summaryrefslogtreecommitdiffstats
path: root/js/src/gc/Statistics.cpp
blob: 8a9f4e1350572d4ab58f78fd0c2b3fdf8e6ec272 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "gc/Statistics.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/PodOperations.h"
#include "mozilla/Sprintf.h"

#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>

#include "jsprf.h"
#include "jsutil.h"

#include "gc/Memory.h"
#include "vm/Debugger.h"
#include "vm/HelperThreads.h"
#include "vm/Runtime.h"
#include "vm/Time.h"

using namespace js;
using namespace js::gc;
using namespace js::gcstats;

using mozilla::DebugOnly;
using mozilla::MakeRange;
using mozilla::PodArrayZero;
using mozilla::PodZero;

const char*
js::gcstats::ExplainInvocationKind(JSGCInvocationKind gckind)
{
    MOZ_ASSERT(gckind == GC_NORMAL || gckind == GC_SHRINK);
    if (gckind == GC_NORMAL)
         return "Normal";
    else
         return "Shrinking";
}

JS_PUBLIC_API(const char*)
JS::gcreason::ExplainReason(JS::gcreason::Reason reason)
{
    switch (reason) {
#define SWITCH_REASON(name)                         \
        case JS::gcreason::name:                    \
          return #name;
        GCREASONS(SWITCH_REASON)

        default:
          MOZ_CRASH("bad GC reason");
#undef SWITCH_REASON
    }
}

const char*
js::gcstats::ExplainAbortReason(gc::AbortReason reason)
{
    switch (reason) {
#define SWITCH_REASON(name)                         \
        case gc::AbortReason::name:                 \
          return #name;
        GC_ABORT_REASONS(SWITCH_REASON)

        default:
          MOZ_CRASH("bad GC abort reason");
#undef SWITCH_REASON
    }
}

static double
t(int64_t t)
{
    return double(t) / PRMJ_USEC_PER_MSEC;
}

struct PhaseInfo
{
    Phase index;
    const char* name;
    Phase parent;
};

// The zeroth entry in the timing arrays is used for phases that have a
// unique lineage.
static const size_t PHASE_DAG_NONE = 0;

// These are really just fields of PhaseInfo, but I have to initialize them
// programmatically, which prevents making phases[] const. (And marking these
// fields mutable does not work on Windows; the whole thing gets created in
// read-only memory anyway.)
struct ExtraPhaseInfo
{
    // Depth in the tree of each phase type
    size_t depth;

    // Index into the set of parallel arrays of timing data, for parents with
    // at least one multi-parented child
    size_t dagSlot;
};

static const Phase PHASE_NO_PARENT = PHASE_LIMIT;

struct DagChildEdge {
    Phase parent;
    Phase child;
} dagChildEdges[] = {
    { PHASE_MARK, PHASE_MARK_ROOTS },
    { PHASE_MINOR_GC, PHASE_MARK_ROOTS },
    { PHASE_TRACE_HEAP, PHASE_MARK_ROOTS },
    { PHASE_EVICT_NURSERY, PHASE_MARK_ROOTS },
    { PHASE_COMPACT_UPDATE, PHASE_MARK_ROOTS }
};

/*
 * Note that PHASE_MUTATOR, PHASE_GC_BEGIN, and PHASE_GC_END never have any
 * child phases. If beginPhase is called while one of these is active, they
 * will automatically be suspended and resumed when the phase stack is next
 * empty. Timings for these phases are thus exclusive of any other phase.
 */

