1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_UbiNodeBreadthFirst_h
#define js_UbiNodeBreadthFirst_h
#include "js/UbiNode.h"
#include "js/Utility.h"
#include "js/Vector.h"
namespace JS {
namespace ubi {
// A breadth-first traversal template for graphs of ubi::Nodes.
//
// No GC may occur while an instance of this template is live.
//
// The provided Handler type should have two members:
//
// typename NodeData;
//
// The value type of |BreadthFirst<Handler>::visited|, the HashMap of
// ubi::Nodes that have been visited so far. Since the algorithm needs a
// hash table like this for its own use anyway, it is simple to let
// Handler store its own metadata about each node in the same table.
//
// For example, if you want to find a shortest path to each node from any
// traversal starting point, your |NodeData| type could record the first
// edge to reach each node, and the node from which it originates. Then,
// when the traversal is complete, you can walk backwards from any node
// to some starting point, and the path recorded will be a shortest path.
//
// This type must have a default constructor. If this type owns any other
// resources, move constructors and assignment operators are probably a
// good idea, too.
//
// bool operator() (BreadthFirst& traversal,
// Node origin, const Edge& edge,
// Handler::NodeData* referentData, bool first);
//
// The visitor function, called to report that we have traversed
// |edge| from |origin|. This is called once for each edge we traverse.
// As this is a breadth-first search, any prior calls to the visitor function
// were for origin nodes not further from the start nodes than |origin|.
//
// |traversal| is this traversal object, passed along for convenience.
//
// |referentData| is a pointer to the value of the entry in
// |traversal.visited| for |edge.referent|; the visitor function can
// store whatever metadata it likes about |edge.referent| there.
//
// |first| is true if this is the first time we have visited an edge
// leading to |edge.referent|. This could be stored in NodeData, but
// the algorithm knows whether it has just created the entry in
// |traversal.visited|, so it passes it along for convenience.
//
// The visitor function may call |traversal.abandonReferent()| if it
// doesn't want to traverse the outgoing edges of |edge.referent|. You can
// use this to limit the traversal to a given portion of the graph: it will
// never visit nodes reachable only through nodes that you have abandoned.
// Note that |abandonReferent| must be called the first time the given node
// is reached; that is, |first| must be true.
//
// The visitor function may call |traversal.stop()| if it doesn't want
// to visit any more nodes at all.
//
// The visitor function may consult |traversal.visited| for information
// about other nodes, but it should not add or remove entries.
//
// The visitor function should return true on success, or false if an
// error occurs. A false return value terminates the traversal
// immediately, and causes BreadthFirst<Handler>::traverse to return
// false.
template<typename Handler>
struct BreadthFirst {
// Construct a breadth-first traversal object that reports the nodes it
// reaches to |handler|. The traversal asserts that no GC happens in its
// runtime during its lifetime.
//
// We do nothing with noGC, other than require it to exist, with a lifetime
// that encloses our own.
BreadthFirst(JSContext* cx, Handler& handler, const JS::AutoCheckCannotGC& noGC)
: wantNames(true), cx(cx), visited(), handler(handler), pending(),
traversalBegun(false), stopRequested(false), abandonRequested(false)
{ }
// Initialize this traversal object. Return false on OOM.
bool init() { return visited.init(); }
// Add |node| as a starting point for the traversal. You may add
// as many starting points as you like. Return false on OOM.
bool addStart(Node node) { return pending.append(node); }
// Add |node| as a starting point for the traversal (see addStart) and also
// add it to the |visited| set. Return false on OOM.
bool addStartVisited(Node node) {
typename NodeMap::AddPtr ptr = visited.lookupForAdd(node);
if (!ptr && !visited.add(ptr, node, typename Handler::NodeData()))
return false;
return addStart(node);
}
// True if the handler wants us to compute edge names; doing so can be
// expensive in time and memory. True by default.
bool wantNames;
// Traverse the graph in breadth-first order, starting at the given
// start nodes, applying |handler::operator()| for each edge traversed
// as described above.
//
// This should be called only once per instance of this class.
//
// Return false on OOM or error return from |handler::operator()|.
bool traverse()
{
MOZ_ASSERT(!traversalBegun);
traversalBegun = true;
// While there are pending nodes, visit them.
while (!pending.empty()) {
Node origin = pending.front();
pending.popFront();
// Get a range containing all origin's outgoing edges.
auto range = origin.edges(cx, wantNames);
if (!range)
return false;
// Traverse each edge.
for (; !range->empty(); range->popFront()) {
MOZ_ASSERT(!stopRequested);
Edge& edge = range->front();
typename NodeMap::AddPtr a = visited.lookupForAdd(edge.referent);
bool first = !a;
if (first) {
// This is the first time we've reached |edge.referent|.
// Mark it as visited.
if (!visited.add(a, edge.referent, typename Handler::NodeData()))
return false;
}
MOZ_ASSERT(a);
// Report this edge to the visitor function.
if (!handler(*this, origin, edge, &a->value(), first))
return false;
if (stopRequested)
return true;
// Arrange to traverse this edge's referent's outgoing edges
// later --- unless |handler| asked us not to.
if (abandonRequested) {
// Skip the enqueue; reset flag for future iterations.
abandonRequested = false;
} else if (first) {
if (!pending.append(edge.referent))
return false;
}
}
}
return true;
}
// Stop traversal, and return true from |traverse| without visiting any
// more nodes. Only |handler::operator()| should call this function; it
// may do so to stop the traversal early, without returning false and
// then making |traverse|'s caller disambiguate that result from a real
// error.
void stop() { stopRequested = true; }
// Request that the current edge's referent's outgoing edges not be
// traversed. This must be called the first time that referent is reached.
// Other edges *to* that referent will still be traversed.
void abandonReferent() { abandonRequested = true; }
// The context with which we were constructed.
JSContext* cx;
// A map associating each node N that we have reached with a
// Handler::NodeData, for |handler|'s use. This is public, so that
// |handler| can access it to see the traversal thus far.
using NodeMap = js::HashMap<Node, typename Handler::NodeData, js::DefaultHasher<Node>,
js::SystemAllocPolicy>;
NodeMap visited;
private:
// Our handler object.
Handler& handler;
// A queue template. Appending and popping the front are constant time.
// Wasted space is never more than some recent actual population plus the
// current population.
template <typename T>
class Queue {
js::Vector<T, 0, js::SystemAllocPolicy> head, tail;
size_t frontIndex;
public:
Queue() : head(), tail(), frontIndex(0) { }
bool empty() { return frontIndex >= head.length(); }
T& front() {
MOZ_ASSERT(!empty());
return head[frontIndex];
}
void popFront() {
MOZ_ASSERT(!empty());
frontIndex++;
if (frontIndex >= head.length()) {
head.clearAndFree();
head.swap(tail);
frontIndex = 0;
}
}
bool append(const T& elt) {
return frontIndex == 0 ? head.append(elt) : tail.append(elt);
}
};
// A queue of nodes that we have reached, but whose outgoing edges we
// have not yet traversed. Nodes reachable in fewer edges are enqueued
// earlier.
Queue<Node> pending;
// True if our traverse function has been called.
bool traversalBegun;
// True if we've been asked to stop the traversal.
bool stopRequested;
// True if we've been asked to abandon the current edge's referent.
bool abandonRequested;
};
} // namespace ubi
} // namespace JS
#endif // js_UbiNodeBreadthFirst_h
|