summaryrefslogtreecommitdiffstats
path: root/ipc/chromium/src/chrome/common/ipc_channel_posix.cc
blob: 0d3a2b16c77c6103e2953c6a57be861681baf11e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/common/ipc_channel_posix.h"

#include <errno.h>
#include <fcntl.h>
#if defined(OS_MACOSX)
#include <sched.h>
#endif
#include <stddef.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <sys/uio.h>

#include <string>
#include <map>

#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/lock.h"
#include "base/logging.h"
#include "base/process_util.h"
#include "base/string_util.h"
#include "base/singleton.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/common/file_descriptor_set_posix.h"
#include "chrome/common/ipc_message_utils.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/UniquePtr.h"

#ifdef MOZ_FAULTY
#include "mozilla/ipc/Faulty.h"
#endif

// Work around possible OS limitations.
static const size_t kMaxIOVecSize = 256;

#ifdef MOZ_TASK_TRACER
#include "GeckoTaskTracerImpl.h"
using namespace mozilla::tasktracer;
#endif

namespace IPC {

// IPC channels on Windows use named pipes (CreateNamedPipe()) with
// channel ids as the pipe names.  Channels on POSIX use anonymous
// Unix domain sockets created via socketpair() as pipes.  These don't
// quite line up.
//
// When creating a child subprocess, the parent side of the fork
// arranges it such that the initial control channel ends up on the
// magic file descriptor kClientChannelFd in the child.  Future
// connections (file descriptors) can then be passed via that
// connection via sendmsg().

//------------------------------------------------------------------------------
namespace {

// The PipeMap class works around this quirk related to unit tests:
//
// When running as a server, we install the client socket in a
// specific file descriptor number (@kClientChannelFd). However, we
// also have to support the case where we are running unittests in the
// same process.  (We do not support forking without execing.)
//
// Case 1: normal running
//   The IPC server object will install a mapping in PipeMap from the
//   name which it was given to the client pipe. When forking the client, the
//   GetClientFileDescriptorMapping will ensure that the socket is installed in
//   the magic slot (@kClientChannelFd). The client will search for the
//   mapping, but it won't find any since we are in a new process. Thus the
//   magic fd number is returned. Once the client connects, the server will
//   close its copy of the client socket and remove the mapping.
//
// Case 2: unittests - client and server in the same process
//   The IPC server will install a mapping as before. The client will search
//   for a mapping and find out. It duplicates the file descriptor and
//   connects. Once the client connects, the server will close the original
//   copy of the client socket and remove the mapping. Thus, when the client
//   object closes, it will close the only remaining copy of the client socket
//   in the fd table and the server will see EOF on its side.
//
// TODO(port): a client process cannot connect to multiple IPC channels with
// this scheme.

class PipeMap {
 public:
  // Lookup a given channel id. Return -1 if not found.
  int Lookup(const std::string& channel_id) {
    AutoLock locked(lock_);

    ChannelToFDMap::const_iterator i = map_.find(channel_id);
    if (i == map_.end())
      return -1;
    return i->second;
  }

  // Remove the mapping for the given channel id. No error is signaled if the
  // channel_id doesn't exist
  void Remove(const std::string& channel_id) {
    AutoLock locked(lock_);

    ChannelToFDMap::iterator i = map_.find(channel_id);
    if (i != map_.end())
      map_.erase(i);
  }

  // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a
  // mapping if one already exists for the given channel_id
  void Insert(const std::string& channel_id, int fd) {
    AutoLock locked(lock_);
    DCHECK(fd != -1);

    ChannelToFDMap::const_iterator i = map_.find(channel_id);
    CHECK(i == map_.end()) << "Creating second IPC server for '"
                           << channel_id
                           << "' while first still exists";
    map_[channel_id] = fd;
  }

 private:
  Lock lock_;
  typedef std::map<std::string, int> ChannelToFDMap;
  ChannelToFDMap map_;
};

// This is the file descriptor number that a client process expects to find its
// IPC socket.
static const int kClientChannelFd = 3;

// Used to map a channel name to the equivalent FD # in the client process.
int ChannelNameToClientFD(const std::string& channel_id) {
  // See the large block comment above PipeMap for the reasoning here.
  const int fd = Singleton<PipeMap>()->Lookup(channel_id);
  if (fd != -1)
    return dup(fd);

