summaryrefslogtreecommitdiffstats
path: root/js/src/frontend/ParseNode.h
blob: 1f20f39887a5f2dbeff06c2ba50d4be0655912cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef frontend_ParseNode_h
#define frontend_ParseNode_h

#include "mozilla/Attributes.h"

#include "builtin/ModuleObject.h"
#include "frontend/TokenStream.h"

namespace js {
namespace frontend {

class ParseContext;
class FullParseHandler;
class FunctionBox;
class ObjectBox;

#define FOR_EACH_PARSE_NODE_KIND(F) \
    F(NOP) \
    F(SEMI) \
    F(COMMA) \
    F(CONDITIONAL) \
    F(COLON) \
    F(SHORTHAND) \
    F(POS) \
    F(NEG) \
    F(PREINCREMENT) \
    F(POSTINCREMENT) \
    F(PREDECREMENT) \
    F(POSTDECREMENT) \
    F(DOT) \
    F(ELEM) \
    F(ARRAY) \
    F(ELISION) \
    F(STATEMENTLIST) \
    F(LABEL) \
    F(OBJECT) \
    F(CALL) \
    F(NAME) \
    F(OBJECT_PROPERTY_NAME) \
    F(COMPUTED_NAME) \
    F(NUMBER) \
    F(STRING) \
    F(TEMPLATE_STRING_LIST) \
    F(TEMPLATE_STRING) \
    F(TAGGED_TEMPLATE) \
    F(CALLSITEOBJ) \
    F(REGEXP) \
    F(TRUE) \
    F(FALSE) \
    F(NULL) \
    F(RAW_UNDEFINED) \
    F(THIS) \
    F(FUNCTION) \
    F(MODULE) \
    F(IF) \
    F(SWITCH) \
    F(CASE) \
    F(WHILE) \
    F(DOWHILE) \
    F(FOR) \
    F(COMPREHENSIONFOR) \
    F(BREAK) \
    F(CONTINUE) \
    F(VAR) \
    F(CONST) \
    F(WITH) \
    F(RETURN) \
    F(NEW) \
    /* Delete operations.  These must be sequential. */ \
    F(DELETENAME) \
    F(DELETEPROP) \
    F(DELETEELEM) \
    F(DELETEEXPR) \
    F(TRY) \
    F(CATCH) \
    F(CATCHLIST) \
    F(THROW) \
    F(DEBUGGER) \
    F(GENERATOR) \
    F(YIELD) \
    F(YIELD_STAR) \
    F(GENEXP) \
    F(ARRAYCOMP) \
    F(ARRAYPUSH) \
    F(LEXICALSCOPE) \
    F(LET) \
    F(IMPORT) \
    F(IMPORT_SPEC_LIST) \
    F(IMPORT_SPEC) \
    F(EXPORT) \
    F(EXPORT_FROM) \
    F(EXPORT_DEFAULT) \
    F(EXPORT_SPEC_LIST) \
    F(EXPORT_SPEC) \
    F(EXPORT_BATCH_SPEC) \
    F(FORIN) \
    F(FOROF) \
    F(FORHEAD) \
    F(PARAMSBODY) \
    F(SPREAD) \
    F(MUTATEPROTO) \
    F(CLASS) \
    F(CLASSMETHOD) \
    F(CLASSMETHODLIST) \
    F(CLASSNAMES) \
    F(NEWTARGET) \
    F(POSHOLDER) \
    F(SUPERBASE) \
    F(SUPERCALL) \
    F(SETTHIS) \
    \
    /* Unary operators. */ \
    F(TYPEOFNAME) \
    F(TYPEOFEXPR) \
    F(VOID) \
    F(NOT) \
    F(BITNOT) \
    F(AWAIT) \
    \
    /* \
     * Binary operators. \
     * These must be in the same order as TOK_OR and friends in TokenStream.h. \
     */ \
    F(OR) \
    F(AND) \
    F(BITOR) \
    F(BITXOR) \
    F(BITAND) \
    F(STRICTEQ) \
    F(EQ) \
    F(STRICTNE) \
    F(NE) \
    F(LT) \
    F(LE) \
    F(GT) \
    F(GE) \
    F(INSTANCEOF) \
    F(IN) \
    F(LSH) \
    F(RSH) \
    F(URSH) \
    F(ADD) \
    F(SUB) \
    F(STAR) \
    F(DIV) \
    F(MOD) \
    F(POW) \
    \
    /* Assignment operators (= += -= etc.). */ \
    /* ParseNode::isAssignment assumes all these are consecutive. */ \
    F(ASSIGN) \
    F(ADDASSIGN) \
    F(SUBASSIGN) \
    F(BITORASSIGN) \
    F(BITXORASSIGN) \
    F(BITANDASSIGN) \
    F(LSHASSIGN) \
    F(RSHASSIGN) \
    F(URSHASSIGN) \
    F(MULASSIGN) \
    F(DIVASSIGN) \
    F(MODASSIGN) \
    F(POWASSIGN)

/*
 * Parsing builds a tree of nodes that directs code generation.  This tree is
 * not a concrete syntax tree in all respects (for example, || and && are left
 * associative, but (A && B && C) translates into the right-associated tree
 * <A && <B && C>> so that code generation can emit a left-associative branch
 * around <B && C> when A is false).  Nodes are labeled by kind, with a
 * secondary JSOp label when needed.
 *
 * The long comment after this enum block describes the kinds in detail.
 */
enum ParseNodeKind
{
#define EMIT_ENUM(name) PNK_##name,
    FOR_EACH_PARSE_NODE_KIND(EMIT_ENUM)
#undef EMIT_ENUM
    PNK_LIMIT, /* domain size */
    PNK_BINOP_FIRST = PNK_OR,
    PNK_BINOP_LAST = PNK_POW,
    PNK_ASSIGNMENT_START = PNK_ASSIGN,
    PNK_ASSIGNMENT_LAST = PNK_POWASSIGN
};

inline bool
IsDeleteKind(ParseNodeKind kind)
{
    return PNK_DELETENAME <= kind && kind <= PNK_DELETEEXPR;
}

inline bool
IsTypeofKind(ParseNodeKind kind)
{
    return PNK_TYPEOFNAME <= kind && kind <= PNK_TYPEOFEXPR;
}

