, Register temp,
L label) PER_ARCH;
// Branches to |label| if |reg| is false. |reg| should be a C++ bool.
template <class L>
inline void branchIfFalseBool(Register reg, L label);
// Branches to |label| if |reg| is true. |reg| should be a C++ bool.
inline void branchIfTrueBool(Register reg, Label* label);
inline void branchIfRope(Register str, Label* label);
inline void branchIfRopeOrExternal(Register str, Register temp, Label* label);
inline void branchLatin1String(Register string, Label* label);
inline void branchTwoByteString(Register string, Label* label);
inline void branchIfFunctionHasNoScript(Register fun, Label* label);
inline void branchIfInterpreted(Register fun, Label* label);
inline void branchFunctionKind(Condition cond, JSFunction::FunctionKind kind, Register fun,
Register scratch, Label* label);
void branchIfNotInterpretedConstructor(Register fun, Register scratch, Label* label);
inline void branchTestObjClass(Condition cond, Register obj, Register scratch, const js::Class* clasp,
Label* label);
inline void branchTestObjShape(Condition cond, Register obj, const Shape* shape, Label* label);
inline void branchTestObjShape(Condition cond, Register obj, Register shape, Label* label);
inline void branchTestObjGroup(Condition cond, Register obj, ObjectGroup* group, Label* label);
inline void branchTestObjGroup(Condition cond, Register obj, Register group, Label* label);
inline void branchTestObjectTruthy(bool truthy, Register objReg, Register scratch,
Label* slowCheck, Label* checked);
inline void branchTestClassIsProxy(bool proxy, Register clasp, Label* label);
inline void branchTestObjectIsProxy(bool proxy, Register object, Register scratch, Label* label);
inline void branchTestProxyHandlerFamily(Condition cond, Register proxy, Register scratch,
const void* handlerp, Label* label);
template <typename Value>
inline void branchTestMIRType(Condition cond, const Value& val, MIRType type, Label* label);
// Emit type case branch on tag matching if the type tag in the definition
// might actually be that type.
void maybeBranchTestType(MIRType type, MDefinition* maybeDef, Register tag, Label* label);
inline void branchTestNeedsIncrementalBarrier(Condition cond, Label* label);
// Perform a type-test on a tag of a Value (32bits boxing), or the tagged
// value (64bits boxing).
inline void branchTestUndefined(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestInt32(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestDouble(Condition cond, Register tag, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestNumber(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestBoolean(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestString(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestSymbol(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestNull(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestObject(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestPrimitive(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
inline void branchTestMagic(Condition cond, Register tag, Label* label) PER_SHARED_ARCH;
// Perform a type-test on a Value, addressed by Address or BaseIndex, or
// loaded into ValueOperand.
// BaseIndex and ValueOperand variants clobber the ScratchReg on x64.
// All Variants clobber the ScratchReg on arm64.
inline void branchTestUndefined(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestUndefined(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestUndefined(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestInt32(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestInt32(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestInt32(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestDouble(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestDouble(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestDouble(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestNumber(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestBoolean(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestBoolean(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestBoolean(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestString(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestString(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestSymbol(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestSymbol(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestNull(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestNull(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestNull(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
// Clobbers the ScratchReg on x64.
inline void branchTestObject(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestObject(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestObject(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestGCThing(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestGCThing(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
inline void branchTestPrimitive(Condition cond, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestMagic(Condition cond, const Address& address, Label* label) PER_SHARED_ARCH;
inline void branchTestMagic(Condition cond, const BaseIndex& address, Label* label) PER_SHARED_ARCH;
template <class L>
inline void branchTestMagic(Condition cond, const ValueOperand& value, L label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestMagic(Condition cond, const Address& valaddr, JSWhyMagic why, Label* label) PER_ARCH;
inline void branchTestMagicValue(Condition cond, const ValueOperand& val, JSWhyMagic why,
Label* label);
void branchTestValue(Condition cond, const ValueOperand& lhs,
const Value& rhs, Label* label) PER_ARCH;
// Checks if given Value is evaluated to true or false in a condition.
// The type of the value should match the type of the method.
inline void branchTestInt32Truthy(bool truthy, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
inline void branchTestDoubleTruthy(bool truthy, FloatRegister reg, Label* label) PER_SHARED_ARCH;
inline void branchTestBooleanTruthy(bool truthy, const ValueOperand& value, Label* label) PER_ARCH;
inline void branchTestStringTruthy(bool truthy, const ValueOperand& value, Label* label)
DEFINED_ON(arm, arm64, mips32, mips64, x86_shared);
private:
// Implementation for branch* methods.
template <typename T>
inline void branch32Impl(Condition cond, const T& length, const RegisterOrInt32Constant& key,
Label* label);
template <typename T, typename S, typename L>
inline void branchPtrImpl(Condition cond, const T& lhs, const S& rhs, L label)
DEFINED_ON(x86_shared);
void branchPtrInNurseryChunkImpl(Condition cond, Register ptr, Label* label)
DEFINED_ON(x86);
template <typename T>
void branchValueIsNurseryObjectImpl(Condition cond, const T& value, Register temp, Label* label)
DEFINED_ON(arm64, mips64, x64);
template <typename T>
inline void branchTestUndefinedImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestInt32Impl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestDoubleImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestNumberImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestBooleanImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestStringImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestSymbolImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestNullImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestObjectImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestGCThingImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T>
inline void branchTestPrimitiveImpl(Condition cond, const T& t, Label* label)
DEFINED_ON(arm, arm64, x86_shared);
template <typename T, class L>
inline void branchTestMagicImpl(Condition cond, const T& t, L label)
DEFINED_ON(arm, arm64, x86_shared);
public:
// ========================================================================
// Canonicalization primitives.
