1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
//
// Copyright (c) 2014-2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
namespace rx
{
template <typename T, size_t inputComponentCount, size_t outputComponentCount, uint32_t alphaDefaultValueBits>
inline void CopyNativeVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const size_t attribSize = sizeof(T)* inputComponentCount;
if (attribSize == stride && inputComponentCount == outputComponentCount)
{
memcpy(output, input, count * attribSize);
return;
}
if (inputComponentCount == outputComponentCount)
{
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T*>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T*>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
}
return;
}
const T defaultAlphaValue = gl::bitCast<T>(alphaDefaultValueBits);
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T*>(input + (i * stride));
T *offsetOutput = reinterpret_cast<T*>(output) + i * outputComponentCount;
memcpy(offsetOutput, offsetInput, attribSize);
if (inputComponentCount < lastNonAlphaOutputComponent)
{
// Set the remaining G/B channels to 0.
size_t numComponents = (lastNonAlphaOutputComponent - inputComponentCount);
memset(&offsetOutput[inputComponentCount], 0, numComponents * sizeof(T));
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// Set the remaining alpha channel to the defaultAlphaValue.
offsetOutput[3] = defaultAlphaValue;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SintTo16SintVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const size_t lastNonAlphaOutputComponent = std::min<size_t>(outputComponentCount, 3);
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte*>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort*>(output)+i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] = static_cast<GLshort>(offsetInput[j]);
}
for (size_t j = inputComponentCount; j < lastNonAlphaOutputComponent; j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On integer formats, we must set the Alpha channel to 1 if it's unused.
offsetOutput[3] = 1;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy8SnormTo16SnormVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
for (size_t i = 0; i < count; i++)
{
const GLbyte *offsetInput = reinterpret_cast<const GLbyte*>(input + i * stride);
GLshort *offsetOutput = reinterpret_cast<GLshort*>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
// The original GLbyte value ranges from -128 to +127 (INT8_MAX).
// When converted to GLshort, the value must be scaled to between -32768 and +32767 (INT16_MAX).
if (offsetInput[j] > 0)
{
offsetOutput[j] = offsetInput[j] << 8 | offsetInput[j] << 1 | ((offsetInput[j] & 0x40) >> 6);
}
else
{
offsetOutput[j] = offsetInput[j] << 8;
}
}
for (size_t j = inputComponentCount; j < std::min<size_t>(outputComponentCount, 3); j++)
{
// Set remaining G/B channels to 0.
offsetOutput[j] = 0;
}
if (inputComponentCount < outputComponentCount && outputComponentCount == 4)
{
// On normalized formats, we must set the Alpha channel to the max value if it's unused.
offsetOutput[3] = INT16_MAX;
}
}
}
template <size_t inputComponentCount, size_t outputComponentCount>
inline void Copy32FixedTo32FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
static const float divisor = 1.0f / (1 << 16);
for (size_t i = 0; i < count; i++)
{
const GLfixed* offsetInput = reinterpret_cast<const GLfixed*>(input + (stride * i));
float* offsetOutput = reinterpret_cast<float*>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
offsetOutput[j] = static_cast<float>(offsetInput[j]) * divisor;
}
// 4-component output formats would need special padding in the alpha channel.
static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
"An inputComponentCount less than 4 and an outputComponentCount equal to 4 is not supported.");
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0.0f;
}
}
}
template <typename T, size_t inputComponentCount, size_t outputComponentCount, bool normalized>
inline void CopyTo32FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
typedef std::numeric_limits<T> NL;
for (size_t i = 0; i < count; i++)
{
const T *offsetInput = reinterpret_cast<const T*>(input + (stride * i));
float *offsetOutput = reinterpret_cast<float*>(output) + i * outputComponentCount;
for (size_t j = 0; j < inputComponentCount; j++)
{
if (normalized)
{
if (NL::is_signed)
{
const float divisor = 1.0f / (2 * static_cast<float>(NL::max()) + 1);
offsetOutput[j] = (2 * static_cast<float>(offsetInput[j]) + 1) * divisor;
}
else
{
offsetOutput[j] = static_cast<float>(offsetInput[j]) / NL::max();
}
}
else
{
offsetOutput[j] = static_cast<float>(offsetInput[j]);
}
}
// This would require special padding.
static_assert(!(inputComponentCount < 4 && outputComponentCount == 4),
"An inputComponentCount less than 4 and an outputComponentCount equal to 4 is not supported.");
for (size_t j = inputComponentCount; j < outputComponentCount; j++)
{
offsetOutput[j] = 0.0f;
}
}
}
namespace priv
{
template <bool isSigned, bool normalized, bool toFloat>
static inline void CopyPackedRGB(uint32_t data, uint8_t *output)
{
const uint32_t rgbSignMask = 0x200; // 1 set at the 9 bit
const uint32_t negativeMask = 0xFFFFFC00; // All bits from 10 to 31 set to 1
if (toFloat)
{
GLfloat *floatOutput = reinterpret_cast<GLfloat*>(output);
if (isSigned)
{
GLfloat finalValue = 0;
if (data & rgbSignMask)
{
int negativeNumber = data | negativeMask;
finalValue = static_cast<GLfloat>(negativeNumber);
}
else
{
finalValue = static_cast<GLfloat>(data);
}
if (normalized)
{
const int32_t maxValue = 0x1FF; // 1 set in bits 0 through 8
const int32_t minValue = 0xFFFFFE01; // Inverse of maxValue
// A 10-bit two's complement number has the possibility of being minValue - 1 but
// OpenGL's normalization rules dictate that it should be clamped to minValue in this
// case.