static const PhaseInfo phases[] = {
    { PHASE_MUTATOR, "Mutator Running", PHASE_NO_PARENT },
    { PHASE_GC_BEGIN, "Begin Callback", PHASE_NO_PARENT },
    { PHASE_WAIT_BACKGROUND_THREAD, "Wait Background Thread", PHASE_NO_PARENT },
    { PHASE_MARK_DISCARD_CODE, "Mark Discard Code", PHASE_NO_PARENT },
    { PHASE_RELAZIFY_FUNCTIONS, "Relazify Functions", PHASE_NO_PARENT },
    { PHASE_PURGE, "Purge", PHASE_NO_PARENT },
    { PHASE_MARK, "Mark", PHASE_NO_PARENT },
        { PHASE_UNMARK, "Unmark", PHASE_MARK },
        /* PHASE_MARK_ROOTS */
        { PHASE_MARK_DELAYED, "Mark Delayed", PHASE_MARK },
    { PHASE_SWEEP, "Sweep", PHASE_NO_PARENT },
        { PHASE_SWEEP_MARK, "Mark During Sweeping", PHASE_SWEEP },
            { PHASE_SWEEP_MARK_TYPES, "Mark Types During Sweeping", PHASE_SWEEP_MARK },
            { PHASE_SWEEP_MARK_INCOMING_BLACK, "Mark Incoming Black Pointers", PHASE_SWEEP_MARK },
            { PHASE_SWEEP_MARK_WEAK, "Mark Weak", PHASE_SWEEP_MARK },
            { PHASE_SWEEP_MARK_INCOMING_GRAY, "Mark Incoming Gray Pointers", PHASE_SWEEP_MARK },
            { PHASE_SWEEP_MARK_GRAY, "Mark Gray", PHASE_SWEEP_MARK },
            { PHASE_SWEEP_MARK_GRAY_WEAK, "Mark Gray and Weak", PHASE_SWEEP_MARK },
        { PHASE_FINALIZE_START, "Finalize Start Callbacks", PHASE_SWEEP },
            { PHASE_WEAK_ZONEGROUP_CALLBACK, "Per-Slice Weak Callback", PHASE_FINALIZE_START },
            { PHASE_WEAK_COMPARTMENT_CALLBACK, "Per-Compartment Weak Callback", PHASE_FINALIZE_START },
        { PHASE_SWEEP_ATOMS, "Sweep Atoms", PHASE_SWEEP },
        { PHASE_SWEEP_SYMBOL_REGISTRY, "Sweep Symbol Registry", PHASE_SWEEP },
        { PHASE_SWEEP_COMPARTMENTS, "Sweep Compartments", PHASE_SWEEP },
            { PHASE_SWEEP_DISCARD_CODE, "Sweep Discard Code", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_INNER_VIEWS, "Sweep Inner Views", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_CC_WRAPPER, "Sweep Cross Compartment Wrappers", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_BASE_SHAPE, "Sweep Base Shapes", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_INITIAL_SHAPE, "Sweep Initial Shapes", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_TYPE_OBJECT, "Sweep Type Objects", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_BREAKPOINT, "Sweep Breakpoints", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_REGEXP, "Sweep Regexps", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_MISC, "Sweep Miscellaneous", PHASE_SWEEP_COMPARTMENTS },
            { PHASE_SWEEP_TYPES, "Sweep type information", PHASE_SWEEP_COMPARTMENTS },
                { PHASE_SWEEP_TYPES_BEGIN, "Sweep type tables and compilations", PHASE_SWEEP_TYPES },
                { PHASE_SWEEP_TYPES_END, "Free type arena", PHASE_SWEEP_TYPES },
        { PHASE_SWEEP_OBJECT, "Sweep Object", PHASE_SWEEP },
        { PHASE_SWEEP_STRING, "Sweep String", PHASE_SWEEP },
        { PHASE_SWEEP_SCRIPT, "Sweep Script", PHASE_SWEEP },
        { PHASE_SWEEP_SCOPE, "Sweep Scope", PHASE_SWEEP },
        { PHASE_SWEEP_SHAPE, "Sweep Shape", PHASE_SWEEP },
        { PHASE_SWEEP_JITCODE, "Sweep JIT code", PHASE_SWEEP },
        { PHASE_FINALIZE_END, "Finalize End Callback", PHASE_SWEEP },
        { PHASE_DESTROY, "Deallocate", PHASE_SWEEP },
    { PHASE_COMPACT, "Compact", PHASE_NO_PARENT },
        { PHASE_COMPACT_MOVE, "Compact Move", PHASE_COMPACT },
        { PHASE_COMPACT_UPDATE, "Compact Update", PHASE_COMPACT },
            /* PHASE_MARK_ROOTS */
            { PHASE_COMPACT_UPDATE_CELLS, "Compact Update Cells", PHASE_COMPACT_UPDATE },
    { PHASE_GC_END, "End Callback", PHASE_NO_PARENT },
    { PHASE_MINOR_GC, "All Minor GCs", PHASE_NO_PARENT },
        /* PHASE_MARK_ROOTS */
    { PHASE_EVICT_NURSERY, "Minor GCs to Evict Nursery", PHASE_NO_PARENT },
        /* PHASE_MARK_ROOTS */
    { PHASE_TRACE_HEAP, "Trace Heap", PHASE_NO_PARENT },
        /* PHASE_MARK_ROOTS */
    { PHASE_BARRIER, "Barriers", PHASE_NO_PARENT },
        { PHASE_UNMARK_GRAY, "Unmark gray", PHASE_BARRIER },
    { PHASE_MARK_ROOTS, "Mark Roots", PHASE_MULTI_PARENTS },
        { PHASE_BUFFER_GRAY_ROOTS, "Buffer Gray Roots", PHASE_MARK_ROOTS },
        { PHASE_MARK_CCWS, "Mark Cross Compartment Wrappers", PHASE_MARK_ROOTS },
        { PHASE_MARK_STACK, "Mark C and JS stacks", PHASE_MARK_ROOTS },
        { PHASE_MARK_RUNTIME_DATA, "Mark Runtime-wide Data", PHASE_MARK_ROOTS },
        { PHASE_MARK_EMBEDDING, "Mark Embedding", PHASE_MARK_ROOTS },
        { PHASE_MARK_COMPARTMENTS, "Mark Compartments", PHASE_MARK_ROOTS },
    { PHASE_PURGE_SHAPE_TABLES, "Purge ShapeTables", PHASE_NO_PARENT },

    { PHASE_LIMIT, nullptr, PHASE_NO_PARENT }
};

static ExtraPhaseInfo phaseExtra[PHASE_LIMIT] = { { 0, 0 } };

// Mapping from all nodes with a multi-parented child to a Vector of all
// multi-parented children and their descendants. (Single-parented children will
// not show up in this list.)
static mozilla::Vector<Phase, 0, SystemAllocPolicy> dagDescendants[Statistics::NumTimingArrays];

// Preorder iterator over all phases in the expanded tree. Positions are
// returned as <phase,dagSlot> pairs (dagSlot will be zero aka PHASE_DAG_NONE
// for the top nodes with a single path from the parent, and 1 or more for
// nodes in multiparented subtrees).
struct AllPhaseIterator {
    // If 'descendants' is empty, the current Phase position.
    int current;

    // The depth of the current multiparented node that we are processing, or
    // zero if we are pointing to the top portion of the tree.
    int baseLevel;

    // When looking at multiparented descendants, the dag slot (index into
    // PhaseTimeTables) containing the entries for the current parent.
    size_t activeSlot;

    // When iterating over a multiparented subtree, the list of (remaining)
    // subtree nodes.
    mozilla::Vector<Phase, 0, SystemAllocPolicy>::Range descendants;

    explicit AllPhaseIterator(const Statistics::PhaseTimeTable table)
      : current(0)
      , baseLevel(0)
      , activeSlot(PHASE_DAG_NONE)
      , descendants(dagDescendants[PHASE_DAG_NONE].all()) /* empty range */
    {
    }

    void get(Phase* phase, size_t* dagSlot, size_t* level = nullptr) {
        MOZ_ASSERT(!done());
        *dagSlot = activeSlot;
        *phase = descendants.empty() ? Phase(current) : descendants.front();
        if (level)
            *level = phaseExtra[*phase].depth + baseLevel;
    }

    void advance() {
        MOZ_ASSERT(!done());

        if (!descendants.empty()) {
            // Currently iterating over a multiparented subtree.
            descendants.popFront();
            if (!descendants.empty())
                return;

