summaryrefslogtreecommitdiffstats
path: root/js/src/jit/FlowAliasAnalysis.cpp
blob: 2b88e36785afef247fd46dfd20d3da0a19316e46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/FlowAliasAnalysis.h"

#include <stdio.h>

#include "jit/AliasAnalysisShared.h"
#include "jit/Ion.h"
#include "jit/IonBuilder.h"
#include "jit/JitSpewer.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"

#include "vm/Printer.h"

using namespace js;
using namespace js::jit;

using mozilla::Array;

namespace js {
namespace jit {

class LoopInfo : public TempObject
{
  private:
    LoopInfo* outer_;
    MBasicBlock* loopHeader_;
    MDefinitionVector loopinvariant_;

  public:
    LoopInfo(TempAllocator& alloc, LoopInfo* outer, MBasicBlock* loopHeader)
      : outer_(outer), loopHeader_(loopHeader), loopinvariant_(alloc)
    { }

    MBasicBlock* loopHeader() const {
        return loopHeader_;
    }
    LoopInfo* outer() const {
        return outer_;
    }
    MDefinitionVector& loopinvariant() {
        return loopinvariant_;
    }
};

static bool
KeepBlock(MBasicBlock *block)
{
    // Any block that is predecessor to a loopheader need to be kept.
    // We need it to process possible loop invariant loads.
    if (block->numSuccessors() == 1 && block->getSuccessor(0)->isLoopHeader())
        return true;

#ifdef DEBUG
    // We assume a predecessor to a loopheader has one successor.
    for (size_t i = 0; i < block->numSuccessors(); i++)
        MOZ_ASSERT(!block->getSuccessor(i)->isLoopHeader());
#endif

    return false;
}

class GraphStoreInfo : public TempObject
{
    // The current BlockStoreInfo while iterating the block untill,
    // it contains the store info at the end of the block.
    BlockStoreInfo* current_;

    // Vector with pointer to BlockStoreInfo at the end of the block for every block.
    // Only keeping the info during iteration if needed, else contains nullptr.
    GraphStoreVector stores_;

    // All BlockStoreInfo's that aren't needed anymore and can be reused.
    GraphStoreVector empty_;

  public:
    explicit GraphStoreInfo(TempAllocator& alloc)
      : current_(nullptr),
        stores_(alloc),
        empty_(alloc)
    { }

    bool reserve(size_t num) {
        return stores_.appendN(nullptr, num);
    }

    BlockStoreInfo& current() {
        return *current_;
    }

    void unsetCurrent() {
        current_ = nullptr;
    }

    BlockStoreInfo* newCurrent(TempAllocator& alloc, MBasicBlock* block) {
        BlockStoreInfo *info = nullptr;
        if (empty_.length() != 0) {
            info = empty_.popCopy();
        } else {
            info = (BlockStoreInfo*) alloc.allocate(sizeof(BlockStoreInfo));
            if (!info)
                return nullptr;
            new(info) BlockStoreInfo(alloc);
        }

        stores_[block->id()] = info;
        current_ = info;
        return current_;
    }

    void swap(MBasicBlock* block1, MBasicBlock* block2) {
        BlockStoreInfo* info = stores_[block1->id()];
        stores_[block1->id()] = stores_[block2->id()];
        stores_[block2->id()] = info;
        if (stores_[block1->id()] == current_)
            current_ = stores_[block2->id()];
        else if (stores_[block2->id()] == current_)
            current_ = stores_[block1->id()];
    }

    bool maybeFreePredecessorBlocks(MBasicBlock* block) {
        for (size_t i=0; i < block->numPredecessors(); i++) {

            // For some blocks we cannot free the store info.
            if (KeepBlock(block->getPredecessor(i)))
                continue;

            // Check the given block is the last successor.
            bool release = true;
            for (size_t j = 0; j < block->getPredecessor(i)->numSuccessors(); j++) {
                if (block->getPredecessor(i)->getSuccessor(j)->id() > block->id()) {
                    release = false;
                    break;
                }
            }
            if (release) {
                BlockStoreInfo *info = stores_[block->getPredecessor(i)->id()];
                if (!empty_.append(info))
                    return false;
                info->clear();

                stores_[block->getPredecessor(i)->id()] = nullptr;
            }
        }
        return true;
    }

    BlockStoreInfo& get(MBasicBlock* block) {
        MOZ_ASSERT(stores_[block->id()] != current_);
        return *stores_[block->id()];
    }
};