  // If we don't find an entry, we assume that the correct value has been
  // inserted in the magic slot.
  return kClientChannelFd;
}

//------------------------------------------------------------------------------
const size_t kMaxPipeNameLength = sizeof(((sockaddr_un*)0)->sun_path);

bool SetCloseOnExec(int fd) {
  int flags = fcntl(fd, F_GETFD);
  if (flags == -1)
    return false;

  flags |= FD_CLOEXEC;
  if (fcntl(fd, F_SETFD, flags) == -1)
    return false;

  return true;
}

}  // namespace
//------------------------------------------------------------------------------

Channel::ChannelImpl::ChannelImpl(const std::wstring& channel_id, Mode mode,
                                  Listener* listener)
    : factory_(this) {
  Init(mode, listener);

  if (!CreatePipe(channel_id, mode)) {
    // The pipe may have been closed already.
    CHROMIUM_LOG(WARNING) << "Unable to create pipe named \"" << channel_id <<
                             "\" in " << (mode == MODE_SERVER ? "server" : "client") <<
                             " mode error(" << strerror(errno) << ").";
  }
}

Channel::ChannelImpl::ChannelImpl(int fd, Mode mode, Listener* listener)
    : factory_(this) {
  Init(mode, listener);
  pipe_ = fd;
  waiting_connect_ = (MODE_SERVER == mode);

  EnqueueHelloMessage();
}

void Channel::ChannelImpl::Init(Mode mode, Listener* listener) {
  DCHECK(kControlBufferSlopBytes >= CMSG_SPACE(0));

  mode_ = mode;
  is_blocked_on_write_ = false;
  partial_write_iter_.reset();
  input_buf_offset_ = 0;
  server_listen_pipe_ = -1;
  pipe_ = -1;
  client_pipe_ = -1;
  listener_ = listener;
  waiting_connect_ = true;
  processing_incoming_ = false;
  closed_ = false;
#if defined(OS_MACOSX)
  last_pending_fd_id_ = 0;
#endif
  output_queue_length_ = 0;
}

bool Channel::ChannelImpl::CreatePipe(const std::wstring& channel_id,
                                      Mode mode) {
  DCHECK(server_listen_pipe_ == -1 && pipe_ == -1);

  // socketpair()
  pipe_name_ = WideToASCII(channel_id);
  if (mode == MODE_SERVER) {
    int pipe_fds[2];
    if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) {
      mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeSocketPairErrno", errno);
      return false;
    }
    // Set both ends to be non-blocking.
    if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 ||
        fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) {
      mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeFcntlErrno", errno);
      HANDLE_EINTR(close(pipe_fds[0]));
      HANDLE_EINTR(close(pipe_fds[1]));
      return false;
    }

    if (!SetCloseOnExec(pipe_fds[0]) ||
        !SetCloseOnExec(pipe_fds[1])) {
      mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeCloExecErrno", errno);
      HANDLE_EINTR(close(pipe_fds[0]));
      HANDLE_EINTR(close(pipe_fds[1]));
      return false;
    }

    pipe_ = pipe_fds[0];
    client_pipe_ = pipe_fds[1];

    if (pipe_name_.length()) {
      Singleton<PipeMap>()->Insert(pipe_name_, client_pipe_);
    }
  } else {
    pipe_ = ChannelNameToClientFD(pipe_name_);
    DCHECK(pipe_ > 0);
    waiting_connect_ = false;
  }

  // Create the Hello message to be sent when Connect is called
  return EnqueueHelloMessage();
}

/**
 * Reset the file descriptor for communication with the peer.
 */
void Channel::ChannelImpl::ResetFileDescriptor(int fd) {
  NS_ASSERTION(fd > 0 && fd == pipe_, "Invalid file descriptor");

  EnqueueHelloMessage();
}

bool Channel::ChannelImpl::EnqueueHelloMessage() {
  mozilla::UniquePtr<Message> msg(new Message(MSG_ROUTING_NONE,
                                              HELLO_MESSAGE_TYPE));
  if (!msg->WriteInt(base::GetCurrentProcId())) {
    Close();
    return false;
  }

  OutputQueuePush(msg.release());
  return true;
}

bool Channel::ChannelImpl::Connect() {
  if (pipe_ == -1) {
    return false;
  }