/*
 * Label        Variant     Members
 * -----        -------     -------
 * <Definitions>
 * PNK_FUNCTION name        pn_funbox: ptr to js::FunctionBox holding function
 *                            object containing arg and var properties.  We
 *                            create the function object at parse (not emit)
 *                            time to specialize arg and var bytecodes early.
 *                          pn_body: PNK_PARAMSBODY, ordinarily;
 *                            PNK_LEXICALSCOPE for implicit function in genexpr
 * PNK_PARAMSBODY list      list of formal parameters with
 *                              PNK_NAME node with non-empty name for
 *                                SingleNameBinding without Initializer
 *                              PNK_ASSIGN node for SingleNameBinding with
 *                                Initializer
 *                              PNK_NAME node with empty name for destructuring
 *                                pn_expr: PNK_ARRAY, PNK_OBJECT, or PNK_ASSIGN
 *                                  PNK_ARRAY or PNK_OBJECT for BindingPattern
 *                                    without Initializer
 *                                  PNK_ASSIGN for BindingPattern with
 *                                    Initializer
 *                          followed by:
 *                              PNK_STATEMENTLIST node for function body
 *                                statements,
 *                              PNK_RETURN for expression closure
 *                          pn_count: 1 + number of formal parameters
 *                          pn_tree: PNK_PARAMSBODY or PNK_STATEMENTLIST node
 * PNK_SPREAD   unary       pn_kid: expression being spread
 *
 * <Statements>
 * PNK_STATEMENTLIST list   pn_head: list of pn_count statements
 * PNK_IF       ternary     pn_kid1: cond, pn_kid2: then, pn_kid3: else or null.
 *                            In body of a comprehension or desugared generator
 *                            expression, pn_kid2 is PNK_YIELD, PNK_ARRAYPUSH,
 *                            or (if the push was optimized away) empty
 *                            PNK_STATEMENTLIST.
 * PNK_SWITCH   binary      pn_left: discriminant
 *                          pn_right: list of PNK_CASE nodes, with at most one
 *                            default node, or if there are let bindings
 *                            in the top level of the switch body's cases, a
 *                            PNK_LEXICALSCOPE node that contains the list of
 *                            PNK_CASE nodes.
 * PNK_CASE     binary      pn_left: case-expression if CaseClause, or
 *                            null if DefaultClause
 *                          pn_right: PNK_STATEMENTLIST node for this case's
 *                            statements
 *                          pn_u.binary.offset: scratch space for the emitter
 * PNK_WHILE    binary      pn_left: cond, pn_right: body
 * PNK_DOWHILE  binary      pn_left: body, pn_right: cond
 * PNK_FOR      binary      pn_left: either PNK_FORIN (for-in statement),
 *                            PNK_FOROF (for-of) or PNK_FORHEAD (for(;;))
 *                          pn_right: body
 * PNK_COMPREHENSIONFOR     pn_left: either PNK_FORIN or PNK_FOROF
 *              binary      pn_right: body
 * PNK_FORIN    ternary     pn_kid1: declaration or expression to left of 'in'
 *                          pn_kid2: null
 *                          pn_kid3: object expr to right of 'in'
 * PNK_FOROF    ternary     pn_kid1: declaration or expression to left of 'of'
 *                          pn_kid2: null
 *                          pn_kid3: expr to right of 'of'
 * PNK_FORHEAD  ternary     pn_kid1:  init expr before first ';' or nullptr
 *                          pn_kid2:  cond expr before second ';' or nullptr
 *                          pn_kid3:  update expr after second ';' or nullptr
 * PNK_THROW    unary       pn_op: JSOP_THROW, pn_kid: exception
 * PNK_TRY      ternary     pn_kid1: try block
 *                          pn_kid2: null or PNK_CATCHLIST list
 *                          pn_kid3: null or finally block
 * PNK_CATCHLIST list       pn_head: list of PNK_LEXICALSCOPE nodes, one per
 *                                   catch-block, each with pn_expr pointing
 *                                   to a PNK_CATCH node
 * PNK_CATCH    ternary     pn_kid1: PNK_NAME, PNK_ARRAY, or PNK_OBJECT catch var node
 *                                   (PNK_ARRAY or PNK_OBJECT if destructuring)
 *                          pn_kid2: null or the catch guard expression
 *                          pn_kid3: catch block statements
 * PNK_BREAK    name        pn_atom: label or null
 * PNK_CONTINUE name        pn_atom: label or null
 * PNK_WITH     binary      pn_left: head expr; pn_right: body;
 * PNK_VAR,     list        pn_head: list of PNK_NAME or PNK_ASSIGN nodes
 * PNK_LET,                          each name node has either
 * PNK_CONST                           pn_used: false
 *                                     pn_atom: variable name
 *                                     pn_expr: initializer or null
 *                                   or
 *                                     pn_used: true
 *                                     pn_atom: variable name
 *                                     pn_lexdef: def node
 *                                   each assignment node has
 *                                     pn_left: PNK_NAME with pn_used true and
 *                                              pn_lexdef (NOT pn_expr) set
 *                                     pn_right: initializer
 * PNK_RETURN   unary       pn_kid: return expr or null
 * PNK_SEMI     unary       pn_kid: expr or null statement
 *                          pn_prologue: true if Directive Prologue member
 *                              in original source, not introduced via
 *                              constant folding or other tree rewriting
 * PNK_LABEL    name        pn_atom: label, pn_expr: labeled statement
 * PNK_IMPORT   binary      pn_left: PNK_IMPORT_SPEC_LIST import specifiers
 *                          pn_right: PNK_STRING module specifier
 * PNK_EXPORT   unary       pn_kid: declaration expression
 * PNK_EXPORT_FROM binary   pn_left: PNK_EXPORT_SPEC_LIST export specifiers