} // namespace jit
} // namespace js


FlowAliasAnalysis::FlowAliasAnalysis(MIRGenerator* mir, MIRGraph& graph)
  : AliasAnalysisShared(mir, graph),
    loop_(nullptr),
    output_(graph_.alloc()),
    worklist_(graph_.alloc())
{
    stores_ = new(graph_.alloc()) GraphStoreInfo(graph_.alloc());
}

template <typename T>
static bool
AppendToWorklist(MDefinitionVector& worklist, T& stores)
{
    if (!worklist.reserve(worklist.length() + stores.length()))
        return false;

    for (size_t j = 0; j < stores.length(); j++) {
        MOZ_ASSERT(stores[j]);
        if (stores[j]->isInWorklist())
            continue;

        worklist.infallibleAppend(stores[j]);
        stores[j]->setInWorklist();
    }
    return true;
}

static void
SetNotInWorkList(MDefinitionVector& worklist)
{
    for (size_t item = 0; item < worklist.length(); item++)
        worklist[item]->setNotInWorklistUnchecked();
}

static bool
LoadAliasesStore(MDefinition* load, MDefinition* store)
{
    // Always alias first instruction of graph.
    if (store->id() == 0)
        return true;

    // Default to alias control instructions which indicates loops.
    // Control instructions are special, since we need to determine
    // if it aliases anything in the full loop. Which we do lateron.
    if (store->isControlInstruction())
        return true;

    // Check if the alias categories alias eachother.
    if ((load->getAliasSet() & store->getAliasSet()).isNone())
        return false;

    // On any operation that has a specific alias category we can use TI to know
    // the objects operating on don't intersect.
    MDefinition::AliasType mightAlias = AliasAnalysisShared::genericMightAlias(load, store);
    if (mightAlias == MDefinition::AliasType::NoAlias)
        return false;

    // Check if the instruction might alias eachother.
    mightAlias = load->mightAlias(store);
    if (mightAlias == MDefinition::AliasType::NoAlias)
        return false;

    return true;
}

#ifdef JS_JITSPEW
static void
DumpAliasSet(AliasSet set)
{
    Fprinter &print = JitSpewPrinter();

    if (set.flags() == AliasSet::Any) {
        print.printf("Any");
        return;
    }

    bool first = true;
    for (AliasSetIterator iter(set); iter; iter++) {
        if (!first)
            print.printf(", ");
        print.printf("%s", AliasSet::Name(*iter));
        first = false;
    }
}
#endif

#ifdef JS_JITSPEW
static void
DumpStoreList(BlockStoreInfo& stores)
{
    Fprinter &print = JitSpewPrinter();
    if (stores.length() == 0) {
        print.printf("empty");
        return;
    }
    bool first = true;
    for (size_t i = 0; i < stores.length(); i++) {
        if (!first)
            print.printf(", ");
        if (!stores[i]) {
            print.printf("nullptr");
            continue;
        }
        MOZ_ASSERT(stores[i]->isControlInstruction() ||
                   stores[i]->getAliasSet().isStore() ||
                   stores[i]->id() == 0);
        MDefinition::PrintOpcodeName(print, stores[i]->op());
        print.printf("%d", stores[i]->id());
        first = false;
    }
}
#endif

static void
DumpAnalyzeStart()
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias) || JitSpewEnabled(JitSpew_AliasSummaries)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpewEnabled(JitSpew_Alias) ? JitSpew_Alias : JitSpew_AliasSummaries);
        print.printf("Running Alias Analysis on graph\n");
    }
#endif
}

static void
DumpBlockStart(MBasicBlock* block)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias) || JitSpewEnabled(JitSpew_AliasSummaries)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpewEnabled(JitSpew_Alias)?JitSpew_Alias:JitSpew_AliasSummaries);
        if (block->isLoopHeader())
            print.printf(" Visiting block %d (loopheader)\n", block->id());
        else
            print.printf(" Visiting block %d\n", block->id());
    }
#endif
}

static void
DumpProcessingDeferredLoads(MBasicBlock* loopHeader)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        print.printf(" Process deferred loads of loop %d\n", loopHeader->id());
    }
#endif
}

static void
DumpBlockSummary(MBasicBlock* block, BlockStoreInfo& blockInfo)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_AliasSummaries)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_AliasSummaries);
        print.printf("  Store at end of block: ");
        DumpStoreList(blockInfo);
        print.printf("\n");
    }
#endif
}