inline void canonicalizeDouble(FloatRegister reg);
inline void canonicalizeDoubleIfDeterministic(FloatRegister reg);
inline void canonicalizeFloat(FloatRegister reg);
inline void canonicalizeFloatIfDeterministic(FloatRegister reg);
inline void canonicalizeFloat32x4(FloatRegister reg, FloatRegister scratch)
DEFINED_ON(x86_shared);
public:
// ========================================================================
// Memory access primitives.
inline void storeUncanonicalizedDouble(FloatRegister src, const Address& dest)
DEFINED_ON(x86_shared, arm, arm64, mips32, mips64);
inline void storeUncanonicalizedDouble(FloatRegister src, const BaseIndex& dest)
DEFINED_ON(x86_shared, arm, arm64, mips32, mips64);
inline void storeUncanonicalizedDouble(FloatRegister src, const Operand& dest)
DEFINED_ON(x86_shared);
template<class T>
inline void storeDouble(FloatRegister src, const T& dest);
inline void storeUncanonicalizedFloat32(FloatRegister src, const Address& dest)
DEFINED_ON(x86_shared, arm, arm64, mips32, mips64);
inline void storeUncanonicalizedFloat32(FloatRegister src, const BaseIndex& dest)
DEFINED_ON(x86_shared, arm, arm64, mips32, mips64);
inline void storeUncanonicalizedFloat32(FloatRegister src, const Operand& dest)
DEFINED_ON(x86_shared);
template<class T>
inline void storeFloat32(FloatRegister src, const T& dest);
inline void storeFloat32x3(FloatRegister src, const Address& dest) PER_SHARED_ARCH;
inline void storeFloat32x3(FloatRegister src, const BaseIndex& dest) PER_SHARED_ARCH;
template <typename T>
void storeUnboxedValue(const ConstantOrRegister& value, MIRType valueType, const T& dest,
MIRType slotType) PER_ARCH;
inline void memoryBarrier(MemoryBarrierBits barrier) PER_SHARED_ARCH;
public:
// ========================================================================
// Truncate floating point.
// Undefined behaviour when truncation is outside Int64 range.
// Needs a temp register if SSE3 is not present.
inline void truncateFloat32ToInt64(Address src, Address dest, Register temp)
DEFINED_ON(x86_shared);
inline void truncateFloat32ToUInt64(Address src, Address dest, Register temp,
FloatRegister floatTemp)
DEFINED_ON(x86, x64);
inline void truncateDoubleToInt64(Address src, Address dest, Register temp)
DEFINED_ON(x86_shared);
inline void truncateDoubleToUInt64(Address src, Address dest, Register temp,
FloatRegister floatTemp)
DEFINED_ON(x86, x64);
public:
// ========================================================================
// wasm support
// Emit a bounds check against the (dynamically-patched) wasm bounds check
// limit, jumping to 'label' if 'cond' holds.
template <class L>
inline void wasmBoundsCheck(Condition cond, Register index, L label) PER_ARCH;
// Called after compilation completes to patch the given limit into the
// given instruction's immediate.
static inline void wasmPatchBoundsCheck(uint8_t* patchAt, uint32_t limit) PER_ARCH;
// On x86, each instruction adds its own wasm::MemoryAccess's to the
// wasm::MemoryAccessVector (there can be multiple when i64 is involved).
// On x64, only some asm.js accesses need a wasm::MemoryAccess so the caller
// is responsible for doing this instead.
void wasmLoad(const wasm::MemoryAccessDesc& access, Operand srcAddr, AnyRegister out) DEFINED_ON(x86, x64);
void wasmLoadI64(const wasm::MemoryAccessDesc& access, Operand srcAddr, Register64 out) DEFINED_ON(x86, x64);
void wasmStore(const wasm::MemoryAccessDesc& access, AnyRegister value, Operand dstAddr) DEFINED_ON(x86, x64);
void wasmStoreI64(const wasm::MemoryAccessDesc& access, Register64 value, Operand dstAddr) DEFINED_ON(x86);
// wasm specific methods, used in both the wasm baseline compiler and ion.
void wasmTruncateDoubleToUInt32(FloatRegister input, Register output, Label* oolEntry) DEFINED_ON(x86, x64, arm);
void wasmTruncateDoubleToInt32(FloatRegister input, Register output, Label* oolEntry) DEFINED_ON(x86_shared, arm);
void outOfLineWasmTruncateDoubleToInt32(FloatRegister input, bool isUnsigned, wasm::TrapOffset off, Label* rejoin) DEFINED_ON(x86_shared);
void wasmTruncateFloat32ToUInt32(FloatRegister input, Register output, Label* oolEntry) DEFINED_ON(x86, x64, arm);
void wasmTruncateFloat32ToInt32(FloatRegister input, Register output, Label* oolEntry) DEFINED_ON(x86_shared, arm);
void outOfLineWasmTruncateFloat32ToInt32(FloatRegister input, bool isUnsigned, wasm::TrapOffset off, Label* rejoin) DEFINED_ON(x86_shared);
void outOfLineWasmTruncateDoubleToInt64(FloatRegister input, bool isUnsigned, wasm::TrapOffset off, Label* rejoin) DEFINED_ON(x86_shared);
void outOfLineWasmTruncateFloat32ToInt64(FloatRegister input, bool isUnsigned, wasm::TrapOffset off, Label* rejoin) DEFINED_ON(x86_shared);
// This function takes care of loading the callee's TLS and pinned regs but
// it is the caller's responsibility to save/restore TLS or pinned regs.