  MessageLoopForIO::current()->WatchFileDescriptor(
      pipe_,
      true,
      MessageLoopForIO::WATCH_READ,
      &read_watcher_,
      this);
  waiting_connect_ = false;

  if (!waiting_connect_)
    return ProcessOutgoingMessages();
  return true;
}

bool Channel::ChannelImpl::ProcessIncomingMessages() {
  struct msghdr msg = {0};
  struct iovec iov;

  msg.msg_iov = &iov;
  msg.msg_iovlen = 1;
  msg.msg_control = input_cmsg_buf_;

  for (;;) {
    msg.msg_controllen = sizeof(input_cmsg_buf_);

    if (pipe_ == -1)
      return false;

    // In some cases the beginning of a message will be stored in input_buf_. We
    // don't want to overwrite that, so we store the new data after it.
    iov.iov_base = input_buf_ + input_buf_offset_;
    iov.iov_len = Channel::kReadBufferSize - input_buf_offset_;

    // Read from pipe.
    // recvmsg() returns 0 if the connection has closed or EAGAIN if no data
    // is waiting on the pipe.
    ssize_t bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT));

    if (bytes_read < 0) {
      if (errno == EAGAIN) {
        return true;
      } else {
        CHROMIUM_LOG(ERROR) << "pipe error (" << pipe_ << "): " << strerror(errno);
        return false;
      }
    } else if (bytes_read == 0) {
      // The pipe has closed...
      Close();
      return false;
    }
    DCHECK(bytes_read);

    if (client_pipe_ != -1) {
      Singleton<PipeMap>()->Remove(pipe_name_);
      HANDLE_EINTR(close(client_pipe_));
      client_pipe_ = -1;
    }

    // a pointer to an array of |num_wire_fds| file descriptors from the read
    const int* wire_fds = NULL;
    unsigned num_wire_fds = 0;

    // walk the list of control messages and, if we find an array of file
    // descriptors, save a pointer to the array

    // This next if statement is to work around an OSX issue where
    // CMSG_FIRSTHDR will return non-NULL in the case that controllen == 0.
    // Here's a test case:
    //
    // int main() {
    // struct msghdr msg;
    //   msg.msg_control = &msg;
    //   msg.msg_controllen = 0;
    //   if (CMSG_FIRSTHDR(&msg))
    //     printf("Bug found!\n");
    // }
    if (msg.msg_controllen > 0) {
      // On OSX, CMSG_FIRSTHDR doesn't handle the case where controllen is 0
      // and will return a pointer into nowhere.
      for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg;
           cmsg = CMSG_NXTHDR(&msg, cmsg)) {
        if (cmsg->cmsg_level == SOL_SOCKET &&
            cmsg->cmsg_type == SCM_RIGHTS) {
          const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0);
          DCHECK(payload_len % sizeof(int) == 0);
          wire_fds = reinterpret_cast<int*>(CMSG_DATA(cmsg));
          num_wire_fds = payload_len / 4;

          if (msg.msg_flags & MSG_CTRUNC) {
            CHROMIUM_LOG(ERROR) << "SCM_RIGHTS message was truncated"
                                << " cmsg_len:" << cmsg->cmsg_len
                                << " fd:" << pipe_;
            for (unsigned i = 0; i < num_wire_fds; ++i)
              HANDLE_EINTR(close(wire_fds[i]));
            return false;
          }
          break;
        }
      }
    }

    // Process messages from input buffer.
    const char *p = input_buf_;
    const char *end = input_buf_ + input_buf_offset_ + bytes_read;

    // A pointer to an array of |num_fds| file descriptors which includes any
    // fds that have spilled over from a previous read.
    const int* fds;
    unsigned num_fds;
    unsigned fds_i = 0;  // the index of the first unused descriptor

    if (input_overflow_fds_.empty()) {
      fds = wire_fds;
      num_fds = num_wire_fds;
    } else {
      const size_t prev_size = input_overflow_fds_.size();
      input_overflow_fds_.resize(prev_size + num_wire_fds);
      memcpy(&input_overflow_fds_[prev_size], wire_fds,
             num_wire_fds * sizeof(int));
      fds = &input_overflow_fds_[0];
      num_fds = input_overflow_fds_.size();
    }

    // The data for the message we're currently reading consists of any data
    // stored in incoming_message_ followed by data in input_buf_ (followed by
    // other messages).