            // Just before leaving the last child, reset the iterator to look
            // at "main" phases (in PHASE_DAG_NONE) instead of multiparented
            // subtree phases.
            ++current;
            activeSlot = PHASE_DAG_NONE;
            baseLevel = 0;
            return;
        }

        if (phaseExtra[current].dagSlot != PHASE_DAG_NONE) {
            // The current phase has a shared subtree. Load them up into
            // 'descendants' and advance to the first child.
            activeSlot = phaseExtra[current].dagSlot;
            descendants = dagDescendants[activeSlot].all();
            MOZ_ASSERT(!descendants.empty());
            baseLevel += phaseExtra[current].depth + 1;
            return;
        }

        ++current;
    }

    bool done() const {
        return phases[current].parent == PHASE_MULTI_PARENTS;
    }
};

void
Statistics::gcDuration(int64_t* total, int64_t* maxPause) const
{
    *total = *maxPause = 0;
    for (const SliceData* slice = slices.begin(); slice != slices.end(); slice++) {
        *total += slice->duration();
        if (slice->duration() > *maxPause)
            *maxPause = slice->duration();
    }
    if (*maxPause > maxPauseInInterval)
        maxPauseInInterval = *maxPause;
}

void
Statistics::sccDurations(int64_t* total, int64_t* maxPause)
{
    *total = *maxPause = 0;
    for (size_t i = 0; i < sccTimes.length(); i++) {
        *total += sccTimes[i];
        *maxPause = Max(*maxPause, sccTimes[i]);
    }
}

typedef Vector<UniqueChars, 8, SystemAllocPolicy> FragmentVector;

static UniqueChars
Join(const FragmentVector& fragments, const char* separator = "") {
    const size_t separatorLength = strlen(separator);
    size_t length = 0;
    for (size_t i = 0; i < fragments.length(); ++i) {
        length += fragments[i] ? strlen(fragments[i].get()) : 0;
        if (i < (fragments.length() - 1))
            length += separatorLength;
    }

    char* joined = js_pod_malloc<char>(length + 1);
    joined[length] = '\0';

    char* cursor = joined;
    for (size_t i = 0; i < fragments.length(); ++i) {
        if (fragments[i])
            strcpy(cursor, fragments[i].get());
        cursor += fragments[i] ? strlen(fragments[i].get()) : 0;
        if (i < (fragments.length() - 1)) {
            if (separatorLength)
                strcpy(cursor, separator);
            cursor += separatorLength;
        }
    }

    return UniqueChars(joined);
}

static int64_t
SumChildTimes(size_t phaseSlot, Phase phase, const Statistics::PhaseTimeTable phaseTimes)
{
    // Sum the contributions from single-parented children.
    int64_t total = 0;
    size_t depth = phaseExtra[phase].depth;
    for (unsigned i = phase + 1; i < PHASE_LIMIT && phaseExtra[i].depth > depth; i++) {
        if (phases[i].parent == phase)
            total += phaseTimes[phaseSlot][i];
    }

    // Sum the contributions from multi-parented children.
    size_t dagSlot = phaseExtra[phase].dagSlot;
    if (dagSlot != PHASE_DAG_NONE) {
        for (auto edge : dagChildEdges) {
            if (edge.parent == phase)
                total += phaseTimes[dagSlot][edge.child];
        }
    }
    return total;
}

UniqueChars
Statistics::formatCompactSliceMessage() const
{
    // Skip if we OOM'ed.
    if (slices.length() == 0)
        return UniqueChars(nullptr);

    const size_t index = slices.length() - 1;
    const SliceData& slice = slices[index];

    char budgetDescription[200];
    slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);

    const char* format =
        "GC Slice %u - Pause: %.3fms of %s budget (@ %.3fms); Reason: %s; Reset: %s%s; Times: ";
    char buffer[1024];
    SprintfLiteral(buffer, format, index,
                   t(slice.duration()), budgetDescription, t(slice.start - slices[0].start),
                   ExplainReason(slice.reason),
                   slice.wasReset() ? "yes - " : "no",
                   slice.wasReset() ? ExplainAbortReason(slice.resetReason) : "");

    FragmentVector fragments;
    if (!fragments.append(DuplicateString(buffer)) ||
        !fragments.append(formatCompactSlicePhaseTimes(slices[index].phaseTimes)))
    {
        return UniqueChars(nullptr);
    }
    return Join(fragments);
}

UniqueChars
Statistics::formatCompactSummaryMessage() const
{
    const double bytesPerMiB = 1024 * 1024;

    FragmentVector fragments;
    if (!fragments.append(DuplicateString("Summary - ")))
        return UniqueChars(nullptr);

    int64_t total, longest;
    gcDuration(&total, &longest);

    const double mmu20 = computeMMU(20 * PRMJ_USEC_PER_MSEC);
    const double mmu50 = computeMMU(50 * PRMJ_USEC_PER_MSEC);

    char buffer[1024];
    if (!nonincremental()) {
        SprintfLiteral(buffer,
                       "Max Pause: %.3fms; MMU 20ms: %.1f%%; MMU 50ms: %.1f%%; Total: %.3fms; ",
                       t(longest), mmu20 * 100., mmu50 * 100., t(total));
    } else {
        SprintfLiteral(buffer, "Non-Incremental: %.3fms (%s); ",
                       t(total), ExplainAbortReason(nonincrementalReason_));
    }
    if (!fragments.append(DuplicateString(buffer)))
        return UniqueChars(nullptr);

    SprintfLiteral(buffer,
                   "Zones: %d of %d (-%d); Compartments: %d of %d (-%d); HeapSize: %.3f MiB; " \
                   "HeapChange (abs): %+d (%d); ",
                   zoneStats.collectedZoneCount, zoneStats.zoneCount, zoneStats.sweptZoneCount,
                   zoneStats.collectedCompartmentCount, zoneStats.compartmentCount,
                   zoneStats.sweptCompartmentCount,
                   double(preBytes) / bytesPerMiB,
                   counts[STAT_NEW_CHUNK] - counts[STAT_DESTROY_CHUNK],
                   counts[STAT_NEW_CHUNK] + counts[STAT_DESTROY_CHUNK]);
    if (!fragments.append(DuplicateString(buffer)))
        return UniqueChars(nullptr);