static void
DumpStore(MDefinition* store)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        print.printf("  Store ");
        store->PrintOpcodeName(print, store->op());
        print.printf("%d with flags (", store->id());
        DumpAliasSet(store->getAliasSet());
        print.printf(")\n");
    }
#endif
}

static void
DumpLoad(MDefinition* load)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        print.printf("  Load ");
        load->PrintOpcodeName(print, load->op());
        print.printf("%d", load->id());
        print.printf(" with flag (");
        DumpAliasSet(load->getAliasSet());
        print.printf(")\n");
    }
#endif
}

static void
DumpLoadOutcome(MDefinition* load, MDefinitionVector& stores, bool defer)
{
#ifdef JS_JITSPEW
    // Spew what we did.
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        print.printf("   Marked depending on ");
        DumpStoreList(stores);
        if (defer)
            print.printf(" deferred");
        print.printf("\n");
    }
#endif
}

static void
DumpLoopInvariant(MDefinition* load, MBasicBlock* loopheader, bool loopinvariant,
                  MDefinitionVector& loopInvariantDependency)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        if (!loopinvariant) {
            print.printf("   Determine not loop invariant to loop %d.\n", loopheader->id());
        } else {
            print.printf("   Determine loop invariant to loop %d. Dependendy is now: ", loopheader->id());
            DumpStoreList(loopInvariantDependency);
            print.printf("\n");
        }
    }
#endif
}

static void
DumpImprovement(MDefinition *load, MDefinitionVector& input, MDefinitionVector& output)
{
#ifdef JS_JITSPEW
    if (JitSpewEnabled(JitSpew_Alias)) {
        Fprinter &print = JitSpewPrinter();
        JitSpewHeader(JitSpew_Alias);
        print.printf("   Improve dependency from %d", load->id());
        DumpStoreList(input);
        print.printf(" to ");
        DumpStoreList(output);
        print.printf("\n");
    }
#endif
}

// Flow Sensitive Alias Analysis.
//
// This pass annotates every load instructions with the last store instruction
// on which it depends in their dependency_ field. For loop variant instructions
// this will depend on the control instruction in the specific loop it cannot
// get hoisted out (if there is no store between start loopheader and
// instruction).
//
// We visit the graph in RPO and keep track of the last stores in that block.
// Upon entering a block we merge the stores information of the predecessors.
// Only loopheaders are different, since we eagerly make it depend on the
// control instruction of the loopheader.
//
// During the iteration of a block we keep a running store dependeny list.
// At the end of the iteration, this will contain the last stores
// (which we keep for successors).
//
// When encountering a store or load we do:
// - Store: we update the current block store info and put a StoreDependency
//          to create a store-chain.
//
// - Load: we take the current block store dependency info and improve that by
//         following the store-chain when encountering not aliasing store. Upon
//         encountering a control instruction (indicates loop) it solely depends on
//         we defer until the loop has been examined.
//
// The algorithm depends on the invariant that both control instructions and effectful
// instructions (stores) are never hoisted.

bool
FlowAliasAnalysis::analyze()
{
    DumpAnalyzeStart();

    // Type analysis may have inserted new instructions. Since this pass depends
    // on the instruction number ordering, all instructions are renumbered.
    uint32_t newId = 0;

    if (!stores_->reserve(graph_.numBlocks()))
        return false;

    for (ReversePostorderIterator block(graph_.rpoBegin()); block != graph_.rpoEnd(); block++) {
        if (mir->shouldCancel("Alias Analysis (main loop)"))
            return false;

        DumpBlockStart(*block);

        if (!computeBlockStores(*block))
            return false;
        if (!stores_->maybeFreePredecessorBlocks(*block))
            return false;

        if (block->isLoopHeader())
            loop_ = new(alloc()) LoopInfo(alloc(), loop_, *block);

        for (MPhiIterator def(block->phisBegin()), end(block->phisEnd()); def != end; ++def)
            def->setId(newId++);

        BlockStoreInfo& blockInfo = stores_->current();
        for (MInstructionIterator def(block->begin()), end(block->begin(block->lastIns()));
                def != end;
                ++def)
        {
            def->setId(newId++);

            // For the purposes of alias analysis, all recoverable operations
            // are treated as effect free as the memory represented by these
            // operations cannot be aliased by others.
            if (def->canRecoverOnBailout())
                continue;

            AliasSet set = def->getAliasSet();
            if (set.isStore()) {
                if (!processStore(blockInfo, *def))
                    return false;
            } else if (set.isLoad()) {
                if (!processLoad(blockInfo, *def))
                    return false;
            }
        }

        block->lastIns()->setId(newId++);

        if (block->isLoopBackedge()) {
            stores_->unsetCurrent();