 *                          pn_right: PNK_STRING module specifier
 * PNK_EXPORT_DEFAULT unary pn_kid: export default declaration or expression
 *
 * <Expressions>
 * All left-associated binary trees of the same type are optimized into lists
 * to avoid recursion when processing expression chains.
 * PNK_COMMA    list        pn_head: list of pn_count comma-separated exprs
 * PNK_ASSIGN   binary      pn_left: lvalue, pn_right: rvalue
 * PNK_ADDASSIGN,   binary  pn_left: lvalue, pn_right: rvalue
 * PNK_SUBASSIGN,           pn_op: JSOP_ADD for +=, etc.
 * PNK_BITORASSIGN,
 * PNK_BITXORASSIGN,
 * PNK_BITANDASSIGN,
 * PNK_LSHASSIGN,
 * PNK_RSHASSIGN,
 * PNK_URSHASSIGN,
 * PNK_MULASSIGN,
 * PNK_DIVASSIGN,
 * PNK_MODASSIGN,
 * PNK_POWASSIGN
 * PNK_CONDITIONAL ternary  (cond ? trueExpr : falseExpr)
 *                          pn_kid1: cond, pn_kid2: then, pn_kid3: else
 * PNK_OR,      list        pn_head; list of pn_count subexpressions
 * PNK_AND,                 All of these operators are left-associative except (**).
 * PNK_BITOR,
 * PNK_BITXOR,
 * PNK_BITAND,
 * PNK_EQ,
 * PNK_NE,
 * PNK_STRICTEQ,
 * PNK_STRICTNE,
 * PNK_LT,
 * PNK_LE,
 * PNK_GT,
 * PNK_GE,
 * PNK_LSH,
 * PNK_RSH,
 * PNK_URSH,
 * PNK_ADD,
 * PNK_SUB,
 * PNK_STAR,
 * PNK_DIV,
 * PNK_MOD,
 * PNK_POW                  (**) is right-associative, but forms a list
 *                          nonetheless. Special hacks everywhere.
 *
 * PNK_POS,     unary       pn_kid: UNARY expr
 * PNK_NEG
 * PNK_VOID,    unary       pn_kid: UNARY expr
 * PNK_NOT,
 * PNK_BITNOT,
 * PNK_AWAIT
 * PNK_TYPEOFNAME, unary    pn_kid: UNARY expr
 * PNK_TYPEOFEXPR
 * PNK_PREINCREMENT, unary  pn_kid: MEMBER expr
 * PNK_POSTINCREMENT,
 * PNK_PREDECREMENT,
 * PNK_POSTDECREMENT
 * PNK_NEW      list        pn_head: list of ctor, arg1, arg2, ... argN
 *                          pn_count: 1 + N (where N is number of args)
 *                          ctor is a MEMBER expr
 * PNK_DELETENAME unary     pn_kid: PNK_NAME expr
 * PNK_DELETEPROP unary     pn_kid: PNK_DOT expr
 * PNK_DELETEELEM unary     pn_kid: PNK_ELEM expr
 * PNK_DELETEEXPR unary     pn_kid: MEMBER expr that's evaluated, then the
 *                          overall delete evaluates to true; can't be a kind
 *                          for a more-specific PNK_DELETE* unless constant
 *                          folding (or a similar parse tree manipulation) has
 *                          occurred
 * PNK_DOT      name        pn_expr: MEMBER expr to left of .
 *                          pn_atom: name to right of .
 * PNK_ELEM     binary      pn_left: MEMBER expr to left of [
 *                          pn_right: expr between [ and ]
 * PNK_CALL     list        pn_head: list of call, arg1, arg2, ... argN
 *                          pn_count: 1 + N (where N is number of args)
 *                          call is a MEMBER expr naming a callable object
 * PNK_GENEXP   list        Exactly like PNK_CALL, used for the implicit call
 *                          in the desugaring of a generator-expression.
 * PNK_ARRAY    list        pn_head: list of pn_count array element exprs
 *                          [,,] holes are represented by PNK_ELISION nodes
 *                          pn_xflags: PN_ENDCOMMA if extra comma at end
 * PNK_OBJECT   list        pn_head: list of pn_count binary PNK_COLON nodes
 * PNK_COLON    binary      key-value pair in object initializer or
 *                          destructuring lhs
 *                          pn_left: property id, pn_right: value
 * PNK_SHORTHAND binary     Same fields as PNK_COLON. This is used for object
 *                          literal properties using shorthand ({x}).
 * PNK_COMPUTED_NAME unary  ES6 ComputedPropertyName.
 *                          pn_kid: the AssignmentExpression inside the square brackets
 * PNK_NAME,    name        pn_atom: name, string, or object atom
 * PNK_STRING               pn_op: JSOP_GETNAME, JSOP_STRING, or JSOP_OBJECT
 *                          If JSOP_GETNAME, pn_op may be JSOP_*ARG or JSOP_*VAR
 *                          telling const-ness and static analysis results
 * PNK_TEMPLATE_STRING_LIST pn_head: list of alternating expr and template strings
 *              list
 * PNK_TEMPLATE_STRING      pn_atom: template string atom
                nullary     pn_op: JSOP_NOP
 * PNK_TAGGED_TEMPLATE      pn_head: list of call, call site object, arg1, arg2, ... argN
 *              list        pn_count: 2 + N (N is the number of substitutions)
 * PNK_CALLSITEOBJ list     pn_head: a PNK_ARRAY node followed by
 *                          list of pn_count - 1 PNK_TEMPLATE_STRING nodes
 * PNK_REGEXP   nullary     pn_objbox: RegExp model object
 * PNK_NUMBER   dval        pn_dval: double value of numeric literal
 * PNK_TRUE,    nullary     pn_op: JSOp bytecode
 * PNK_FALSE,
 * PNK_NULL,
 * PNK_RAW_UNDEFINED
 *
 * PNK_THIS,        unary   pn_kid: '.this' Name if function `this`, else nullptr
 * PNK_SUPERBASE    unary   pn_kid: '.this' Name
 *
 * PNK_SETTHIS      binary  pn_left: '.this' Name, pn_right: SuperCall
 *
 * PNK_LEXICALSCOPE scope   pn_u.scope.bindings: scope bindings
 *                          pn_u.scope.body: scope body
 * PNK_GENERATOR    nullary
 * PNK_YIELD,       binary  pn_left: expr or null; pn_right: generator object
 * PNK_YIELD_STAR
 * PNK_ARRAYCOMP    list    pn_count: 1
 *                          pn_head: list of 1 element, which is block
 *                          enclosing for loop(s) and optionally
 *                          if-guarded PNK_ARRAYPUSH
 * PNK_ARRAYPUSH    unary   pn_op: JSOP_ARRAYCOMP
 *                          pn_kid: array comprehension expression
 * PNK_NOP          nullary
 */
enum ParseNodeArity
{
    PN_NULLARY,                         /* 0 kids, only pn_atom/pn_dval/etc. */
    PN_UNARY,                           /* one kid, plus a couple of scalars */
    PN_BINARY,                          /* two kids, plus a couple of scalars */
    PN_TERNARY,                         /* three kids */
    PN_CODE,                            /* module or function definition node */
    PN_LIST,                            /* generic singly linked list */
    PN_NAME,                            /* name, label, or regexp */
    PN_SCOPE                            /* lexical scope */
};