    MOZ_ASSERT_IF(counts[STAT_ARENA_RELOCATED], gckind == GC_SHRINK);
    if (gckind == GC_SHRINK) {
        SprintfLiteral(buffer,
                       "Kind: %s; Relocated: %.3f MiB; ",
                       ExplainInvocationKind(gckind),
                       double(ArenaSize * counts[STAT_ARENA_RELOCATED]) / bytesPerMiB);
        if (!fragments.append(DuplicateString(buffer)))
            return UniqueChars(nullptr);
    }

    return Join(fragments);
}

UniqueChars
Statistics::formatCompactSlicePhaseTimes(const PhaseTimeTable phaseTimes) const
{
    static const int64_t MaxUnaccountedTimeUS = 100;

    FragmentVector fragments;
    char buffer[128];
    for (AllPhaseIterator iter(phaseTimes); !iter.done(); iter.advance()) {
        Phase phase;
        size_t dagSlot;
        size_t level;
        iter.get(&phase, &dagSlot, &level);
        MOZ_ASSERT(level < 4);

        int64_t ownTime = phaseTimes[dagSlot][phase];
        int64_t childTime = SumChildTimes(dagSlot, phase, phaseTimes);
        if (ownTime > MaxUnaccountedTimeUS) {
            SprintfLiteral(buffer, "%s: %.3fms", phases[phase].name, t(ownTime));
            if (!fragments.append(DuplicateString(buffer)))
                return UniqueChars(nullptr);

            if (childTime && (ownTime - childTime) > MaxUnaccountedTimeUS) {
                MOZ_ASSERT(level < 3);
                SprintfLiteral(buffer, "%s: %.3fms", "Other", t(ownTime - childTime));
                if (!fragments.append(DuplicateString(buffer)))
                    return UniqueChars(nullptr);
            }
        }
    }
    return Join(fragments, ", ");
}

UniqueChars
Statistics::formatDetailedMessage()
{
    FragmentVector fragments;

    if (!fragments.append(formatDetailedDescription()))
        return UniqueChars(nullptr);

    if (slices.length() > 1) {
        for (unsigned i = 0; i < slices.length(); i++) {
            if (!fragments.append(formatDetailedSliceDescription(i, slices[i])))
                return UniqueChars(nullptr);
            if (!fragments.append(formatDetailedPhaseTimes(slices[i].phaseTimes)))
                return UniqueChars(nullptr);
        }
    }
    if (!fragments.append(formatDetailedTotals()))
        return UniqueChars(nullptr);
    if (!fragments.append(formatDetailedPhaseTimes(phaseTimes)))
        return UniqueChars(nullptr);

    return Join(fragments);
}

UniqueChars
Statistics::formatDetailedDescription()
{
    const double bytesPerMiB = 1024 * 1024;

    int64_t sccTotal, sccLongest;
    sccDurations(&sccTotal, &sccLongest);

    double mmu20 = computeMMU(20 * PRMJ_USEC_PER_MSEC);
    double mmu50 = computeMMU(50 * PRMJ_USEC_PER_MSEC);

    const char* format =
"=================================================================\n\
  Invocation Kind: %s\n\
  Reason: %s\n\
  Incremental: %s%s\n\
  Zones Collected: %d of %d (-%d)\n\
  Compartments Collected: %d of %d (-%d)\n\
  MinorGCs since last GC: %d\n\
  Store Buffer Overflows: %d\n\
  MMU 20ms:%.1f%%; 50ms:%.1f%%\n\
  SCC Sweep Total (MaxPause): %.3fms (%.3fms)\n\
  HeapSize: %.3f MiB\n\
  Chunk Delta (magnitude): %+d  (%d)\n\
  Arenas Relocated: %.3f MiB\n\
";
    char buffer[1024];
    SprintfLiteral(buffer, format,
                   ExplainInvocationKind(gckind),
                   ExplainReason(slices[0].reason),
                   nonincremental() ? "no - " : "yes",
                   nonincremental() ? ExplainAbortReason(nonincrementalReason_) : "",
                   zoneStats.collectedZoneCount, zoneStats.zoneCount, zoneStats.sweptZoneCount,
                   zoneStats.collectedCompartmentCount, zoneStats.compartmentCount,
                   zoneStats.sweptCompartmentCount,
                   counts[STAT_MINOR_GC],
                   counts[STAT_STOREBUFFER_OVERFLOW],
                   mmu20 * 100., mmu50 * 100.,
                   t(sccTotal), t(sccLongest),
                   double(preBytes) / bytesPerMiB,
                   counts[STAT_NEW_CHUNK] - counts[STAT_DESTROY_CHUNK],
                   counts[STAT_NEW_CHUNK] + counts[STAT_DESTROY_CHUNK],
                   double(ArenaSize * counts[STAT_ARENA_RELOCATED]) / bytesPerMiB);
    return DuplicateString(buffer);
}

UniqueChars
Statistics::formatDetailedSliceDescription(unsigned i, const SliceData& slice)
{
    char budgetDescription[200];
    slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);

    const char* format =
"\
  ---- Slice %u ----\n\
    Reason: %s\n\
    Reset: %s%s\n\
    State: %s -> %s\n\
    Page Faults: %ld\n\
    Pause: %.3fms of %s budget (@ %.3fms)\n\
";
    char buffer[1024];
    SprintfLiteral(buffer, format, i, ExplainReason(slice.reason),
                   slice.wasReset() ? "yes - " : "no",
                   slice.wasReset() ? ExplainAbortReason(slice.resetReason) : "",
                   gc::StateName(slice.initialState), gc::StateName(slice.finalState),
                   uint64_t(slice.endFaults - slice.startFaults),
                   t(slice.duration()), budgetDescription, t(slice.start - slices[0].start));
    return DuplicateString(buffer);
}

UniqueChars
Statistics::formatDetailedPhaseTimes(const PhaseTimeTable phaseTimes)
{
    static const char* LevelToIndent[] = { "", "  ", "    ", "      " };
    static const int64_t MaxUnaccountedChildTimeUS = 50;