if (finalValue < minValue)
{
finalValue = minValue;
}
const int32_t halfRange = (maxValue - minValue) >> 1;
*floatOutput = ((finalValue - minValue) / halfRange) - 1.0f;
}
else
{
*floatOutput = finalValue;
}
}
else
{
if (normalized)
{
const uint32_t maxValue = 0x3FF; // 1 set in bits 0 through 9
*floatOutput = static_cast<GLfloat>(data) / static_cast<GLfloat>(maxValue);
}
else
{
*floatOutput = static_cast<GLfloat>(data);
}
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort*>(output);
if (data & rgbSignMask)
{
*intOutput = static_cast<GLshort>(data | negativeMask);
}
else
{
*intOutput = static_cast<GLshort>(data);
}
}
else
{
GLushort *uintOutput = reinterpret_cast<GLushort*>(output);
*uintOutput = static_cast<GLushort>(data);
}
}
}
template <bool isSigned, bool normalized, bool toFloat>
inline void CopyPackedAlpha(uint32_t data, uint8_t *output)
{
if (toFloat)
{
GLfloat *floatOutput = reinterpret_cast<GLfloat*>(output);
if (isSigned)
{
if (normalized)
{
switch (data)
{
case 0x0: *floatOutput = 0.0f; break;
case 0x1: *floatOutput = 1.0f; break;
case 0x2: *floatOutput = -1.0f; break;
case 0x3: *floatOutput = -1.0f; break;
default: UNREACHABLE();
}
}
else
{
switch (data)
{
case 0x0: *floatOutput = 0.0f; break;
case 0x1: *floatOutput = 1.0f; break;
case 0x2: *floatOutput = -2.0f; break;
case 0x3: *floatOutput = -1.0f; break;
default: UNREACHABLE();
}
}
}
else
{
if (normalized)
{
switch (data)
{
case 0x0: *floatOutput = 0.0f / 3.0f; break;
case 0x1: *floatOutput = 1.0f / 3.0f; break;
case 0x2: *floatOutput = 2.0f / 3.0f; break;
case 0x3: *floatOutput = 3.0f / 3.0f; break;
default: UNREACHABLE();
}
}
else
{
switch (data)
{
case 0x0: *floatOutput = 0.0f; break;
case 0x1: *floatOutput = 1.0f; break;
case 0x2: *floatOutput = 2.0f; break;
case 0x3: *floatOutput = 3.0f; break;
default: UNREACHABLE();
}
}
}
}
else
{
if (isSigned)
{
GLshort *intOutput = reinterpret_cast<GLshort*>(output);
switch (data)
{
case 0x0: *intOutput = 0; break;
case 0x1: *intOutput = 1; break;
case 0x2: *intOutput = -2; break;
case 0x3: *intOutput = -1; break;
default: UNREACHABLE();
}
}
else
{
GLushort *uintOutput = reinterpret_cast<GLushort*>(output);
switch (data)
{
case 0x0: *uintOutput = 0; break;
case 0x1: *uintOutput = 1; break;
case 0x2: *uintOutput = 2; break;
case 0x3: *uintOutput = 3; break;
default: UNREACHABLE();
}
}
}
}
}
template <bool isSigned, bool normalized, bool toFloat>
inline void CopyXYZ10W2ToXYZW32FVertexData(const uint8_t *input, size_t stride, size_t count, uint8_t *output)
{
const size_t outputComponentSize = toFloat ? 4 : 2;
const size_t componentCount = 4;
const uint32_t rgbMask = 0x3FF; // 1 set in bits 0 through 9
const size_t redShift = 0; // red is bits 0 through 9
const size_t greenShift = 10; // green is bits 10 through 19
const size_t blueShift = 20; // blue is bits 20 through 29
const uint32_t alphaMask = 0x3; // 1 set in bits 0 and 1
const size_t alphaShift = 30; // Alpha is the 30 and 31 bits
for (size_t i = 0; i < count; i++)
{
GLuint packedValue = *reinterpret_cast<const GLuint*>(input + (i * stride));
uint8_t *offsetOutput = output + (i * outputComponentSize * componentCount);
priv::CopyPackedRGB<isSigned, normalized, toFloat>( (packedValue >> redShift) & rgbMask, offsetOutput + (0 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat>( (packedValue >> greenShift) & rgbMask, offsetOutput + (1 * outputComponentSize));
priv::CopyPackedRGB<isSigned, normalized, toFloat>( (packedValue >> blueShift) & rgbMask, offsetOutput + (2 * outputComponentSize));
priv::CopyPackedAlpha<isSigned, normalized, toFloat>((packedValue >> alphaShift) & alphaMask, offsetOutput + (3 * outputComponentSize));
}
}
}
|