class LoopControlStatement;
class BreakStatement;
class ContinueStatement;
class ConditionalExpression;
class PropertyAccess;

class ParseNode
{
    uint16_t pn_type;   /* PNK_* type */
    uint8_t pn_op;      /* see JSOp enum and jsopcode.tbl */
    uint8_t pn_arity:4; /* see ParseNodeArity enum */
    bool pn_parens:1;   /* this expr was enclosed in parens */
    bool pn_rhs_anon_fun:1;  /* this expr is anonymous function or class that
                              * is a direct RHS of PNK_ASSIGN or PNK_COLON of
                              * property, that needs SetFunctionName. */

    ParseNode(const ParseNode& other) = delete;
    void operator=(const ParseNode& other) = delete;

  public:
    ParseNode(ParseNodeKind kind, JSOp op, ParseNodeArity arity)
      : pn_type(kind),
        pn_op(op),
        pn_arity(arity),
        pn_parens(false),
        pn_rhs_anon_fun(false),
        pn_pos(0, 0),
        pn_next(nullptr)
    {
        MOZ_ASSERT(kind < PNK_LIMIT);
        memset(&pn_u, 0, sizeof pn_u);
    }

    ParseNode(ParseNodeKind kind, JSOp op, ParseNodeArity arity, const TokenPos& pos)
      : pn_type(kind),
        pn_op(op),
        pn_arity(arity),
        pn_parens(false),
        pn_rhs_anon_fun(false),
        pn_pos(pos),
        pn_next(nullptr)
    {
        MOZ_ASSERT(kind < PNK_LIMIT);
        memset(&pn_u, 0, sizeof pn_u);
    }

    JSOp getOp() const                     { return JSOp(pn_op); }
    void setOp(JSOp op)                    { pn_op = op; }
    bool isOp(JSOp op) const               { return getOp() == op; }

    ParseNodeKind getKind() const {
        MOZ_ASSERT(pn_type < PNK_LIMIT);
        return ParseNodeKind(pn_type);
    }
    void setKind(ParseNodeKind kind) {
        MOZ_ASSERT(kind < PNK_LIMIT);
        pn_type = kind;
    }
    bool isKind(ParseNodeKind kind) const  { return getKind() == kind; }

    ParseNodeArity getArity() const        { return ParseNodeArity(pn_arity); }
    bool isArity(ParseNodeArity a) const   { return getArity() == a; }
    void setArity(ParseNodeArity a)        { pn_arity = a; }

    bool isAssignment() const {
        ParseNodeKind kind = getKind();
        return PNK_ASSIGNMENT_START <= kind && kind <= PNK_ASSIGNMENT_LAST;
    }

    bool isBinaryOperation() const {
        ParseNodeKind kind = getKind();
        return PNK_BINOP_FIRST <= kind && kind <= PNK_BINOP_LAST;
    }

    /* Boolean attributes. */
    bool isInParens() const                { return pn_parens; }
    bool isLikelyIIFE() const              { return isInParens(); }
    void setInParens(bool enabled)         { pn_parens = enabled; }

    bool isDirectRHSAnonFunction() const {
        return pn_rhs_anon_fun;
    }
    void setDirectRHSAnonFunction(bool enabled) {
        pn_rhs_anon_fun = enabled;
    }

    TokenPos            pn_pos;         /* two 16-bit pairs here, for 64 bits */
    ParseNode*          pn_next;        /* intrinsic link in parent PN_LIST */

    union {
        struct {                        /* list of next-linked nodes */
            ParseNode*  head;           /* first node in list */
            ParseNode** tail;           /* ptr to ptr to last node in list */
            uint32_t    count;          /* number of nodes in list */
            uint32_t    xflags;         /* see PNX_* below */
        } list;
        struct {                        /* ternary: if, for(;;), ?: */
            ParseNode*  kid1;           /* condition, discriminant, etc. */
            ParseNode*  kid2;           /* then-part, case list, etc. */
            ParseNode*  kid3;           /* else-part, default case, etc. */
        } ternary;
        struct {                        /* two kids if binary */
            ParseNode*  left;
            ParseNode*  right;
            union {
                unsigned iflags;        /* JSITER_* flags for PNK_{COMPREHENSION,}FOR node */
                bool isStatic;          /* only for PNK_CLASSMETHOD */
                uint32_t offset;        /* for the emitter's use on PNK_CASE nodes */
            };
        } binary;
        struct {                        /* one kid if unary */
            ParseNode*  kid;
            bool        prologue;       /* directive prologue member (as
                                           pn_prologue) */
        } unary;
        struct {                        /* name, labeled statement, etc. */
            union {
                JSAtom*      atom;      /* lexical name or label atom */
                ObjectBox*   objbox;    /* regexp object */
                FunctionBox* funbox;    /* function object */
            };
            ParseNode*  expr;           /* module or function body, var
                                           initializer, argument default, or
                                           base object of PNK_DOT */
        } name;
        struct {
            LexicalScope::Data* bindings;
            ParseNode*          body;
        } scope;
        struct {
            double       value;         /* aligned numeric literal value */
            DecimalPoint decimalPoint;  /* Whether the number has a decimal point */
        } number;
        class {
            friend class LoopControlStatement;
            PropertyName*    label;    /* target of break/continue statement */
        } loopControl;
    } pn_u;

#define pn_objbox       pn_u.name.objbox
#define pn_funbox       pn_u.name.funbox
#define pn_body         pn_u.name.expr
#define pn_head         pn_u.list.head
#define pn_tail         pn_u.list.tail
#define pn_count        pn_u.list.count
#define pn_xflags       pn_u.list.xflags
#define pn_kid1         pn_u.ternary.kid1
#define pn_kid2         pn_u.ternary.kid2
#define pn_kid3         pn_u.ternary.kid3
#define pn_left         pn_u.binary.left
#define pn_right        pn_u.binary.right
#define pn_pval         pn_u.binary.pval
#define pn_iflags       pn_u.binary.iflags
#define pn_kid          pn_u.unary.kid
#define pn_prologue     pn_u.unary.prologue
#define pn_atom         pn_u.name.atom
#define pn_objbox       pn_u.name.objbox
#define pn_expr         pn_u.name.expr
#define pn_dval         pn_u.number.value


  public:
    /*
     * If |left| is a list of the given kind/left-associative op, append
     * |right| to it and return |left|.  Otherwise return a [left, right] list.
     */
    static ParseNode*
    appendOrCreateList(ParseNodeKind kind, JSOp op, ParseNode* left, ParseNode* right,
                       FullParseHandler* handler, ParseContext* pc);

    inline PropertyName* name() const;
    inline JSAtom* atom() const;

    ParseNode* expr() const {
        MOZ_ASSERT(pn_arity == PN_NAME || pn_arity == PN_CODE);
        return pn_expr;
    }

    bool isEmptyScope() const {
        MOZ_ASSERT(pn_arity == PN_SCOPE);
        return !pn_u.scope.bindings;
    }

    Handle<LexicalScope::Data*> scopeBindings() const {
        MOZ_ASSERT(!isEmptyScope());
        // Bindings' GC safety depend on the presence of an AutoKeepAtoms that
        // the rest of the frontend also depends on.
        return Handle<LexicalScope::Data*>::fromMarkedLocation(&pn_u.scope.bindings);
    }