    FragmentVector fragments;
    char buffer[128];
    for (AllPhaseIterator iter(phaseTimes); !iter.done(); iter.advance()) {
        Phase phase;
        size_t dagSlot;
        size_t level;
        iter.get(&phase, &dagSlot, &level);
        MOZ_ASSERT(level < 4);

        int64_t ownTime = phaseTimes[dagSlot][phase];
        int64_t childTime = SumChildTimes(dagSlot, phase, phaseTimes);
        if (ownTime > 0) {
            SprintfLiteral(buffer, "      %s%s: %.3fms\n",
                           LevelToIndent[level], phases[phase].name, t(ownTime));
            if (!fragments.append(DuplicateString(buffer)))
                return UniqueChars(nullptr);

            if (childTime && (ownTime - childTime) > MaxUnaccountedChildTimeUS) {
                MOZ_ASSERT(level < 3);
                SprintfLiteral(buffer, "      %s%s: %.3fms\n",
                               LevelToIndent[level + 1], "Other", t(ownTime - childTime));
                if (!fragments.append(DuplicateString(buffer)))
                    return UniqueChars(nullptr);
            }
        }
    }
    return Join(fragments);
}

UniqueChars
Statistics::formatDetailedTotals()
{
    int64_t total, longest;
    gcDuration(&total, &longest);

    const char* format =
"\
  ---- Totals ----\n\
    Total Time: %.3fms\n\
    Max Pause: %.3fms\n\
";
    char buffer[1024];
    SprintfLiteral(buffer, format, t(total), t(longest));
    return DuplicateString(buffer);
}

UniqueChars
Statistics::formatJsonMessage(uint64_t timestamp)
{
    MOZ_ASSERT(!aborted);

    FragmentVector fragments;

    if (!fragments.append(DuplicateString("{")) ||
        !fragments.append(formatJsonDescription(timestamp)) ||
        !fragments.append(DuplicateString("\"slices\":[")))
    {
        return UniqueChars(nullptr);
    }

    for (unsigned i = 0; i < slices.length(); i++) {
        if (!fragments.append(DuplicateString("{")) ||
            !fragments.append(formatJsonSliceDescription(i, slices[i])) ||
            !fragments.append(DuplicateString("\"times\":{")) ||
            !fragments.append(formatJsonPhaseTimes(slices[i].phaseTimes)) ||
            !fragments.append(DuplicateString("}}")) ||
            (i < (slices.length() - 1) && !fragments.append(DuplicateString(","))))
        {
            return UniqueChars(nullptr);
        }
    }

    if (!fragments.append(DuplicateString("],\"totals\":{")) ||
        !fragments.append(formatJsonPhaseTimes(phaseTimes)) ||
        !fragments.append(DuplicateString("}}")))
    {
        return UniqueChars(nullptr);
    }

    return Join(fragments);
}

UniqueChars
Statistics::formatJsonDescription(uint64_t timestamp)
{
    int64_t total, longest;
    gcDuration(&total, &longest);

    int64_t sccTotal, sccLongest;
    sccDurations(&sccTotal, &sccLongest);

    double mmu20 = computeMMU(20 * PRMJ_USEC_PER_MSEC);
    double mmu50 = computeMMU(50 * PRMJ_USEC_PER_MSEC);

    const char *format =
        "\"timestamp\":%llu,"
        "\"max_pause\":%llu.%03llu,"
        "\"total_time\":%llu.%03llu,"
        "\"zones_collected\":%d,"
        "\"total_zones\":%d,"
        "\"total_compartments\":%d,"
        "\"minor_gcs\":%d,"
        "\"store_buffer_overflows\":%d,"
        "\"mmu_20ms\":%d,"
        "\"mmu_50ms\":%d,"
        "\"scc_sweep_total\":%llu.%03llu,"
        "\"scc_sweep_max_pause\":%llu.%03llu,"
        "\"nonincremental_reason\":\"%s\","
        "\"allocated\":%u,"
        "\"added_chunks\":%d,"
        "\"removed_chunks\":%d,";
    char buffer[1024];
    SprintfLiteral(buffer, format,
                   (unsigned long long)timestamp,
                   longest / 1000, longest % 1000,
                   total / 1000, total % 1000,
                   zoneStats.collectedZoneCount,
                   zoneStats.zoneCount,
                   zoneStats.compartmentCount,
                   counts[STAT_MINOR_GC],
                   counts[STAT_STOREBUFFER_OVERFLOW],
                   int(mmu20 * 100),
                   int(mmu50 * 100),
                   sccTotal / 1000, sccTotal % 1000,
                   sccLongest / 1000, sccLongest % 1000,
                   ExplainAbortReason(nonincrementalReason_),
                   unsigned(preBytes / 1024 / 1024),
                   counts[STAT_NEW_CHUNK],
                   counts[STAT_DESTROY_CHUNK]);
    return DuplicateString(buffer);
}

UniqueChars
Statistics::formatJsonSliceDescription(unsigned i, const SliceData& slice)
{
    int64_t duration = slice.duration();
    int64_t when = slice.start - slices[0].start;
    char budgetDescription[200];
    slice.budget.describe(budgetDescription, sizeof(budgetDescription) - 1);
    int64_t pageFaults = slice.endFaults - slice.startFaults;

    const char* format =
        "\"slice\":%d,"
        "\"pause\":%llu.%03llu,"
        "\"when\":%llu.%03llu,"
        "\"reason\":\"%s\","
        "\"initial_state\":\"%s\","
        "\"final_state\":\"%s\","
        "\"budget\":\"%s\","
        "\"page_faults\":%llu,"
        "\"start_timestamp\":%llu,"
        "\"end_timestamp\":%llu,";
    char buffer[1024];
    SprintfLiteral(buffer, format,
                   i,
                   duration / 1000, duration % 1000,
                   when / 1000, when % 1000,
                   ExplainReason(slice.reason),
                   gc::StateName(slice.initialState),
                   gc::StateName(slice.finalState),
                   budgetDescription,
                   pageFaults,
                   slice.start,
                   slice.end);
    return DuplicateString(buffer);
}

UniqueChars
FilterJsonKey(const char*const buffer)
{
    char* mut = strdup(buffer);
    char* c = mut;
    while (*c) {
        if (!isalpha(*c))
            *c = '_';
        else if (isupper(*c))
            *c = tolower(*c);
        ++c;
    }
    return UniqueChars(mut);
}