    while (p < end) {
      // Try to figure out how big the message is. Size is 0 if we haven't read
      // enough of the header to know the size.
      uint32_t message_length = 0;
      if (incoming_message_.isSome()) {
        message_length = incoming_message_.ref().size();
      } else {
        message_length = Message::MessageSize(p, end);
      }

      if (!message_length) {
        // We haven't seen the full message header.
        MOZ_ASSERT(incoming_message_.isNothing());

        // Move everything we have to the start of the buffer. We'll finish
        // reading this message when we get more data. For now we leave it in
        // input_buf_.
        memmove(input_buf_, p, end - p);
        input_buf_offset_ = end - p;

        break;
      }

      input_buf_offset_ = 0;

      bool partial;
      if (incoming_message_.isSome()) {
        // We already have some data for this message stored in
        // incoming_message_. We want to append the new data there.
        Message& m = incoming_message_.ref();

        // How much data from this message remains to be added to
        // incoming_message_?
        MOZ_ASSERT(message_length > m.CurrentSize());
        uint32_t remaining = message_length - m.CurrentSize();

        // How much data from this message is stored in input_buf_?
        uint32_t in_buf = std::min(remaining, uint32_t(end - p));

        m.InputBytes(p, in_buf);
        p += in_buf;

        // Are we done reading this message?
        partial = in_buf != remaining;
      } else {
        // How much data from this message is stored in input_buf_?
        uint32_t in_buf = std::min(message_length, uint32_t(end - p));

        incoming_message_.emplace(p, in_buf);
        p += in_buf;

        // Are we done reading this message?
        partial = in_buf != message_length;
      }

      if (partial) {
        break;
      }

      Message& m = incoming_message_.ref();

      if (m.header()->num_fds) {
        // the message has file descriptors
        const char* error = NULL;
        if (m.header()->num_fds > num_fds - fds_i) {
          // the message has been completely received, but we didn't get
          // enough file descriptors.
          error = "Message needs unreceived descriptors";
        }

        if (m.header()->num_fds >
            FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) {
          // There are too many descriptors in this message
          error = "Message requires an excessive number of descriptors";
        }

        if (error) {
          CHROMIUM_LOG(WARNING) << error
                                << " channel:" << this
                                << " message-type:" << m.type()
                                << " header()->num_fds:" << m.header()->num_fds
                                << " num_fds:" << num_fds
                                << " fds_i:" << fds_i;
          // close the existing file descriptors so that we don't leak them
          for (unsigned i = fds_i; i < num_fds; ++i)
            HANDLE_EINTR(close(fds[i]));
          input_overflow_fds_.clear();
          // abort the connection
          return false;
        }

#if defined(OS_MACOSX)
        // Send a message to the other side, indicating that we are now
        // responsible for closing the descriptor.
        Message *fdAck = new Message(MSG_ROUTING_NONE,
                                     RECEIVED_FDS_MESSAGE_TYPE);
        DCHECK(m.fd_cookie() != 0);
        fdAck->set_fd_cookie(m.fd_cookie());
        OutputQueuePush(fdAck);
#endif

        m.file_descriptor_set()->SetDescriptors(
                                                &fds[fds_i], m.header()->num_fds);
        fds_i += m.header()->num_fds;
      }
#ifdef IPC_MESSAGE_DEBUG_EXTRA
      DLOG(INFO) << "received message on channel @" << this <<
        " with type " << m.type();
#endif

#ifdef MOZ_TASK_TRACER
      AutoSaveCurTraceInfo saveCurTraceInfo;
      SetCurTraceInfo(m.header()->source_event_id,
                      m.header()->parent_task_id,
                      m.header()->source_event_type);
#endif

      if (m.routing_id() == MSG_ROUTING_NONE &&
          m.type() == HELLO_MESSAGE_TYPE) {
        // The Hello message contains only the process id.
        listener_->OnChannelConnected(MessageIterator(m).NextInt());
#if defined(OS_MACOSX)
      } else if (m.routing_id() == MSG_ROUTING_NONE &&
                 m.type() == RECEIVED_FDS_MESSAGE_TYPE) {
        DCHECK(m.fd_cookie() != 0);
        CloseDescriptors(m.fd_cookie());
#endif
      } else {
        listener_->OnMessageReceived(mozilla::Move(m));
      }

      incoming_message_.reset();
    }

    input_overflow_fds_ = std::vector<int>(&fds[fds_i], &fds[num_fds]);