void wasmCallImport(const wasm::CallSiteDesc& desc, const wasm::CalleeDesc& callee);
// WasmTableCallIndexReg must contain the index of the indirect call.
void wasmCallIndirect(const wasm::CallSiteDesc& desc, const wasm::CalleeDesc& callee);
// This function takes care of loading the pointer to the current instance
// as the implicit first argument. It preserves TLS and pinned registers.
// (TLS & pinned regs are non-volatile registers in the system ABI).
void wasmCallBuiltinInstanceMethod(const ABIArg& instanceArg,
wasm::SymbolicAddress builtin);
// Emit the out-of-line trap code to which trapping jumps/branches are
// bound. This should be called once per function after all other codegen,
// including "normal" OutOfLineCode.
void wasmEmitTrapOutOfLineCode();
public:
// ========================================================================
// Clamping functions.
inline void clampIntToUint8(Register reg) PER_SHARED_ARCH;
//}}} check_macroassembler_style
public:
// Emits a test of a value against all types in a TypeSet. A scratch
// register is required.
template <typename Source>
void guardTypeSet(const Source& address, const TypeSet* types, BarrierKind kind, Register scratch, Label* miss);
void guardObjectType(Register obj, const TypeSet* types, Register scratch, Label* miss);
template <typename TypeSet>
void guardTypeSetMightBeIncomplete(TypeSet* types, Register obj, Register scratch, Label* label);
void loadObjShape(Register objReg, Register dest) {
loadPtr(Address(objReg, ShapedObject::offsetOfShape()), dest);
}
void loadObjGroup(Register objReg, Register dest) {
loadPtr(Address(objReg, JSObject::offsetOfGroup()), dest);
}
void loadBaseShape(Register objReg, Register dest) {
loadObjShape(objReg, dest);
loadPtr(Address(dest, Shape::offsetOfBase()), dest);
}
void loadObjClass(Register objReg, Register dest) {
loadObjGroup(objReg, dest);
loadPtr(Address(dest, ObjectGroup::offsetOfClasp()), dest);
}
void loadObjPrivate(Register obj, uint32_t nfixed, Register dest) {
loadPtr(Address(obj, NativeObject::getPrivateDataOffset(nfixed)), dest);
}
void loadObjProto(Register obj, Register dest) {
loadPtr(Address(obj, JSObject::offsetOfGroup()), dest);
loadPtr(Address(dest, ObjectGroup::offsetOfProto()), dest);
}
void loadStringLength(Register str, Register dest) {
load32(Address(str, JSString::offsetOfLength()), dest);
}
void loadStringChars(Register str, Register dest);
void loadStringChar(Register str, Register index, Register output);
void loadJSContext(Register dest) {
movePtr(ImmPtr(GetJitContext()->runtime->getJSContext()), dest);
}
void loadJitActivation(Register dest) {
loadPtr(AbsoluteAddress(GetJitContext()->runtime->addressOfActivation()), dest);
}
void loadWasmActivationFromTls(Register dest) {
loadPtr(Address(WasmTlsReg, offsetof(wasm::TlsData, cx)), dest);
loadPtr(Address(dest, JSContext::offsetOfWasmActivation()), dest);
}
void loadWasmActivationFromSymbolicAddress(Register dest) {
movePtr(wasm::SymbolicAddress::Context, dest);
loadPtr(Address(dest, JSContext::offsetOfWasmActivation()), dest);
}
template<typename T>
void loadTypedOrValue(const T& src, TypedOrValueRegister dest) {
if (dest.hasValue())
loadValue(src, dest.valueReg());
else
loadUnboxedValue(src, dest.type(), dest.typedReg());
}
template<typename T>
void loadElementTypedOrValue(const T& src, TypedOrValueRegister dest, bool holeCheck,
Label* hole) {
if (dest.hasValue()) {
loadValue(src, dest.valueReg());
if (holeCheck)
branchTestMagic(Assembler::Equal, dest.valueReg(), hole);
} else {
if (holeCheck)
branchTestMagic(Assembler::Equal, src, hole);
loadUnboxedValue(src, dest.type(), dest.typedReg());
}
}
template <typename T>
void storeTypedOrValue(TypedOrValueRegister src, const T& dest) {
if (src.hasValue()) {
storeValue(src.valueReg(), dest);
} else if (IsFloatingPointType(src.type())) {
FloatRegister reg = src.typedReg().fpu();
if (src.type() == MIRType::Float32) {
convertFloat32ToDouble(reg, ScratchDoubleReg);
reg = ScratchDoubleReg;
}
storeDouble(reg, dest);
} else {
storeValue(ValueTypeFromMIRType(src.type()), src.typedReg().gpr(), dest);
}
}
template <typename T>
inline void storeObjectOrNull(Register src, const T& dest);
template <typename T>
void storeConstantOrRegister(const ConstantOrRegister& src, const T& dest) {
if (src.constant())
storeValue(src.value(), dest);
else
storeTypedOrValue(src.reg(), dest);
}
void storeCallPointerResult(Register reg) {
if (reg != ReturnReg)
mov(ReturnReg, reg);
}
inline void storeCallBoolResult(Register reg);
inline void storeCallInt32Result(Register reg);
void storeCallFloatResult(FloatRegister reg) {
if (reg != ReturnDoubleReg)
moveDouble(ReturnDoubleReg, reg);
}
inline void storeCallResultValue(AnyRegister dest);
void storeCallResultValue(ValueOperand dest) {
#if defined(JS_NUNBOX32)
// reshuffle the return registers used for a call result to store into
// dest, using ReturnReg as a scratch register if necessary. This must
// only be called after returning from a call, at a point when the
// return register is not live. XXX would be better to allow wrappers
// to store the return value to different places.