    ParseNode* scopeBody() const {
        MOZ_ASSERT(pn_arity == PN_SCOPE);
        return pn_u.scope.body;
    }

    void setScopeBody(ParseNode* body) {
        MOZ_ASSERT(pn_arity == PN_SCOPE);
        pn_u.scope.body = body;
    }

/* PN_LIST pn_xflags bits. */
#define PNX_FUNCDEFS    0x01            /* contains top-level function statements */
#define PNX_ARRAYHOLESPREAD 0x02        /* one or more of
                                           1. array initialiser has holes
                                           2. array initializer has spread node */
#define PNX_NONCONST    0x04            /* initialiser has non-constants */

    bool functionIsHoisted() const {
        MOZ_ASSERT(pn_arity == PN_CODE && getKind() == PNK_FUNCTION);
        MOZ_ASSERT(isOp(JSOP_LAMBDA) ||        // lambda, genexpr
                   isOp(JSOP_LAMBDA_ARROW) ||  // arrow function
                   isOp(JSOP_DEFFUN) ||        // non-body-level function statement
                   isOp(JSOP_NOP) ||           // body-level function stmt in global code
                   isOp(JSOP_GETLOCAL) ||      // body-level function stmt in function code
                   isOp(JSOP_GETARG) ||        // body-level function redeclaring formal
                   isOp(JSOP_INITLEXICAL));    // block-level function stmt
        return !isOp(JSOP_LAMBDA) && !isOp(JSOP_LAMBDA_ARROW) && !isOp(JSOP_DEFFUN);
    }

    /*
     * True if this statement node could be a member of a Directive Prologue: an
     * expression statement consisting of a single string literal.
     *
     * This considers only the node and its children, not its context. After
     * parsing, check the node's pn_prologue flag to see if it is indeed part of
     * a directive prologue.
     *
     * Note that a Directive Prologue can contain statements that cannot
     * themselves be directives (string literals that include escape sequences
     * or escaped newlines, say). This member function returns true for such
     * nodes; we use it to determine the extent of the prologue.
     */
    JSAtom* isStringExprStatement() const {
        if (getKind() == PNK_SEMI) {
            MOZ_ASSERT(pn_arity == PN_UNARY);
            ParseNode* kid = pn_kid;
            if (kid && kid->getKind() == PNK_STRING && !kid->pn_parens)
                return kid->pn_atom;
        }
        return nullptr;
    }

    /* True if pn is a parsenode representing a literal constant. */
    bool isLiteral() const {
        return isKind(PNK_NUMBER) ||
               isKind(PNK_STRING) ||
               isKind(PNK_TRUE) ||
               isKind(PNK_FALSE) ||
               isKind(PNK_NULL) ||
               isKind(PNK_RAW_UNDEFINED);
    }

    /* Return true if this node appears in a Directive Prologue. */
    bool isDirectivePrologueMember() const { return pn_prologue; }

    // True iff this is a for-in/of loop variable declaration (var/let/const).
    bool isForLoopDeclaration() const {
        if (isKind(PNK_VAR) || isKind(PNK_LET) || isKind(PNK_CONST)) {
            MOZ_ASSERT(isArity(PN_LIST));
            MOZ_ASSERT(pn_count > 0);
            return true;
        }

        return false;
    }

    ParseNode* generatorExpr() const {
        MOZ_ASSERT(isKind(PNK_GENEXP));

        ParseNode* callee = this->pn_head;
        MOZ_ASSERT(callee->isKind(PNK_FUNCTION));

        ParseNode* paramsBody = callee->pn_body;
        MOZ_ASSERT(paramsBody->isKind(PNK_PARAMSBODY));

        ParseNode* body = paramsBody->last();
        MOZ_ASSERT(body->isKind(PNK_STATEMENTLIST));
        MOZ_ASSERT(body->last()->isKind(PNK_LEXICALSCOPE) ||
                   body->last()->isKind(PNK_COMPREHENSIONFOR));
        return body->last();
    }

    /*
     * Compute a pointer to the last element in a singly-linked list. NB: list
     * must be non-empty for correct PN_LAST usage -- this is asserted!
     */
    ParseNode* last() const {
        MOZ_ASSERT(pn_arity == PN_LIST);
        MOZ_ASSERT(pn_count != 0);
        return (ParseNode*)(uintptr_t(pn_tail) - offsetof(ParseNode, pn_next));
    }

    void initNumber(double value, DecimalPoint decimalPoint) {
        MOZ_ASSERT(pn_arity == PN_NULLARY);
        MOZ_ASSERT(getKind() == PNK_NUMBER);
        pn_u.number.value = value;
        pn_u.number.decimalPoint = decimalPoint;
    }

    void makeEmpty() {
        MOZ_ASSERT(pn_arity == PN_LIST);
        pn_head = nullptr;
        pn_tail = &pn_head;
        pn_count = 0;
        pn_xflags = 0;
    }

    void initList(ParseNode* pn) {
        MOZ_ASSERT(pn_arity == PN_LIST);
        if (pn->pn_pos.begin < pn_pos.begin)
            pn_pos.begin = pn->pn_pos.begin;
        pn_pos.end = pn->pn_pos.end;
        pn_head = pn;
        pn_tail = &pn->pn_next;
        pn_count = 1;
        pn_xflags = 0;
    }

    void append(ParseNode* pn) {
        MOZ_ASSERT(pn_arity == PN_LIST);
        MOZ_ASSERT(pn->pn_pos.begin >= pn_pos.begin);
        pn_pos.end = pn->pn_pos.end;
        *pn_tail = pn;
        pn_tail = &pn->pn_next;
        pn_count++;
    }

    void prepend(ParseNode* pn) {
        MOZ_ASSERT(pn_arity == PN_LIST);
        pn->pn_next = pn_head;
        pn_head = pn;
        if (pn_tail == &pn_head)
            pn_tail = &pn->pn_next;
        pn_count++;
    }

    void checkListConsistency()
#ifndef DEBUG
    {}
#endif
    ;

    enum AllowConstantObjects {
        DontAllowObjects = 0,
        AllowObjects,
        ForCopyOnWriteArray
    };

    MOZ_MUST_USE bool getConstantValue(ExclusiveContext* cx, AllowConstantObjects allowObjects,
                                       MutableHandleValue vp, Value* compare = nullptr,
                                       size_t ncompare = 0, NewObjectKind newKind = TenuredObject);
    inline bool isConstant();

    template <class NodeType>
    inline bool is() const {
        return NodeType::test(*this);
    }

    /* Casting operations. */
    template <class NodeType>
    inline NodeType& as() {
        MOZ_ASSERT(NodeType::test(*this));
        return *static_cast<NodeType*>(this);
    }

    template <class NodeType>
    inline const NodeType& as() const {
        MOZ_ASSERT(NodeType::test(*this));
        return *static_cast<const NodeType*>(this);
    }