    // When the input data buffer is empty, the overflow fds should be too. If
    // this is not the case, we probably have a rogue renderer which is trying
    // to fill our descriptor table.
    if (incoming_message_.isNothing() && input_buf_offset_ == 0 && !input_overflow_fds_.empty()) {
      // We close these descriptors in Close()
      return false;
    }
  }

  return true;
}

bool Channel::ChannelImpl::ProcessOutgoingMessages() {
  DCHECK(!waiting_connect_);  // Why are we trying to send messages if there's
                              // no connection?
  is_blocked_on_write_ = false;

  if (output_queue_.empty())
    return true;

  if (pipe_ == -1)
    return false;

  // Write out all the messages we can till the write blocks or there are no
  // more outgoing messages.
  while (!output_queue_.empty()) {
#ifdef MOZ_FAULTY
    Singleton<mozilla::ipc::Faulty>::get()->MaybeCollectAndClosePipe(pipe_);
#endif
    Message* msg = output_queue_.front();

    struct msghdr msgh = {0};

    static const int tmp = CMSG_SPACE(sizeof(
        int[FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE]));
    char buf[tmp];

    if (partial_write_iter_.isNothing()) {
      Pickle::BufferList::IterImpl iter(msg->Buffers());
      partial_write_iter_.emplace(iter);
    }

    if (partial_write_iter_.value().Data() == msg->Buffers().Start() &&
        !msg->file_descriptor_set()->empty()) {
      // This is the first chunk of a message which has descriptors to send
      struct cmsghdr *cmsg;
      const unsigned num_fds = msg->file_descriptor_set()->size();

      if (num_fds > FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) {
        CHROMIUM_LOG(FATAL) << "Too many file descriptors!";
        // This should not be reached.
        return false;
      }

      msgh.msg_control = buf;
      msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds);
      cmsg = CMSG_FIRSTHDR(&msgh);
      cmsg->cmsg_level = SOL_SOCKET;
      cmsg->cmsg_type = SCM_RIGHTS;
      cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds);
      msg->file_descriptor_set()->GetDescriptors(
          reinterpret_cast<int*>(CMSG_DATA(cmsg)));
      msgh.msg_controllen = cmsg->cmsg_len;

      msg->header()->num_fds = num_fds;
#if defined(OS_MACOSX)
      msg->set_fd_cookie(++last_pending_fd_id_);
#endif
    }

    struct iovec iov[kMaxIOVecSize];
    size_t iov_count = 0;
    size_t amt_to_write = 0;

    // How much of this message have we written so far?
    Pickle::BufferList::IterImpl iter = partial_write_iter_.value();

    // Store the unwritten part of the first segment to write into the iovec.
    iov[0].iov_base = const_cast<char*>(iter.Data());
    iov[0].iov_len = iter.RemainingInSegment();
    amt_to_write += iov[0].iov_len;
    iter.Advance(msg->Buffers(), iov[0].iov_len);
    iov_count++;

    // Store remaining segments to write into iovec.
    while (!iter.Done()) {
      char* data = iter.Data();
      size_t size = iter.RemainingInSegment();

      // Don't add more than kMaxIOVecSize to the iovec so that we avoid
      // OS-dependent limits.
      if (iov_count < kMaxIOVecSize) {
        iov[iov_count].iov_base = data;
        iov[iov_count].iov_len = size;
        iov_count++;
      }
      amt_to_write += size;
      iter.Advance(msg->Buffers(), size);
    }

    msgh.msg_iov = iov;
    msgh.msg_iovlen = iov_count;

    ssize_t bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT));

#if !defined(OS_MACOSX)
    // On OSX CommitAll gets called later, once we get the RECEIVED_FDS_MESSAGE_TYPE
    // message.
    if (bytes_written > 0)
      msg->file_descriptor_set()->CommitAll();
#endif