if (dest.typeReg() == JSReturnReg_Data) {
if (dest.payloadReg() == JSReturnReg_Type) {
// swap the two registers.
mov(JSReturnReg_Type, ReturnReg);
mov(JSReturnReg_Data, JSReturnReg_Type);
mov(ReturnReg, JSReturnReg_Data);
} else {
mov(JSReturnReg_Data, dest.payloadReg());
mov(JSReturnReg_Type, dest.typeReg());
}
} else {
mov(JSReturnReg_Type, dest.typeReg());
mov(JSReturnReg_Data, dest.payloadReg());
}
#elif defined(JS_PUNBOX64)
if (dest.valueReg() != JSReturnReg)
mov(JSReturnReg, dest.valueReg());
#else
#error "Bad architecture"
#endif
}
inline void storeCallResultValue(TypedOrValueRegister dest);
template <typename T>
Register extractString(const T& source, Register scratch) {
return extractObject(source, scratch);
}
using MacroAssemblerSpecific::store32;
void store32(const RegisterOrInt32Constant& key, const Address& dest) {
if (key.isRegister())
store32(key.reg(), dest);
else
store32(Imm32(key.constant()), dest);
}
template <typename T>
void callPreBarrier(const T& address, MIRType type) {
Label done;
if (type == MIRType::Value)
branchTestGCThing(Assembler::NotEqual, address, &done);
Push(PreBarrierReg);
computeEffectiveAddress(address, PreBarrierReg);
const JitRuntime* rt = GetJitContext()->runtime->jitRuntime();
JitCode* preBarrier = rt->preBarrier(type);
call(preBarrier);
Pop(PreBarrierReg);
bind(&done);
}
template <typename T>
void patchableCallPreBarrier(const T& address, MIRType type) {
Label done;
// All barriers are off by default.
// They are enabled if necessary at the end of CodeGenerator::generate().
CodeOffset nopJump = toggledJump(&done);
writePrebarrierOffset(nopJump);
callPreBarrier(address, type);
jump(&done);
haltingAlign(8);
bind(&done);
}
template<typename T>
void loadFromTypedArray(Scalar::Type arrayType, const T& src, AnyRegister dest, Register temp, Label* fail,
bool canonicalizeDoubles = true, unsigned numElems = 0);
template<typename T>
void loadFromTypedArray(Scalar::Type arrayType, const T& src, const ValueOperand& dest, bool allowDouble,
Register temp, Label* fail);
template<typename S, typename T>
void storeToTypedIntArray(Scalar::Type arrayType, const S& value, const T& dest) {
switch (arrayType) {
case Scalar::Int8:
case Scalar::Uint8:
case Scalar::Uint8Clamped:
store8(value, dest);
break;
case Scalar::Int16:
case Scalar::Uint16:
store16(value, dest);
break;
case Scalar::Int32:
case Scalar::Uint32:
store32(value, dest);
break;
default:
MOZ_CRASH("Invalid typed array type");
}
}
void storeToTypedFloatArray(Scalar::Type arrayType, FloatRegister value, const BaseIndex& dest,
unsigned numElems = 0);
void storeToTypedFloatArray(Scalar::Type arrayType, FloatRegister value, const Address& dest,
unsigned numElems = 0);
// Load a property from an UnboxedPlainObject.
template <typename T>
void loadUnboxedProperty(T address, JSValueType type, TypedOrValueRegister output);
// Store a property to an UnboxedPlainObject, without triggering barriers.
// If failure is null, the value definitely has a type suitable for storing
// in the property.
template <typename T>
void storeUnboxedProperty(T address, JSValueType type,
const ConstantOrRegister& value, Label* failure);
Register extractString(const Address& address, Register scratch) {
return extractObject(address, scratch);
}
Register extractString(const ValueOperand& value, Register scratch) {
return extractObject(value, scratch);
}
using MacroAssemblerSpecific::extractTag;
Register extractTag(const TypedOrValueRegister& reg, Register scratch) {
if (reg.hasValue())
return extractTag(reg.valueReg(), scratch);
mov(ImmWord(MIRTypeToTag(reg.type())), scratch);
return scratch;
}
using MacroAssemblerSpecific::extractObject;
Register extractObject(const TypedOrValueRegister& reg, Register scratch) {
if (reg.hasValue())
return extractObject(reg.valueReg(), scratch);
MOZ_ASSERT(reg.type() == MIRType::Object);
return reg.typedReg().gpr();
}
// Inline version of js_TypedArray_uint8_clamp_double.