            LoopInfo* info = loop_;
            loop_ = loop_->outer();

            if (!processDeferredLoads(info))
                return false;
        }

        DumpBlockSummary(*block, blockInfo);
    }

    spewDependencyList();
    return true;
}

bool
FlowAliasAnalysis::processStore(BlockStoreInfo& blockInfo, MDefinition* store)
{
    // Compute and set dependency information.
    if (!saveStoreDependency(store, blockInfo))
        return false;

    // Update the block store dependency vector.
    blockInfo.clear();
    if (!blockInfo.append(store))
        return false;

    // Spew what we did.
    DumpStore(store);
    return true;
}

bool
FlowAliasAnalysis::processLoad(BlockStoreInfo& blockInfo, MDefinition* load)
{
    DumpLoad(load);

    // Compute dependency information.
    MDefinitionVector& dependencies = blockInfo;
    if (!improveDependency(load, dependencies, output_))
        return false;
    saveLoadDependency(load, output_);

    // If possible defer when better loop information is present.
    if (deferImproveDependency(output_)) {
        if (!loop_->loopinvariant().append(load))
            return false;

        DumpLoadOutcome(load, output_, /* defer = */ true);
        return true;
    }

    DumpLoadOutcome(load, output_, /* defer = */ false);
    return true;
}

bool
FlowAliasAnalysis::processDeferredLoads(LoopInfo* info)
{
    DumpProcessingDeferredLoads(info->loopHeader());
    MOZ_ASSERT(loopIsFinished(info->loopHeader()));

    for (size_t i = 0; i < info->loopinvariant().length(); i++) {
        MDefinition* load = info->loopinvariant()[i];

        DumpLoad(load);

        // Defer load again when this loop still isn't finished yet.
        if (!loopIsFinished(load->dependency()->block())) {
            MOZ_ASSERT(loop_);
            if (!loop_->loopinvariant().append(load))
                return false;

            DumpLoadOutcome(load, output_, /* defer = */ true);
            continue;
        }

        MOZ_ASSERT(load->dependency()->block() == info->loopHeader());
        MDefinition* store = load->dependency();
        load->setDependency(nullptr);

        // Test if this load is loop invariant and if it is,
        // take the dependencies of non-backedge predecessors of the loop header.
        bool loopinvariant;
        if (!isLoopInvariant(load, store, &loopinvariant))
            return false;
        MDefinitionVector &loopInvariantDependency =
            stores_->get(store->block()->loopPredecessor());

        DumpLoopInvariant(load, info->loopHeader(), /* loopinvariant = */ loopinvariant,
                          loopInvariantDependency);

        if (loopinvariant) {
            if (!improveDependency(load, loopInvariantDependency, output_))
                return false;
            saveLoadDependency(load, output_);

            // If possible defer when better loop information is present.
            if (deferImproveDependency(output_)) {
                if (!loop_->loopinvariant().append(load))
                    return false;

                DumpLoadOutcome(load, output_, /* defer = */ true);
            } else {
                DumpLoadOutcome(load, output_, /* defer = */ false);
            }

        } else {
            load->setDependency(store);

#ifdef JS_JITSPEW
            output_.clear();
            if (!output_.append(store))
                return false;
            DumpLoadOutcome(load, output_, /* defer = */ false);
#endif
        }

    }
    return true;
}

// Given a load instruction and an initial store dependency list,
// find the most accurate store dependency list.
bool
FlowAliasAnalysis::improveDependency(MDefinition* load, MDefinitionVector& inputStores,
                                     MDefinitionVector& outputStores)
{
    MOZ_ASSERT(inputStores.length() > 0);
    outputStores.clear();
    if (!outputStores.appendAll(inputStores))
        return false;

    bool improved = false;
    bool adjusted = true;
    while (adjusted) {
        adjusted = false;
        if (!improveNonAliasedStores(load, outputStores, outputStores, &improved))
            return false;
        MOZ_ASSERT(outputStores.length() != 0);
        if (!improveStoresInFinishedLoops(load, outputStores, &adjusted))
            return false;
        if (adjusted)
            improved = true;
    }

    if (improved)
        DumpImprovement(load, inputStores, outputStores);