#ifdef DEBUG
    void dump();
    void dump(int indent);
#endif
};

struct NullaryNode : public ParseNode
{
    NullaryNode(ParseNodeKind kind, const TokenPos& pos)
      : ParseNode(kind, JSOP_NOP, PN_NULLARY, pos) {}
    NullaryNode(ParseNodeKind kind, JSOp op, const TokenPos& pos)
      : ParseNode(kind, op, PN_NULLARY, pos) {}

    // This constructor is for a few mad uses in the emitter. It populates
    // the pn_atom field even though that field belongs to a branch in pn_u
    // that nullary nodes shouldn't use -- bogus.
    NullaryNode(ParseNodeKind kind, JSOp op, const TokenPos& pos, JSAtom* atom)
      : ParseNode(kind, op, PN_NULLARY, pos)
    {
        pn_atom = atom;
    }

#ifdef DEBUG
    void dump();
#endif
};

struct UnaryNode : public ParseNode
{
    UnaryNode(ParseNodeKind kind, JSOp op, const TokenPos& pos, ParseNode* kid)
      : ParseNode(kind, op, PN_UNARY, pos)
    {
        pn_kid = kid;
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

struct BinaryNode : public ParseNode
{
    BinaryNode(ParseNodeKind kind, JSOp op, const TokenPos& pos, ParseNode* left, ParseNode* right)
      : ParseNode(kind, op, PN_BINARY, pos)
    {
        pn_left = left;
        pn_right = right;
    }

    BinaryNode(ParseNodeKind kind, JSOp op, ParseNode* left, ParseNode* right)
      : ParseNode(kind, op, PN_BINARY, TokenPos::box(left->pn_pos, right->pn_pos))
    {
        pn_left = left;
        pn_right = right;
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

struct TernaryNode : public ParseNode
{
    TernaryNode(ParseNodeKind kind, JSOp op, ParseNode* kid1, ParseNode* kid2, ParseNode* kid3)
      : ParseNode(kind, op, PN_TERNARY,
                  TokenPos((kid1 ? kid1 : kid2 ? kid2 : kid3)->pn_pos.begin,
                           (kid3 ? kid3 : kid2 ? kid2 : kid1)->pn_pos.end))
    {
        pn_kid1 = kid1;
        pn_kid2 = kid2;
        pn_kid3 = kid3;
    }

    TernaryNode(ParseNodeKind kind, JSOp op, ParseNode* kid1, ParseNode* kid2, ParseNode* kid3,
                const TokenPos& pos)
      : ParseNode(kind, op, PN_TERNARY, pos)
    {
        pn_kid1 = kid1;
        pn_kid2 = kid2;
        pn_kid3 = kid3;
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

struct ListNode : public ParseNode
{
    ListNode(ParseNodeKind kind, const TokenPos& pos)
      : ParseNode(kind, JSOP_NOP, PN_LIST, pos)
    {
        makeEmpty();
    }

    ListNode(ParseNodeKind kind, JSOp op, const TokenPos& pos)
      : ParseNode(kind, op, PN_LIST, pos)
    {
        makeEmpty();
    }

    ListNode(ParseNodeKind kind, JSOp op, ParseNode* kid)
      : ParseNode(kind, op, PN_LIST, kid->pn_pos)
    {
        initList(kid);
    }

    static bool test(const ParseNode& node) {
        return node.isArity(PN_LIST);
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

struct CodeNode : public ParseNode
{
    CodeNode(ParseNodeKind kind, JSOp op, const TokenPos& pos)
      : ParseNode(kind, op, PN_CODE, pos)
    {
        MOZ_ASSERT(kind == PNK_FUNCTION || kind == PNK_MODULE);
        MOZ_ASSERT_IF(kind == PNK_MODULE, op == JSOP_NOP);
        MOZ_ASSERT(op == JSOP_NOP || // statement, module
                   op == JSOP_LAMBDA_ARROW || // arrow function
                   op == JSOP_LAMBDA); // expression, method, comprehension, accessor, &c.
        MOZ_ASSERT(!pn_body);
        MOZ_ASSERT(!pn_objbox);
    }

  public:
#ifdef DEBUG
    void dump(int indent);
#endif
};

struct NameNode : public ParseNode
{
    NameNode(ParseNodeKind kind, JSOp op, JSAtom* atom, const TokenPos& pos)
      : ParseNode(kind, op, PN_NAME, pos)
    {
        pn_atom = atom;
        pn_expr = nullptr;
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

struct LexicalScopeNode : public ParseNode
{
    LexicalScopeNode(LexicalScope::Data* bindings, ParseNode* body)
      : ParseNode(PNK_LEXICALSCOPE, JSOP_NOP, PN_SCOPE, body->pn_pos)
    {
        pn_u.scope.bindings = bindings;
        pn_u.scope.body = body;
    }

    static bool test(const ParseNode& node) {
        return node.isKind(PNK_LEXICALSCOPE);
    }

#ifdef DEBUG
    void dump(int indent);
#endif
};

class LabeledStatement : public ParseNode
{
  public:
    LabeledStatement(PropertyName* label, ParseNode* stmt, uint32_t begin)
      : ParseNode(PNK_LABEL, JSOP_NOP, PN_NAME, TokenPos(begin, stmt->pn_pos.end))
    {
        pn_atom = label;
        pn_expr = stmt;
    }

    PropertyName* label() const {
        return pn_atom->asPropertyName();
    }

    ParseNode* statement() const {
        return pn_expr;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_LABEL);
        MOZ_ASSERT_IF(match, node.isArity(PN_NAME));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

// Inside a switch statement, a CaseClause is a case-label and the subsequent
// statements. The same node type is used for DefaultClauses. The only
// difference is that their caseExpression() is null.
class CaseClause : public BinaryNode
{
  public:
    CaseClause(ParseNode* expr, ParseNode* stmts, uint32_t begin)
      : BinaryNode(PNK_CASE, JSOP_NOP, TokenPos(begin, stmts->pn_pos.end), expr, stmts) {}

    ParseNode* caseExpression() const { return pn_left; }
    bool isDefault() const { return !caseExpression(); }
    ParseNode* statementList() const { return pn_right; }

    // The next CaseClause in the same switch statement.
    CaseClause* next() const { return pn_next ? &pn_next->as<CaseClause>() : nullptr; }