// This function clobbers the input register.
void clampDoubleToUint8(FloatRegister input, Register output) PER_ARCH;
using MacroAssemblerSpecific::ensureDouble;
template <typename S>
void ensureDouble(const S& source, FloatRegister dest, Label* failure) {
Label isDouble, done;
branchTestDouble(Assembler::Equal, source, &isDouble);
branchTestInt32(Assembler::NotEqual, source, failure);
convertInt32ToDouble(source, dest);
jump(&done);
bind(&isDouble);
unboxDouble(source, dest);
bind(&done);
}
// Inline allocation.
private:
void checkAllocatorState(Label* fail);
bool shouldNurseryAllocate(gc::AllocKind allocKind, gc::InitialHeap initialHeap);
void nurseryAllocate(Register result, Register temp, gc::AllocKind allocKind,
size_t nDynamicSlots, gc::InitialHeap initialHeap, Label* fail);
void freeListAllocate(Register result, Register temp, gc::AllocKind allocKind, Label* fail);
void allocateObject(Register result, Register temp, gc::AllocKind allocKind,
uint32_t nDynamicSlots, gc::InitialHeap initialHeap, Label* fail);
void allocateNonObject(Register result, Register temp, gc::AllocKind allocKind, Label* fail);
void copySlotsFromTemplate(Register obj, const NativeObject* templateObj,
uint32_t start, uint32_t end);
void fillSlotsWithConstantValue(Address addr, Register temp, uint32_t start, uint32_t end,
const Value& v);
void fillSlotsWithUndefined(Address addr, Register temp, uint32_t start, uint32_t end);
void fillSlotsWithUninitialized(Address addr, Register temp, uint32_t start, uint32_t end);
void initGCSlots(Register obj, Register temp, NativeObject* templateObj, bool initContents);
public:
void callMallocStub(size_t nbytes, Register result, Label* fail);
void callFreeStub(Register slots);
void createGCObject(Register result, Register temp, JSObject* templateObj,
gc::InitialHeap initialHeap, Label* fail, bool initContents = true,
bool convertDoubleElements = false);
void initGCThing(Register obj, Register temp, JSObject* templateObj,
bool initContents = true, bool convertDoubleElements = false);
void initTypedArraySlots(Register obj, Register temp, Register lengthReg,
LiveRegisterSet liveRegs, Label* fail,
TypedArrayObject* templateObj, TypedArrayLength lengthKind);
void initUnboxedObjectContents(Register object, UnboxedPlainObject* templateObject);
void newGCString(Register result, Register temp, Label* fail);
void newGCFatInlineString(Register result, Register temp, Label* fail);
// Compares two strings for equality based on the JSOP.
// This checks for identical pointers, atoms and length and fails for everything else.
void compareStrings(JSOp op, Register left, Register right, Register result,
Label* fail);
public:
// Generates code used to complete a bailout.
void generateBailoutTail(Register scratch, Register bailoutInfo);
public:
#ifndef JS_CODEGEN_ARM64
// StackPointer manipulation functions.
// On ARM64, the StackPointer is implemented as two synchronized registers.
// Code shared across platforms must use these functions to be valid.
template <typename T> inline void addToStackPtr(T t);
template <typename T> inline void addStackPtrTo(T t);
void subFromStackPtr(Imm32 imm32) DEFINED_ON(mips32, mips64, arm, x86, x64);
void subFromStackPtr(Register reg);
template <typename T>
void subStackPtrFrom(T t) { subPtr(getStackPointer(), t); }
template <typename T>
void andToStackPtr(T t) { andPtr(t, getStackPointer()); }
template <typename T>
void andStackPtrTo(T t) { andPtr(getStackPointer(), t); }
template <typename T>
void moveToStackPtr(T t) { movePtr(t, getStackPointer()); }
template <typename T>
void moveStackPtrTo(T t) { movePtr(getStackPointer(), t); }
template <typename T>
void loadStackPtr(T t) { loadPtr(t, getStackPointer()); }
template <typename T>
void storeStackPtr(T t) { storePtr(getStackPointer(), t); }
// StackPointer testing functions.
// On ARM64, sp can function as the zero register depending on context.
// Code shared across platforms must use these functions to be valid.
template <typename T>
inline void branchTestStackPtr(Condition cond, T t, Label* label);
template <typename T>
inline void branchStackPtr(Condition cond, T rhs, Label* label);
template <typename T>
inline void branchStackPtrRhs(Condition cond, T lhs, Label* label);
// Move the stack pointer based on the requested amount.
inline void reserveStack(uint32_t amount);
#else // !JS_CODEGEN_ARM64
void reserveStack(uint32_t amount);
#endif
public:
void enableProfilingInstrumentation() {
emitProfilingInstrumentation_ = true;
}
private:
// This class is used to surround call sites throughout the assembler. This
// is used by callWithABI, and callJit functions, except if suffixed by
// NoProfiler.
class AutoProfilerCallInstrumentation {
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER;
public:
explicit AutoProfilerCallInstrumentation(MacroAssembler& masm
MOZ_GUARD_OBJECT_NOTIFIER_PARAM);
~AutoProfilerCallInstrumentation() {}
};
friend class AutoProfilerCallInstrumentation;
void appendProfilerCallSite(CodeOffset label) {
propagateOOM(profilerCallSites_.append(label));
}
// Fix up the code pointers to be written for locations where profilerCallSite
// emitted moves of RIP to a register.
void linkProfilerCallSites(JitCode* code);
// This field is used to manage profiling instrumentation output. If
// provided and enabled, then instrumentation will be emitted around call
// sites.
bool emitProfilingInstrumentation_;
// Record locations of the call sites.