    return true;
}

// For every real store dependencies, follow the chain of stores to find the
// unique set of 'might alias' store dependencies.
bool
FlowAliasAnalysis::improveNonAliasedStores(MDefinition* load, MDefinitionVector& inputStores,
                                           MDefinitionVector& outputStores, bool* improved,
                                           bool onlyControlInstructions)
{
    MOZ_ASSERT(worklist_.length() == 0);
    if (!AppendToWorklist(worklist_, inputStores))
        return false;
    outputStores.clear();

    for (size_t i = 0; i < worklist_.length(); i++) {
        MOZ_ASSERT(worklist_[i]);

        if (!LoadAliasesStore(load, worklist_[i])) {
            StoreDependency* dep = worklist_[i]->storeDependency();
            MOZ_ASSERT(dep);
            MOZ_ASSERT(dep->get().length() > 0);

            if (!AppendToWorklist(worklist_, dep->get()))
                return false;

            *improved = true;
            continue;
        }

        if (onlyControlInstructions && !worklist_[i]->isControlInstruction()) {
            outputStores.clear();
            break;
        }
        if (!outputStores.append(worklist_[i]))
            return false;
    }

    SetNotInWorkList(worklist_);
    worklist_.clear();
    return true;
}

// Given a load instruction and an initial store dependency list,
// find the most accurate store dependency list with only control instructions.
// Returns an empty output list, when there was a non control instructions
// that couldn't get improved to a control instruction.
bool
FlowAliasAnalysis::improveLoopDependency(MDefinition* load, MDefinitionVector& inputStores,
                                         MDefinitionVector& outputStores)
{
    outputStores.clear();
    if (!outputStores.appendAll(inputStores))
        return false;

    bool improved = false;
    bool adjusted = true;
    while (adjusted) {
        adjusted = false;
        if (!improveNonAliasedStores(load, outputStores, outputStores, &improved,
                                      /* onlyControlInstructions = */ true))
        {
            return false;
        }
        if (outputStores.length() == 0)
            return true;
        if (!improveStoresInFinishedLoops(load, outputStores, &adjusted))
            return false;
        if (adjusted)
            improved = true;
    }

    if (improved)
        DumpImprovement(load, inputStores, outputStores);

    return true;
}

// For every control instruction in the output we find out if the load is loop
// invariant to that loop. When it is, improve the output dependency store,
// by pointing to the stores before the loop.
bool
FlowAliasAnalysis::improveStoresInFinishedLoops(MDefinition* load, MDefinitionVector& stores,
                                                bool* improved)
{
    for (size_t i = 0; i < stores.length(); i++) {
        if (!stores[i]->isControlInstruction())
            continue;
        if (!stores[i]->block()->isLoopHeader())
            continue;

        MOZ_ASSERT(!stores[i]->storeDependency());

        if (!loopIsFinished(stores[i]->block()))
            continue;

        if (load->dependency() == stores[i])
            continue;

        bool loopinvariant;
        if (!isLoopInvariant(load, stores[i], &loopinvariant))
            return false;
        if (!loopinvariant)
            continue;

        MBasicBlock* pred = stores[i]->block()->loopPredecessor();
        BlockStoreInfo& predInfo = stores_->get(pred);

        MOZ_ASSERT(predInfo.length() > 0);
        stores[i] = predInfo[0];
        for (size_t j = 1; j < predInfo.length(); j++) {
            if (!stores.append(predInfo[j]))
                return false;
        }

        *improved = true;
    }

    return true;
}

bool
FlowAliasAnalysis::deferImproveDependency(MDefinitionVector& stores)
{
    // Look if the store depends only on 1 non finished loop.
    // In that case we will defer until that loop has finished.
    return loop_ && stores.length() == 1 &&
           stores[0]->isControlInstruction() &&
           stores[0]->block()->isLoopHeader() &&
           !loopIsFinished(stores[0]->block());
}

void
FlowAliasAnalysis::saveLoadDependency(MDefinition* load, MDefinitionVector& dependencies)
{
    MOZ_ASSERT(dependencies.length() > 0);

    // For now we only save the last store before the load for other passes.
    // That means the store with the maximum id.
    MDefinition* max = dependencies[0];
    MDefinition* maxNonControl = nullptr;
    for (size_t i = 0; i < dependencies.length(); i++) {
        MDefinition* ins = dependencies[i];
        if (max->id() < ins->id())
            max = ins;
        if (!ins->isControlInstruction()) {
            if (!maxNonControl || maxNonControl->id() < ins->id())
                maxNonControl = ins;
        }
    }

    // For loop variant loads with no stores between loopheader and the load,
    // the control instruction of the loop header is returned.
    // That id is higher than any store inside the loopheader itself.
    // Fix for dependency on item in loopheader, but before the "test".
    // Which would assume it depends on the loop itself.
    if (maxNonControl != max && maxNonControl) {
        if (maxNonControl->block() == max->block())
            max = maxNonControl;
    }

    load->setDependency(max);
}

bool
FlowAliasAnalysis::saveStoreDependency(MDefinition* ins, BlockStoreInfo& prevStores)
{
    // To form a store dependency chain, we store the previous last dependencies
    // in the current store.