UniqueChars
Statistics::formatJsonPhaseTimes(const PhaseTimeTable phaseTimes)
{
    FragmentVector fragments;
    char buffer[128];
    for (AllPhaseIterator iter(phaseTimes); !iter.done(); iter.advance()) {
        Phase phase;
        size_t dagSlot;
        iter.get(&phase, &dagSlot);

        UniqueChars name = FilterJsonKey(phases[phase].name);
        int64_t ownTime = phaseTimes[dagSlot][phase];
        if (ownTime > 0) {
            SprintfLiteral(buffer, "\"%s\":%" PRId64 ".%03" PRId64,
                           name.get(), ownTime / 1000, ownTime % 1000);

            if (!fragments.append(DuplicateString(buffer)))
                return UniqueChars(nullptr);
        }
    }
    return Join(fragments, ",");
}

Statistics::Statistics(JSRuntime* rt)
  : runtime(rt),
    startupTime(PRMJ_Now()),
    fp(nullptr),
    gcDepth(0),
    nonincrementalReason_(gc::AbortReason::None),
    timedGCStart(0),
    preBytes(0),
    maxPauseInInterval(0),
    phaseNestingDepth(0),
    activeDagSlot(PHASE_DAG_NONE),
    suspended(0),
    sliceCallback(nullptr),
    nurseryCollectionCallback(nullptr),
    aborted(false),
    enableProfiling_(false),
    sliceCount_(0)
{
    PodArrayZero(phaseTotals);
    PodArrayZero(counts);
    PodArrayZero(phaseStartTimes);
    for (auto d : MakeRange(NumTimingArrays))
        PodArrayZero(phaseTimes[d]);

    const char* env = getenv("MOZ_GCTIMER");
    if (env) {
        if (strcmp(env, "none") == 0) {
            fp = nullptr;
        } else if (strcmp(env, "stdout") == 0) {
            fp = stdout;
        } else if (strcmp(env, "stderr") == 0) {
            fp = stderr;
        } else {
            fp = fopen(env, "a");
            if (!fp)
                MOZ_CRASH("Failed to open MOZ_GCTIMER log file.");
        }
    }

    env = getenv("JS_GC_PROFILE");
    if (env) {
        if (0 == strcmp(env, "help")) {
            fprintf(stderr, "JS_GC_PROFILE=N\n"
                    "\tReport major GC's taking more than N milliseconds.\n");
            exit(0);
        }
        enableProfiling_ = true;
        profileThreshold_ = atoi(env);
    }

    PodZero(&totalTimes_);
}

Statistics::~Statistics()
{
    if (fp && fp != stdout && fp != stderr)
        fclose(fp);
}

/* static */ bool
Statistics::initialize()
{
    // Create a static table of descendants for every phase with multiple
    // children. This assumes that all descendants come linearly in the
    // list, which is reasonable since full dags are not supported; any
    // path from the leaf to the root must encounter at most one node with
    // multiple parents.
    size_t dagSlot = 0;
    for (size_t i = 0; i < mozilla::ArrayLength(dagChildEdges); i++) {
        Phase parent = dagChildEdges[i].parent;
        if (!phaseExtra[parent].dagSlot)
            phaseExtra[parent].dagSlot = ++dagSlot;

        Phase child = dagChildEdges[i].child;
        MOZ_ASSERT(phases[child].parent == PHASE_MULTI_PARENTS);
        int j = child;
        do {
            if (!dagDescendants[phaseExtra[parent].dagSlot].append(Phase(j)))
                return false;
            j++;
        } while (j != PHASE_LIMIT && phases[j].parent != PHASE_MULTI_PARENTS);
    }
    MOZ_ASSERT(dagSlot <= MaxMultiparentPhases - 1);

    // Fill in the depth of each node in the tree. Multi-parented nodes
    // have depth 0.
    mozilla::Vector<Phase, 0, SystemAllocPolicy> stack;
    if (!stack.append(PHASE_LIMIT)) // Dummy entry to avoid special-casing the first node
        return false;
    for (int i = 0; i < PHASE_LIMIT; i++) {
        if (phases[i].parent == PHASE_NO_PARENT ||
            phases[i].parent == PHASE_MULTI_PARENTS)
        {
            stack.clear();
        } else {
            while (stack.back() != phases[i].parent)
                stack.popBack();
        }
        phaseExtra[i].depth = stack.length();
        if (!stack.append(Phase(i)))
            return false;
    }

    return true;
}

JS::GCSliceCallback
Statistics::setSliceCallback(JS::GCSliceCallback newCallback)
{
    JS::GCSliceCallback oldCallback = sliceCallback;
    sliceCallback = newCallback;
    return oldCallback;
}

JS::GCNurseryCollectionCallback
Statistics::setNurseryCollectionCallback(JS::GCNurseryCollectionCallback newCallback)
{
    auto oldCallback = nurseryCollectionCallback;
    nurseryCollectionCallback = newCallback;
    return oldCallback;
}

int64_t
Statistics::clearMaxGCPauseAccumulator()
{
    int64_t prior = maxPauseInInterval;
    maxPauseInInterval = 0;
    return prior;
}

int64_t
Statistics::getMaxGCPauseSinceClear()
{
    return maxPauseInInterval;
}

void
Statistics::printStats()
{
    if (aborted) {
        fprintf(fp, "OOM during GC statistics collection. The report is unavailable for this GC.\n");
    } else {
        UniqueChars msg = formatDetailedMessage();
        if (msg)
            fprintf(fp, "GC(T+%.3fs) %s\n", t(slices[0].start - startupTime) / 1000.0, msg.get());
    }
    fflush(fp);
}

void
Statistics::beginGC(JSGCInvocationKind kind)
{
    slices.clearAndFree();
    sccTimes.clearAndFree();
    gckind = kind;
    nonincrementalReason_ = gc::AbortReason::None;

    preBytes = runtime->gc.usage.gcBytes();
}

void
Statistics::endGC()
{
    for (auto j : MakeRange(NumTimingArrays))
        for (int i = 0; i < PHASE_LIMIT; i++)
            phaseTotals[j][i] += phaseTimes[j][i];

    int64_t total, longest;
    gcDuration(&total, &longest);

    if (fp)
        printStats();