Vector<CodeOffset, 0, SystemAllocPolicy> profilerCallSites_;
public:
void loadBaselineOrIonRaw(Register script, Register dest, Label* failure);
void loadBaselineOrIonNoArgCheck(Register callee, Register dest, Label* failure);
void loadBaselineFramePtr(Register framePtr, Register dest);
void pushBaselineFramePtr(Register framePtr, Register scratch) {
loadBaselineFramePtr(framePtr, scratch);
push(scratch);
}
void PushBaselineFramePtr(Register framePtr, Register scratch) {
loadBaselineFramePtr(framePtr, scratch);
Push(scratch);
}
private:
void handleFailure();
public:
Label* exceptionLabel() {
// Exceptions are currently handled the same way as sequential failures.
return &failureLabel_;
}
Label* failureLabel() {
return &failureLabel_;
}
void finish();
void link(JitCode* code);
void assumeUnreachable(const char* output);
template<typename T>
void assertTestInt32(Condition cond, const T& value, const char* output);
void printf(const char* output);
void printf(const char* output, Register value);
#ifdef JS_TRACE_LOGGING
void tracelogStartId(Register logger, uint32_t textId, bool force = false);
void tracelogStartId(Register logger, Register textId);
void tracelogStartEvent(Register logger, Register event);
void tracelogStopId(Register logger, uint32_t textId, bool force = false);
void tracelogStopId(Register logger, Register textId);
#endif
#define DISPATCH_FLOATING_POINT_OP(method, type, arg1d, arg1f, arg2) \
MOZ_ASSERT(IsFloatingPointType(type)); \
if (type == MIRType::Double) \
method##Double(arg1d, arg2); \
else \
method##Float32(arg1f, arg2); \
void loadConstantFloatingPoint(double d, float f, FloatRegister dest, MIRType destType) {
DISPATCH_FLOATING_POINT_OP(loadConstant, destType, d, f, dest);
}
void boolValueToFloatingPoint(ValueOperand value, FloatRegister dest, MIRType destType) {
DISPATCH_FLOATING_POINT_OP(boolValueTo, destType, value, value, dest);
}
void int32ValueToFloatingPoint(ValueOperand value, FloatRegister dest, MIRType destType) {
DISPATCH_FLOATING_POINT_OP(int32ValueTo, destType, value, value, dest);
}
void convertInt32ToFloatingPoint(Register src, FloatRegister dest, MIRType destType) {
DISPATCH_FLOATING_POINT_OP(convertInt32To, destType, src, src, dest);
}
#undef DISPATCH_FLOATING_POINT_OP
void convertValueToFloatingPoint(ValueOperand value, FloatRegister output, Label* fail,
MIRType outputType);
MOZ_MUST_USE bool convertValueToFloatingPoint(JSContext* cx, const Value& v,
FloatRegister output, Label* fail,
MIRType outputType);
MOZ_MUST_USE bool convertConstantOrRegisterToFloatingPoint(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister output, Label* fail,
MIRType outputType);
void convertTypedOrValueToFloatingPoint(TypedOrValueRegister src, FloatRegister output,
Label* fail, MIRType outputType);
void outOfLineTruncateSlow(FloatRegister src, Register dest, bool widenFloatToDouble,
bool compilingWasm);
void convertInt32ValueToDouble(const Address& address, Register scratch, Label* done);
void convertValueToDouble(ValueOperand value, FloatRegister output, Label* fail) {
convertValueToFloatingPoint(value, output, fail, MIRType::Double);
}
MOZ_MUST_USE bool convertValueToDouble(JSContext* cx, const Value& v, FloatRegister output,
Label* fail) {
return convertValueToFloatingPoint(cx, v, output, fail, MIRType::Double);
}
MOZ_MUST_USE bool convertConstantOrRegisterToDouble(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister output, Label* fail)
{
return convertConstantOrRegisterToFloatingPoint(cx, src, output, fail, MIRType::Double);
}
void convertTypedOrValueToDouble(TypedOrValueRegister src, FloatRegister output, Label* fail) {
convertTypedOrValueToFloatingPoint(src, output, fail, MIRType::Double);
}
void convertValueToFloat(ValueOperand value, FloatRegister output, Label* fail) {
convertValueToFloatingPoint(value, output, fail, MIRType::Float32);
}
MOZ_MUST_USE bool convertValueToFloat(JSContext* cx, const Value& v, FloatRegister output,
Label* fail) {
return convertValueToFloatingPoint(cx, v, output, fail, MIRType::Float32);
}
MOZ_MUST_USE bool convertConstantOrRegisterToFloat(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister output, Label* fail)
{
return convertConstantOrRegisterToFloatingPoint(cx, src, output, fail, MIRType::Float32);
}
void convertTypedOrValueToFloat(TypedOrValueRegister src, FloatRegister output, Label* fail) {
convertTypedOrValueToFloatingPoint(src, output, fail, MIRType::Float32);
}
enum IntConversionBehavior {
IntConversion_Normal,
IntConversion_NegativeZeroCheck,
IntConversion_Truncate,
IntConversion_ClampToUint8,
};
enum IntConversionInputKind {
IntConversion_NumbersOnly,
IntConversion_NumbersOrBoolsOnly,
IntConversion_Any
};
//
// Functions for converting values to int.