    if (bytes_written < 0) {
      switch (errno) {
      case EAGAIN:
        // Not an error; the sendmsg would have blocked, so return to the
        // event loop and try again later.
        break;
#if defined(OS_MACOSX)
        // (Note: this comment is copied from https://crrev.com/86c3d9ef4fdf6;
        // see also bug 1142693 comment #73.)
        //
        // On OS X if sendmsg() is trying to send fds between processes and
        // there isn't enough room in the output buffer to send the fd
        // structure over atomically then EMSGSIZE is returned.
        //
        // EMSGSIZE presents a problem since the system APIs can only call us
        // when there's room in the socket buffer and not when there is
        // "enough" room.
        //
        // The current behavior is to return to the event loop when EMSGSIZE
        // is received and hopefull service another FD.  This is however still
        // technically a busy wait since the event loop will call us right
        // back until the receiver has read enough data to allow passing the
        // FD over atomically.
      case EMSGSIZE:
        // Because this is likely to result in a busy-wait, we'll try to make
        // it easier for the receiver to make progress.
        sched_yield();
        break;
#endif
      default:
        CHROMIUM_LOG(ERROR) << "pipe error: " << strerror(errno);
        return false;
      }
    }

    if (static_cast<size_t>(bytes_written) != amt_to_write) {
      // If write() fails with EAGAIN then bytes_written will be -1.
      if (bytes_written > 0) {
        partial_write_iter_.ref().AdvanceAcrossSegments(msg->Buffers(), bytes_written);
      }

      // Tell libevent to call us back once things are unblocked.
      is_blocked_on_write_ = true;
      MessageLoopForIO::current()->WatchFileDescriptor(
          pipe_,
          false,  // One shot
          MessageLoopForIO::WATCH_WRITE,
          &write_watcher_,
          this);
      return true;
    } else {
      partial_write_iter_.reset();

#if defined(OS_MACOSX)
      if (!msg->file_descriptor_set()->empty())
        pending_fds_.push_back(PendingDescriptors(msg->fd_cookie(),
                                                  msg->file_descriptor_set()));
#endif

      // Message sent OK!
#ifdef IPC_MESSAGE_DEBUG_EXTRA
      DLOG(INFO) << "sent message @" << msg << " on channel @" << this <<
                    " with type " << msg->type();
#endif
      OutputQueuePop();
      delete msg;
    }
  }
  return true;
}

bool Channel::ChannelImpl::Send(Message* message) {
#ifdef IPC_MESSAGE_DEBUG_EXTRA
  DLOG(INFO) << "sending message @" << message << " on channel @" << this
             << " with type " << message->type()
             << " (" << output_queue_.size() << " in queue)";
#endif


  // If the channel has been closed, ProcessOutgoingMessages() is never going
  // to pop anything off output_queue; output_queue will only get emptied when
  // the channel is destructed.  We might as well delete message now, instead
  // of waiting for the channel to be destructed.
  if (closed_) {
    if (mozilla::ipc::LoggingEnabled()) {
      fprintf(stderr, "Can't send message %s, because this channel is closed.\n",
              message->name());
    }
    delete message;
    return false;
  }

  OutputQueuePush(message);
  if (!waiting_connect_) {
    if (!is_blocked_on_write_) {
      if (!ProcessOutgoingMessages())
        return false;
    }
  }

  return true;
}

void Channel::ChannelImpl::GetClientFileDescriptorMapping(int *src_fd,
                                                          int *dest_fd) const {
  DCHECK(mode_ == MODE_SERVER);
  *src_fd = client_pipe_;
  *dest_fd = kClientChannelFd;
}

void Channel::ChannelImpl::CloseClientFileDescriptor() {
  if (client_pipe_ != -1) {
    Singleton<PipeMap>()->Remove(pipe_name_);
    HANDLE_EINTR(close(client_pipe_));
    client_pipe_ = -1;
  }
}

// Called by libevent when we can read from th pipe without blocking.
void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) {
  if (!waiting_connect_ && fd == pipe_) {
    if (!ProcessIncomingMessages()) {
      Close();
      listener_->OnChannelError();
      // The OnChannelError() call may delete this, so we need to exit now.
      return;
    }
  }
}

#if defined(OS_MACOSX)
void Channel::ChannelImpl::CloseDescriptors(uint32_t pending_fd_id)
{
  DCHECK(pending_fd_id != 0);
  for (std::list<PendingDescriptors>::iterator i = pending_fds_.begin();
       i != pending_fds_.end();
       i++) {
    if ((*i).id == pending_fd_id) {
      (*i).fds->CommitAll();
      pending_fds_.erase(i);
      return;
    }
  }
  DCHECK(false) << "pending_fd_id not in our list!";
}
#endif

void Channel::ChannelImpl::OutputQueuePush(Message* msg)
{
#ifdef MOZ_TASK_TRACER
  // Save the current TaskTracer info into the message header.
  GetCurTraceInfo(&msg->header()->source_event_id,
                  &msg->header()->parent_task_id,
                  &msg->header()->source_event_type);
#endif
  output_queue_.push(msg);
  output_queue_length_++;
}

void Channel::ChannelImpl::OutputQueuePop()
{
  output_queue_.pop();
  output_queue_length_--;
}

// Called by libevent when we can write to the pipe without blocking.
void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) {
  if (!ProcessOutgoingMessages()) {
    Close();
    listener_->OnChannelError();
  }
}

void Channel::ChannelImpl::Close() {
  // Close can be called multiple times, so we need to make sure we're
  // idempotent.