    // Clear the OOM flag but only if we are not in a nested GC.
    if (gcDepth == 1)
        aborted = false;
}

void
Statistics::beginNurseryCollection(JS::gcreason::Reason reason)
{
    count(STAT_MINOR_GC);
    if (nurseryCollectionCallback) {
        (*nurseryCollectionCallback)(runtime->contextFromMainThread(),
                                     JS::GCNurseryProgress::GC_NURSERY_COLLECTION_START,
                                     reason);
    }
}

void
Statistics::endNurseryCollection(JS::gcreason::Reason reason)
{
    if (nurseryCollectionCallback) {
        (*nurseryCollectionCallback)(runtime->contextFromMainThread(),
                                     JS::GCNurseryProgress::GC_NURSERY_COLLECTION_END,
                                     reason);
    }
}

void
Statistics::beginSlice(const ZoneGCStats& zoneStats, JSGCInvocationKind gckind,
                       SliceBudget budget, JS::gcreason::Reason reason)
{
    gcDepth++;
    this->zoneStats = zoneStats;

    bool first = !runtime->gc.isIncrementalGCInProgress();
    if (first)
        beginGC(gckind);

    SliceData data(budget, reason, PRMJ_Now(), JS_GetCurrentEmbedderTime(), GetPageFaultCount(),
                   runtime->gc.state());
    if (!slices.append(data)) {
        // If we are OOM, set a flag to indicate we have missing slice data.
        aborted = true;
        return;
    }

    // Slice callbacks should only fire for the outermost level.
    if (gcDepth == 1) {
        bool wasFullGC = zoneStats.isCollectingAllZones();
        if (sliceCallback)
            (*sliceCallback)(runtime->contextFromMainThread(),
                             first ? JS::GC_CYCLE_BEGIN : JS::GC_SLICE_BEGIN,
                             JS::GCDescription(!wasFullGC, gckind, reason));
    }
}

void
Statistics::endSlice()
{
    if (!aborted) {
        slices.back().end = PRMJ_Now();
        slices.back().endTimestamp = JS_GetCurrentEmbedderTime();
        slices.back().endFaults = GetPageFaultCount();
        slices.back().finalState = runtime->gc.state();

        sliceCount_++;
    }

    bool last = !runtime->gc.isIncrementalGCInProgress();
    if (last)
        endGC();

    if (enableProfiling_ && !aborted && slices.back().duration() >= profileThreshold_)
        printSliceProfile();

    // Slice callbacks should only fire for the outermost level.
    if (gcDepth == 1 && !aborted) {
        bool wasFullGC = zoneStats.isCollectingAllZones();
        if (sliceCallback)
            (*sliceCallback)(runtime->contextFromMainThread(),
                             last ? JS::GC_CYCLE_END : JS::GC_SLICE_END,
                             JS::GCDescription(!wasFullGC, gckind, slices.back().reason));
    }

    /* Do this after the slice callback since it uses these values. */
    if (last) {
        PodArrayZero(counts);

        // Clear the timers at the end of a GC because we accumulate time in
        // between GCs for some (which come before PHASE_GC_BEGIN in the list.)
        PodZero(&phaseStartTimes[PHASE_GC_BEGIN], PHASE_LIMIT - PHASE_GC_BEGIN);
        for (size_t d = PHASE_DAG_NONE; d < NumTimingArrays; d++)
            PodZero(&phaseTimes[d][PHASE_GC_BEGIN], PHASE_LIMIT - PHASE_GC_BEGIN);
    }

    gcDepth--;
    MOZ_ASSERT(gcDepth >= 0);
}

bool
Statistics::startTimingMutator()
{
    if (phaseNestingDepth != 0) {
        // Should only be called from outside of GC.
        MOZ_ASSERT(phaseNestingDepth == 1);
        MOZ_ASSERT(phaseNesting[0] == PHASE_MUTATOR);
        return false;
    }

    MOZ_ASSERT(suspended == 0);

    timedGCTime = 0;
    phaseStartTimes[PHASE_MUTATOR] = 0;
    phaseTimes[PHASE_DAG_NONE][PHASE_MUTATOR] = 0;
    timedGCStart = 0;

    beginPhase(PHASE_MUTATOR);
    return true;
}

bool
Statistics::stopTimingMutator(double& mutator_ms, double& gc_ms)
{
    // This should only be called from outside of GC, while timing the mutator.
    if (phaseNestingDepth != 1 || phaseNesting[0] != PHASE_MUTATOR)
        return false;

    endPhase(PHASE_MUTATOR);
    mutator_ms = t(phaseTimes[PHASE_DAG_NONE][PHASE_MUTATOR]);
    gc_ms = t(timedGCTime);

    return true;
}

void
Statistics::suspendPhases(Phase suspension)
{
    MOZ_ASSERT(suspension == PHASE_EXPLICIT_SUSPENSION || suspension == PHASE_IMPLICIT_SUSPENSION);
    while (phaseNestingDepth) {
        MOZ_ASSERT(suspended < mozilla::ArrayLength(suspendedPhases));
        Phase parent = phaseNesting[phaseNestingDepth - 1];
        suspendedPhases[suspended++] = parent;
        recordPhaseEnd(parent);
    }
    suspendedPhases[suspended++] = suspension;
}

void
Statistics::resumePhases()
{
    DebugOnly<Phase> popped = suspendedPhases[--suspended];
    MOZ_ASSERT(popped == PHASE_EXPLICIT_SUSPENSION || popped == PHASE_IMPLICIT_SUSPENSION);
    while (suspended &&
           suspendedPhases[suspended - 1] != PHASE_EXPLICIT_SUSPENSION &&
           suspendedPhases[suspended - 1] != PHASE_IMPLICIT_SUSPENSION)
    {
        Phase resumePhase = suspendedPhases[--suspended];
        if (resumePhase == PHASE_MUTATOR)
            timedGCTime += PRMJ_Now() - timedGCStart;
        beginPhase(resumePhase);
    }
}

void
Statistics::beginPhase(Phase phase)
{
    Phase parent = phaseNestingDepth ? phaseNesting[phaseNestingDepth - 1] : PHASE_NO_PARENT;