//
void convertDoubleToInt(FloatRegister src, Register output, FloatRegister temp,
Label* truncateFail, Label* fail, IntConversionBehavior behavior);
// Strings may be handled by providing labels to jump to when the behavior
// is truncation or clamping. The subroutine, usually an OOL call, is
// passed the unboxed string in |stringReg| and should convert it to a
// double store into |temp|.
void convertValueToInt(ValueOperand value, MDefinition* input,
Label* handleStringEntry, Label* handleStringRejoin,
Label* truncateDoubleSlow,
Register stringReg, FloatRegister temp, Register output,
Label* fail, IntConversionBehavior behavior,
IntConversionInputKind conversion = IntConversion_Any);
void convertValueToInt(ValueOperand value, FloatRegister temp, Register output, Label* fail,
IntConversionBehavior behavior)
{
convertValueToInt(value, nullptr, nullptr, nullptr, nullptr, InvalidReg, temp, output,
fail, behavior);
}
MOZ_MUST_USE bool convertValueToInt(JSContext* cx, const Value& v, Register output, Label* fail,
IntConversionBehavior behavior);
MOZ_MUST_USE bool convertConstantOrRegisterToInt(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister temp, Register output,
Label* fail, IntConversionBehavior behavior);
void convertTypedOrValueToInt(TypedOrValueRegister src, FloatRegister temp, Register output,
Label* fail, IntConversionBehavior behavior);
//
// Convenience functions for converting values to int32.
//
void convertValueToInt32(ValueOperand value, FloatRegister temp, Register output, Label* fail,
bool negativeZeroCheck)
{
convertValueToInt(value, temp, output, fail, negativeZeroCheck
? IntConversion_NegativeZeroCheck
: IntConversion_Normal);
}
void convertValueToInt32(ValueOperand value, MDefinition* input,
FloatRegister temp, Register output, Label* fail,
bool negativeZeroCheck, IntConversionInputKind conversion = IntConversion_Any)
{
convertValueToInt(value, input, nullptr, nullptr, nullptr, InvalidReg, temp, output, fail,
negativeZeroCheck
? IntConversion_NegativeZeroCheck
: IntConversion_Normal,
conversion);
}
MOZ_MUST_USE bool convertValueToInt32(JSContext* cx, const Value& v, Register output,
Label* fail, bool negativeZeroCheck)
{
return convertValueToInt(cx, v, output, fail, negativeZeroCheck
? IntConversion_NegativeZeroCheck
: IntConversion_Normal);
}
MOZ_MUST_USE bool convertConstantOrRegisterToInt32(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister temp, Register output,
Label* fail, bool negativeZeroCheck)
{
return convertConstantOrRegisterToInt(cx, src, temp, output, fail, negativeZeroCheck
? IntConversion_NegativeZeroCheck
: IntConversion_Normal);
}
void convertTypedOrValueToInt32(TypedOrValueRegister src, FloatRegister temp, Register output,
Label* fail, bool negativeZeroCheck)
{
convertTypedOrValueToInt(src, temp, output, fail, negativeZeroCheck
? IntConversion_NegativeZeroCheck
: IntConversion_Normal);
}
//
// Convenience functions for truncating values to int32.
//
void truncateValueToInt32(ValueOperand value, FloatRegister temp, Register output, Label* fail) {
convertValueToInt(value, temp, output, fail, IntConversion_Truncate);
}
void truncateValueToInt32(ValueOperand value, MDefinition* input,
Label* handleStringEntry, Label* handleStringRejoin,
Label* truncateDoubleSlow,
Register stringReg, FloatRegister temp, Register output, Label* fail)
{
convertValueToInt(value, input, handleStringEntry, handleStringRejoin, truncateDoubleSlow,
stringReg, temp, output, fail, IntConversion_Truncate);
}
void truncateValueToInt32(ValueOperand value, MDefinition* input,
FloatRegister temp, Register output, Label* fail)
{
convertValueToInt(value, input, nullptr, nullptr, nullptr, InvalidReg, temp, output, fail,
IntConversion_Truncate);
}
MOZ_MUST_USE bool truncateValueToInt32(JSContext* cx, const Value& v, Register output,
Label* fail) {
return convertValueToInt(cx, v, output, fail, IntConversion_Truncate);
}
MOZ_MUST_USE bool truncateConstantOrRegisterToInt32(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister temp, Register output,
Label* fail)
{
return convertConstantOrRegisterToInt(cx, src, temp, output, fail, IntConversion_Truncate);
}
void truncateTypedOrValueToInt32(TypedOrValueRegister src, FloatRegister temp, Register output,
Label* fail)
{
convertTypedOrValueToInt(src, temp, output, fail, IntConversion_Truncate);
}
// Convenience functions for clamping values to uint8.