  // Unregister libevent for the listening socket and close it.
  server_listen_connection_watcher_.StopWatchingFileDescriptor();

  if (server_listen_pipe_ != -1) {
    HANDLE_EINTR(close(server_listen_pipe_));
    server_listen_pipe_ = -1;
  }

  // Unregister libevent for the FIFO and close it.
  read_watcher_.StopWatchingFileDescriptor();
  write_watcher_.StopWatchingFileDescriptor();
  if (pipe_ != -1) {
    HANDLE_EINTR(close(pipe_));
    pipe_ = -1;
  }
  if (client_pipe_ != -1) {
    Singleton<PipeMap>()->Remove(pipe_name_);
    HANDLE_EINTR(close(client_pipe_));
    client_pipe_ = -1;
  }

  while (!output_queue_.empty()) {
    Message* m = output_queue_.front();
    OutputQueuePop();
    delete m;
  }

  // Close any outstanding, received file descriptors
  for (std::vector<int>::iterator
       i = input_overflow_fds_.begin(); i != input_overflow_fds_.end(); ++i) {
    HANDLE_EINTR(close(*i));
  }
  input_overflow_fds_.clear();

#if defined(OS_MACOSX)
  for (std::list<PendingDescriptors>::iterator i = pending_fds_.begin();
       i != pending_fds_.end();
       i++) {
    (*i).fds->CommitAll();
  }
  pending_fds_.clear();
#endif

  closed_ = true;
}

bool Channel::ChannelImpl::Unsound_IsClosed() const
{
  return closed_;
}

uint32_t Channel::ChannelImpl::Unsound_NumQueuedMessages() const
{
  return output_queue_length_;
}

//------------------------------------------------------------------------------
// Channel's methods simply call through to ChannelImpl.
Channel::Channel(const std::wstring& channel_id, Mode mode,
                 Listener* listener)
    : channel_impl_(new ChannelImpl(channel_id, mode, listener)) {
  MOZ_COUNT_CTOR(IPC::Channel);
}

Channel::Channel(int fd, Mode mode, Listener* listener)
    : channel_impl_(new ChannelImpl(fd, mode, listener)) {
  MOZ_COUNT_CTOR(IPC::Channel);
}

Channel::~Channel() {
  MOZ_COUNT_DTOR(IPC::Channel);
  delete channel_impl_;
}

bool Channel::Connect() {
  return channel_impl_->Connect();
}

void Channel::Close() {
  channel_impl_->Close();
}

Channel::Listener* Channel::set_listener(Listener* listener) {
  return channel_impl_->set_listener(listener);
}

bool Channel::Send(Message* message) {
  return channel_impl_->Send(message);
}

void Channel::GetClientFileDescriptorMapping(int *src_fd, int *dest_fd) const {
  return channel_impl_->GetClientFileDescriptorMapping(src_fd, dest_fd);
}

void Channel::ResetFileDescriptor(int fd) {
  channel_impl_->ResetFileDescriptor(fd);
}

int Channel::GetFileDescriptor() const {
    return channel_impl_->GetFileDescriptor();
}

void Channel::CloseClientFileDescriptor() {
  channel_impl_->CloseClientFileDescriptor();
}

bool Channel::Unsound_IsClosed() const {
  return channel_impl_->Unsound_IsClosed();
}

uint32_t Channel::Unsound_NumQueuedMessages() const {
  return channel_impl_->Unsound_NumQueuedMessages();
}

// static
std::wstring Channel::GenerateVerifiedChannelID(const std::wstring& prefix) {
  // A random name is sufficient validation on posix systems, so we don't need
  // an additional shared secret.

  std::wstring id = prefix;
  if (!id.empty())
    id.append(L".");

  return id.append(GenerateUniqueRandomChannelID());
}

}  // namespace IPC