    // Scratch space used by the emitter.
    uint32_t offset() const { return pn_u.binary.offset; }
    void setOffset(uint32_t u) { pn_u.binary.offset = u; }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CASE);
        MOZ_ASSERT_IF(match, node.isArity(PN_BINARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

class LoopControlStatement : public ParseNode
{
  protected:
    LoopControlStatement(ParseNodeKind kind, PropertyName* label, const TokenPos& pos)
      : ParseNode(kind, JSOP_NOP, PN_NULLARY, pos)
    {
        MOZ_ASSERT(kind == PNK_BREAK || kind == PNK_CONTINUE);
        pn_u.loopControl.label = label;
    }

  public:
    /* Label associated with this break/continue statement, if any. */
    PropertyName* label() const {
        return pn_u.loopControl.label;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_BREAK) || node.isKind(PNK_CONTINUE);
        MOZ_ASSERT_IF(match, node.isArity(PN_NULLARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

class BreakStatement : public LoopControlStatement
{
  public:
    BreakStatement(PropertyName* label, const TokenPos& pos)
      : LoopControlStatement(PNK_BREAK, label, pos)
    { }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_BREAK);
        MOZ_ASSERT_IF(match, node.isArity(PN_NULLARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

class ContinueStatement : public LoopControlStatement
{
  public:
    ContinueStatement(PropertyName* label, const TokenPos& pos)
      : LoopControlStatement(PNK_CONTINUE, label, pos)
    { }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CONTINUE);
        MOZ_ASSERT_IF(match, node.isArity(PN_NULLARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

class DebuggerStatement : public ParseNode
{
  public:
    explicit DebuggerStatement(const TokenPos& pos)
      : ParseNode(PNK_DEBUGGER, JSOP_NOP, PN_NULLARY, pos)
    { }
};

class ConditionalExpression : public ParseNode
{
  public:
    ConditionalExpression(ParseNode* condition, ParseNode* thenExpr, ParseNode* elseExpr)
      : ParseNode(PNK_CONDITIONAL, JSOP_NOP, PN_TERNARY,
                  TokenPos(condition->pn_pos.begin, elseExpr->pn_pos.end))
    {
        MOZ_ASSERT(condition);
        MOZ_ASSERT(thenExpr);
        MOZ_ASSERT(elseExpr);
        pn_u.ternary.kid1 = condition;
        pn_u.ternary.kid2 = thenExpr;
        pn_u.ternary.kid3 = elseExpr;
    }

    ParseNode& condition() const {
        return *pn_u.ternary.kid1;
    }

    ParseNode& thenExpression() const {
        return *pn_u.ternary.kid2;
    }

    ParseNode& elseExpression() const {
        return *pn_u.ternary.kid3;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CONDITIONAL);
        MOZ_ASSERT_IF(match, node.isArity(PN_TERNARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_NOP));
        return match;
    }
};

class ThisLiteral : public UnaryNode
{
  public:
    ThisLiteral(const TokenPos& pos, ParseNode* thisName)
      : UnaryNode(PNK_THIS, JSOP_NOP, pos, thisName)
    { }
};

class NullLiteral : public ParseNode
{
  public:
    explicit NullLiteral(const TokenPos& pos) : ParseNode(PNK_NULL, JSOP_NULL, PN_NULLARY, pos) { }
};

// This is only used internally, currently just for tagged templates.
// It represents the value 'undefined' (aka `void 0`), like NullLiteral
// represents the value 'null'.
class RawUndefinedLiteral : public ParseNode
{
  public:
    explicit RawUndefinedLiteral(const TokenPos& pos)
      : ParseNode(PNK_RAW_UNDEFINED, JSOP_UNDEFINED, PN_NULLARY, pos) { }
};

class BooleanLiteral : public ParseNode
{
  public:
    BooleanLiteral(bool b, const TokenPos& pos)
      : ParseNode(b ? PNK_TRUE : PNK_FALSE, b ? JSOP_TRUE : JSOP_FALSE, PN_NULLARY, pos)
    { }
};

class RegExpLiteral : public NullaryNode
{
  public:
    RegExpLiteral(ObjectBox* reobj, const TokenPos& pos)
      : NullaryNode(PNK_REGEXP, JSOP_REGEXP, pos)
    {
        pn_objbox = reobj;
    }

    ObjectBox* objbox() const { return pn_objbox; }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_REGEXP);
        MOZ_ASSERT_IF(match, node.isArity(PN_NULLARY));
        MOZ_ASSERT_IF(match, node.isOp(JSOP_REGEXP));
        return match;
    }
};

class PropertyAccess : public ParseNode
{
  public:
    PropertyAccess(ParseNode* lhs, PropertyName* name, uint32_t begin, uint32_t end)
      : ParseNode(PNK_DOT, JSOP_NOP, PN_NAME, TokenPos(begin, end))
    {
        MOZ_ASSERT(lhs != nullptr);
        MOZ_ASSERT(name != nullptr);
        pn_u.name.expr = lhs;
        pn_u.name.atom = name;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_DOT);
        MOZ_ASSERT_IF(match, node.isArity(PN_NAME));
        return match;
    }

    ParseNode& expression() const {
        return *pn_u.name.expr;
    }

    PropertyName& name() const {
        return *pn_u.name.atom->asPropertyName();
    }

    bool isSuper() const {
        // PNK_SUPERBASE cannot result from any expression syntax.
        return expression().isKind(PNK_SUPERBASE);
    }
};

class PropertyByValue : public ParseNode
{
  public:
    PropertyByValue(ParseNode* lhs, ParseNode* propExpr, uint32_t begin, uint32_t end)
      : ParseNode(PNK_ELEM, JSOP_NOP, PN_BINARY, TokenPos(begin, end))
    {
        pn_u.binary.left = lhs;
        pn_u.binary.right = propExpr;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_ELEM);
        MOZ_ASSERT_IF(match, node.isArity(PN_BINARY));
        return match;
    }

    bool isSuper() const {
        return pn_left->isKind(PNK_SUPERBASE);
    }
};

/*
 * A CallSiteNode represents the implicit call site object argument in a TaggedTemplate.
 */
struct CallSiteNode : public ListNode {
    explicit CallSiteNode(uint32_t begin): ListNode(PNK_CALLSITEOBJ, TokenPos(begin, begin + 1)) {}

    static bool test(const ParseNode& node) {
        return node.isKind(PNK_CALLSITEOBJ);
    }

    MOZ_MUST_USE bool getRawArrayValue(ExclusiveContext* cx, MutableHandleValue vp) {
        return pn_head->getConstantValue(cx, AllowObjects, vp);
    }
};

struct ClassMethod : public BinaryNode {
    /*
     * Method defintions often keep a name and function body that overlap,
     * so explicitly define the beginning and end here.
     */
    ClassMethod(ParseNode* name, ParseNode* body, JSOp op, bool isStatic)
      : BinaryNode(PNK_CLASSMETHOD, op, TokenPos(name->pn_pos.begin, body->pn_pos.end), name, body)
    {
        pn_u.binary.isStatic = isStatic;
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CLASSMETHOD);
        MOZ_ASSERT_IF(match, node.isArity(PN_BINARY));
        return match;
    }