    // Re-entry is allowed during callbacks, so pause callback phases while
    // other phases are in progress, auto-resuming after they end. As a result,
    // nested GC time will not be accounted against the callback phases.
    //
    // Reuse this mechanism for managing PHASE_MUTATOR.
    if (parent == PHASE_GC_BEGIN || parent == PHASE_GC_END || parent == PHASE_MUTATOR) {
        suspendPhases(PHASE_IMPLICIT_SUSPENSION);
        parent = phaseNestingDepth ? phaseNesting[phaseNestingDepth - 1] : PHASE_NO_PARENT;
    }

    // Guard against any other re-entry.
    MOZ_ASSERT(!phaseStartTimes[phase]);

    MOZ_ASSERT(phases[phase].index == phase);
    MOZ_ASSERT(phaseNestingDepth < MAX_NESTING);
    MOZ_ASSERT(phases[phase].parent == parent || phases[phase].parent == PHASE_MULTI_PARENTS);

    phaseNesting[phaseNestingDepth] = phase;
    phaseNestingDepth++;

    if (phases[phase].parent == PHASE_MULTI_PARENTS)
        activeDagSlot = phaseExtra[parent].dagSlot;

    phaseStartTimes[phase] = PRMJ_Now();
}

void
Statistics::recordPhaseEnd(Phase phase)
{
    int64_t now = PRMJ_Now();

    if (phase == PHASE_MUTATOR)
        timedGCStart = now;

    phaseNestingDepth--;

    int64_t t = now - phaseStartTimes[phase];
    if (!slices.empty())
        slices.back().phaseTimes[activeDagSlot][phase] += t;
    phaseTimes[activeDagSlot][phase] += t;
    phaseStartTimes[phase] = 0;
}

void
Statistics::endPhase(Phase phase)
{
    recordPhaseEnd(phase);

    if (phases[phase].parent == PHASE_MULTI_PARENTS)
        activeDagSlot = PHASE_DAG_NONE;

    // When emptying the stack, we may need to resume a callback phase
    // (PHASE_GC_BEGIN/END) or return to timing the mutator (PHASE_MUTATOR).
    if (phaseNestingDepth == 0 && suspended > 0 && suspendedPhases[suspended - 1] == PHASE_IMPLICIT_SUSPENSION)
        resumePhases();
}

void
Statistics::endParallelPhase(Phase phase, const GCParallelTask* task)
{
    phaseNestingDepth--;

    if (!slices.empty())
        slices.back().phaseTimes[PHASE_DAG_NONE][phase] += task->duration();
    phaseTimes[PHASE_DAG_NONE][phase] += task->duration();
    phaseStartTimes[phase] = 0;
}

int64_t
Statistics::beginSCC()
{
    return PRMJ_Now();
}

void
Statistics::endSCC(unsigned scc, int64_t start)
{
    if (scc >= sccTimes.length() && !sccTimes.resize(scc + 1))
        return;

    sccTimes[scc] += PRMJ_Now() - start;
}

/*
 * MMU (minimum mutator utilization) is a measure of how much garbage collection
 * is affecting the responsiveness of the system. MMU measurements are given
 * with respect to a certain window size. If we report MMU(50ms) = 80%, then
 * that means that, for any 50ms window of time, at least 80% of the window is
 * devoted to the mutator. In other words, the GC is running for at most 20% of
 * the window, or 10ms. The GC can run multiple slices during the 50ms window
 * as long as the total time it spends is at most 10ms.
 */
double
Statistics::computeMMU(int64_t window) const
{
    MOZ_ASSERT(!slices.empty());

    int64_t gc = slices[0].end - slices[0].start;
    int64_t gcMax = gc;

    if (gc >= window)
        return 0.0;

    int startIndex = 0;
    for (size_t endIndex = 1; endIndex < slices.length(); endIndex++) {
        gc += slices[endIndex].end - slices[endIndex].start;

        while (slices[endIndex].end - slices[startIndex].end >= window) {
            gc -= slices[startIndex].end - slices[startIndex].start;
            startIndex++;
        }

        int64_t cur = gc;
        if (slices[endIndex].end - slices[startIndex].start > window)
            cur -= (slices[endIndex].end - slices[startIndex].start - window);
        if (cur > gcMax)
            gcMax = cur;
    }

    return double(window - gcMax) / window;
}

/* static */ void
Statistics::printProfileHeader()
{
    fprintf(stderr, " %6s", "total");
#define PRINT_PROFILE_HEADER(name, text, phase)                               \
    fprintf(stderr, " %6s", text);
FOR_EACH_GC_PROFILE_TIME(PRINT_PROFILE_HEADER)
#undef PRINT_PROFILE_HEADER
    fprintf(stderr, "\n");
}

/* static */ void
Statistics::printProfileTimes(const ProfileTimes& times)
{
    for (auto time : times)
        fprintf(stderr, " %6" PRIi64, time / PRMJ_USEC_PER_MSEC);
    fprintf(stderr, "\n");
}

void
Statistics::printSliceProfile()
{
    const SliceData& slice = slices.back();

    static int printedHeader = 0;
    if ((printedHeader++ % 200) == 0) {
        fprintf(stderr, "MajorGC:               Reason States      ");
        printProfileHeader();
    }

    fprintf(stderr, "MajorGC: %20s %1d -> %1d      ",
            ExplainReason(slice.reason), int(slice.initialState), int(slice.finalState));

    ProfileTimes times;
    times[ProfileKey::Total] = slice.duration();
    totalTimes_[ProfileKey::Total] += times[ProfileKey::Total];

#define GET_PROFILE_TIME(name, text, phase)                                   \
    times[ProfileKey::name] = slice.phaseTimes[PHASE_DAG_NONE][phase];                     \
    totalTimes_[ProfileKey::name] += times[ProfileKey::name];
FOR_EACH_GC_PROFILE_TIME(GET_PROFILE_TIME)
#undef GET_PROFILE_TIME

    printProfileTimes(times);
}

void
Statistics::printTotalProfileTimes()
{
    if (enableProfiling_) {
        fprintf(stderr, "MajorGC TOTALS: %7" PRIu64 " slices:           ", sliceCount_);
        printProfileTimes(totalTimes_);
    }
}