void clampValueToUint8(ValueOperand value, FloatRegister temp, Register output, Label* fail) {
convertValueToInt(value, temp, output, fail, IntConversion_ClampToUint8);
}
void clampValueToUint8(ValueOperand value, MDefinition* input,
Label* handleStringEntry, Label* handleStringRejoin,
Register stringReg, FloatRegister temp, Register output, Label* fail)
{
convertValueToInt(value, input, handleStringEntry, handleStringRejoin, nullptr,
stringReg, temp, output, fail, IntConversion_ClampToUint8);
}
void clampValueToUint8(ValueOperand value, MDefinition* input,
FloatRegister temp, Register output, Label* fail)
{
convertValueToInt(value, input, nullptr, nullptr, nullptr, InvalidReg, temp, output, fail,
IntConversion_ClampToUint8);
}
MOZ_MUST_USE bool clampValueToUint8(JSContext* cx, const Value& v, Register output,
Label* fail) {
return convertValueToInt(cx, v, output, fail, IntConversion_ClampToUint8);
}
MOZ_MUST_USE bool clampConstantOrRegisterToUint8(JSContext* cx,
const ConstantOrRegister& src,
FloatRegister temp, Register output,
Label* fail)
{
return convertConstantOrRegisterToInt(cx, src, temp, output, fail,
IntConversion_ClampToUint8);
}
void clampTypedOrValueToUint8(TypedOrValueRegister src, FloatRegister temp, Register output,
Label* fail)
{
convertTypedOrValueToInt(src, temp, output, fail, IntConversion_ClampToUint8);
}
public:
class AfterICSaveLive {
friend class MacroAssembler;
explicit AfterICSaveLive(uint32_t initialStack)
#ifdef JS_DEBUG
: initialStack(initialStack)
#endif
{}
public:
#ifdef JS_DEBUG
uint32_t initialStack;
#endif
uint32_t alignmentPadding;
};
void alignFrameForICArguments(AfterICSaveLive& aic) PER_ARCH;
void restoreFrameAlignmentForICArguments(AfterICSaveLive& aic) PER_ARCH;
AfterICSaveLive icSaveLive(LiveRegisterSet& liveRegs);
MOZ_MUST_USE bool icBuildOOLFakeExitFrame(void* fakeReturnAddr, AfterICSaveLive& aic);
void icRestoreLive(LiveRegisterSet& liveRegs, AfterICSaveLive& aic);
// Align the stack pointer based on the number of arguments which are pushed
// on the stack, such that the JitFrameLayout would be correctly aligned on
// the JitStackAlignment.
void alignJitStackBasedOnNArgs(Register nargs);
void alignJitStackBasedOnNArgs(uint32_t nargs);
inline void assertStackAlignment(uint32_t alignment, int32_t offset = 0);
};
static inline Assembler::DoubleCondition
JSOpToDoubleCondition(JSOp op)
{
switch (op) {
case JSOP_EQ:
case JSOP_STRICTEQ:
return Assembler::DoubleEqual;
case JSOP_NE:
case JSOP_STRICTNE:
return Assembler::DoubleNotEqualOrUnordered;
case JSOP_LT:
return Assembler::DoubleLessThan;
case JSOP_LE:
return Assembler::DoubleLessThanOrEqual;
case JSOP_GT:
return Assembler::DoubleGreaterThan;
case JSOP_GE:
return Assembler::DoubleGreaterThanOrEqual;
default:
MOZ_CRASH("Unexpected comparison operation");
}
}
// Note: the op may have been inverted during lowering (to put constants in a
// position where they can be immediates), so it is important to use the
// lir->jsop() instead of the mir->jsop() when it is present.
static inline Assembler::Condition
JSOpToCondition(JSOp op, bool isSigned)
{
if (isSigned) {
switch (op) {
case JSOP_EQ:
case JSOP_STRICTEQ:
return Assembler::Equal;
case JSOP_NE:
case JSOP_STRICTNE:
return Assembler::NotEqual;
case JSOP_LT:
return Assembler::LessThan;
case JSOP_LE:
return Assembler::LessThanOrEqual;
case JSOP_GT:
return Assembler::GreaterThan;
case JSOP_GE:
return Assembler::GreaterThanOrEqual;
default:
MOZ_CRASH("Unrecognized comparison operation");
}
} else {
switch (op) {
case JSOP_EQ:
case JSOP_STRICTEQ:
return Assembler::Equal;
case JSOP_NE:
case JSOP_STRICTNE:
return Assembler::NotEqual;
case JSOP_LT:
return Assembler::Below;
case JSOP_LE:
return Assembler::BelowOrEqual;
case JSOP_GT:
return Assembler::Above;
case JSOP_GE:
return Assembler::AboveOrEqual;
default:
MOZ_CRASH("Unrecognized comparison operation");
}
}
}
static inline size_t
StackDecrementForCall(uint32_t alignment, size_t bytesAlreadyPushed, size_t bytesToPush)
{
return bytesToPush +
ComputeByteAlignment(bytesAlreadyPushed + bytesToPush, alignment);
}
static inline MIRType
ToMIRType(MIRType t)
{
return t;
}
template <class VecT>
class ABIArgIter
{
ABIArgGenerator gen_;
const VecT& types_;
unsigned i_;
void settle() { if (!done()) gen_.next(ToMIRType(types_[i_])); }
public:
explicit ABIArgIter(const VecT& types) : types_(types), i_(0) { settle(); }
void operator++(int) { MOZ_ASSERT(!done()); i_++; settle(); }
bool done() const { return i_ == types_.length(); }
ABIArg* operator->() { MOZ_ASSERT(!done()); return &gen_.current(); }
ABIArg& operator*() { MOZ_ASSERT(!done()); return gen_.current(); }
unsigned index() const { MOZ_ASSERT(!done()); return i_; }
MIRType mirType() const { MOZ_ASSERT(!done()); return ToMIRType(types_[i_]); }
uint32_t stackBytesConsumedSoFar() const { return gen_.stackBytesConsumedSoFar(); }
};
} // namespace jit
} // namespace js
#endif /* jit_MacroAssembler_h */
|