    ParseNode& name() const {
        return *pn_u.binary.left;
    }
    ParseNode& method() const {
        return *pn_u.binary.right;
    }
    bool isStatic() const {
        return pn_u.binary.isStatic;
    }
};

struct ClassNames : public BinaryNode {
    ClassNames(ParseNode* outerBinding, ParseNode* innerBinding, const TokenPos& pos)
      : BinaryNode(PNK_CLASSNAMES, JSOP_NOP, pos, outerBinding, innerBinding)
    {
        MOZ_ASSERT_IF(outerBinding, outerBinding->isKind(PNK_NAME));
        MOZ_ASSERT(innerBinding->isKind(PNK_NAME));
        MOZ_ASSERT_IF(outerBinding, innerBinding->pn_atom == outerBinding->pn_atom);
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CLASSNAMES);
        MOZ_ASSERT_IF(match, node.isArity(PN_BINARY));
        return match;
    }

    /*
     * Classes require two definitions: The first "outer" binding binds the
     * class into the scope in which it was declared. the outer binding is a
     * mutable lexial binding. The second "inner" binding binds the class by
     * name inside a block in which the methods are evaulated. It is immutable,
     * giving the methods access to the static members of the class even if
     * the outer binding has been overwritten.
     */
    ParseNode* outerBinding() const {
        return pn_u.binary.left;
    }
    ParseNode* innerBinding() const {
        return pn_u.binary.right;
    }
};

struct ClassNode : public TernaryNode {
    ClassNode(ParseNode* names, ParseNode* heritage, ParseNode* methodsOrBlock,
              const TokenPos& pos)
      : TernaryNode(PNK_CLASS, JSOP_NOP, names, heritage, methodsOrBlock, pos)
    {
        MOZ_ASSERT_IF(names, names->is<ClassNames>());
        MOZ_ASSERT(methodsOrBlock->is<LexicalScopeNode>() ||
                   methodsOrBlock->isKind(PNK_CLASSMETHODLIST));
    }

    static bool test(const ParseNode& node) {
        bool match = node.isKind(PNK_CLASS);
        MOZ_ASSERT_IF(match, node.isArity(PN_TERNARY));
        return match;
    }

    ClassNames* names() const {
        return pn_kid1 ? &pn_kid1->as<ClassNames>() : nullptr;
    }
    ParseNode* heritage() const {
        return pn_kid2;
    }
    ParseNode* methodList() const {
        if (pn_kid3->isKind(PNK_CLASSMETHODLIST))
            return pn_kid3;

        MOZ_ASSERT(pn_kid3->is<LexicalScopeNode>());
        ParseNode* list = pn_kid3->scopeBody();
        MOZ_ASSERT(list->isKind(PNK_CLASSMETHODLIST));
        return list;
    }
    Handle<LexicalScope::Data*> scopeBindings() const {
        MOZ_ASSERT(pn_kid3->is<LexicalScopeNode>());
        return pn_kid3->scopeBindings();
    }
};

#ifdef DEBUG
void DumpParseTree(ParseNode* pn, int indent = 0);
#endif

class ParseNodeAllocator
{
  public:
    explicit ParseNodeAllocator(ExclusiveContext* cx, LifoAlloc& alloc)
      : cx(cx), alloc(alloc), freelist(nullptr)
    {}

    void* allocNode();
    void freeNode(ParseNode* pn);
    ParseNode* freeTree(ParseNode* pn);
    void prepareNodeForMutation(ParseNode* pn);

  private:
    ExclusiveContext* cx;
    LifoAlloc& alloc;
    ParseNode* freelist;
};

inline bool
ParseNode::isConstant()
{
    switch (pn_type) {
      case PNK_NUMBER:
      case PNK_STRING:
      case PNK_TEMPLATE_STRING:
      case PNK_NULL:
      case PNK_RAW_UNDEFINED:
      case PNK_FALSE:
      case PNK_TRUE:
        return true;
      case PNK_ARRAY:
      case PNK_OBJECT:
        MOZ_ASSERT(isOp(JSOP_NEWINIT));
        return !(pn_xflags & PNX_NONCONST);
      default:
        return false;
    }
}

class ObjectBox
{
  public:
    JSObject* object;

    ObjectBox(JSObject* object, ObjectBox* traceLink);
    bool isFunctionBox() { return object->is<JSFunction>(); }
    FunctionBox* asFunctionBox();
    virtual void trace(JSTracer* trc);

    static void TraceList(JSTracer* trc, ObjectBox* listHead);

  protected:
    friend struct CGObjectList;

    ObjectBox* traceLink;
    ObjectBox* emitLink;

    ObjectBox(JSFunction* function, ObjectBox* traceLink);
};

enum ParseReportKind
{
    ParseError,
    ParseWarning,
    ParseExtraWarning,
    ParseStrictError
};

enum FunctionSyntaxKind
{
    Expression,
    Statement,
    Arrow,
    Method,
    ClassConstructor,
    DerivedClassConstructor,
    Getter,
    GetterNoExpressionClosure,
    Setter,
    SetterNoExpressionClosure
};

static inline bool
IsConstructorKind(FunctionSyntaxKind kind)
{
    return kind == ClassConstructor || kind == DerivedClassConstructor;
}

static inline bool
IsGetterKind(FunctionSyntaxKind kind)
{
    return kind == Getter || kind == GetterNoExpressionClosure;
}

static inline bool
IsSetterKind(FunctionSyntaxKind kind)
{
    return kind == Setter || kind == SetterNoExpressionClosure;
}

static inline bool
IsMethodDefinitionKind(FunctionSyntaxKind kind)
{
    return kind == Method || IsConstructorKind(kind) ||
           IsGetterKind(kind) || IsSetterKind(kind);
}

static inline ParseNode*
FunctionFormalParametersList(ParseNode* fn, unsigned* numFormals)
{
    MOZ_ASSERT(fn->isKind(PNK_FUNCTION));
    ParseNode* argsBody = fn->pn_body;
    MOZ_ASSERT(argsBody->isKind(PNK_PARAMSBODY));
    *numFormals = argsBody->pn_count;
    if (*numFormals > 0 &&
        argsBody->last()->isKind(PNK_LEXICALSCOPE) &&
        argsBody->last()->scopeBody()->isKind(PNK_STATEMENTLIST))
    {
        (*numFormals)--;
    }
    MOZ_ASSERT(argsBody->isArity(PN_LIST));
    return argsBody->pn_head;
}

bool
IsAnonymousFunctionDefinition(ParseNode* pn);

} /* namespace frontend */
} /* namespace js */

#endif /* frontend_ParseNode_h */