    StoreDependency* dependency = new(alloc()) StoreDependency(alloc());
    if (!dependency)
        return false;
    if (!dependency->init(prevStores))
        return false;

    ins->setStoreDependency(dependency);
    return true;
}

// Returns if loop has been processed
// and has complete backedge stores information.
bool
FlowAliasAnalysis::loopIsFinished(MBasicBlock* loopheader)
{
    MOZ_ASSERT(loopheader->isLoopHeader());

    if (!loop_)
        return true;

    return loopheader->backedge()->id() <
           loop_->loopHeader()->backedge()->id();
}


// Determines if a load is loop invariant.
//
// Get the last store dependencies of the backedge of the loop and follow
// the store chain until finding the aliased stores. Make sure the computed
// aliased stores is only the loop control instruction or control instructions
// of loops it is also loop invariant. Only in that case the load is
// definitely loop invariant.
bool
FlowAliasAnalysis::isLoopInvariant(MDefinition* load, MDefinition* store, bool* loopinvariant)
{
    MOZ_ASSERT(store->isControlInstruction());
    MOZ_ASSERT(!store->storeDependency());
    MOZ_ASSERT(store->block()->isLoopHeader());
    MOZ_ASSERT(loopIsFinished(store->block()));

    *loopinvariant = false;
    MBasicBlock* backedge = store->block()->backedge();
    MDefinitionVector output(alloc());

    // To make sure the improve dependency stops at this loop,
    // set the loop control instruction as dependency.
    MDefinition* olddep = load->dependency();
    load->setDependency(store);
    if (!improveLoopDependency(load, stores_->get(backedge), output))
        return false;
    load->setDependency(olddep);

    if (output.length() == 0)
        return true;

    for (size_t i = 0; i < output.length(); i++) {
        if (output[i]->storeDependency())
            return true;

        if (!output[i]->isControlInstruction())
            return true;
        if (!output[i]->block()->isLoopHeader())
            return true;

        if (output[i] == store)
            continue;

        return true;
    }

    *loopinvariant = true;
    return true;
}

// Compute the store dependencies at the start of this MBasicBlock.
bool
FlowAliasAnalysis::computeBlockStores(MBasicBlock* block)
{
    BlockStoreInfo* blockInfo = stores_->newCurrent(alloc(), block);
    if (!blockInfo)
        return false;

    // First block depends on the first instruction.
    if (block->id() == 0) {
        MDefinition* firstIns = *graph_.entryBlock()->begin();
        if (!blockInfo->append(firstIns))
            return false;
        return true;
    }

    // For loopheaders we take the loopheaders control instruction.
    // That is not moveable and easy is to detect.
    if (block->isLoopHeader()) {
        if (!blockInfo->append(block->lastIns()))
            return false;
        return true;
    }


    // Optimization for consecutive blocks.
    if (block->numPredecessors() == 1) {
        MBasicBlock* pred = block->getPredecessor(0);
        if (pred->numSuccessors() == 1) {
            stores_->swap(block, pred);
            return true;
        }
        MOZ_ASSERT (pred->numSuccessors() > 1);
        BlockStoreInfo& predInfo = stores_->get(pred);
        return blockInfo->appendAll(predInfo);
    }

    // Heuristic: in most cases having more than 5 predecessors,
    // increases the number of dependencies too much to still be able
    // to do an optimization. Therefore don't do the merge work.
    // For simplicity we take an non-dominant always existing instruction.
    // That way we cannot accidentally move instructions depending on it.
    if (block->numPredecessors() > 5) {
        if (!blockInfo->append(block->getPredecessor(0)->lastIns()))
            return false;
        return true;
    }

    // Merging of multiple predecessors.
    for (size_t pred = 0; pred < block->numPredecessors(); pred++) {
        BlockStoreInfo& predInfo = stores_->get(block->getPredecessor(pred));
        if (!AppendToWorklist(*blockInfo, predInfo))
            return false;
    }
    SetNotInWorkList(*blockInfo);

    return true;
}