1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/TranslatorGLSL.h"
#include "angle_gl.h"
#include "compiler/translator/BuiltInFunctionEmulatorGLSL.h"
#include "compiler/translator/EmulatePrecision.h"
#include "compiler/translator/ExtensionGLSL.h"
#include "compiler/translator/OutputGLSL.h"
#include "compiler/translator/RewriteTexelFetchOffset.h"
#include "compiler/translator/VersionGLSL.h"
namespace sh
{
TranslatorGLSL::TranslatorGLSL(sh::GLenum type,
ShShaderSpec spec,
ShShaderOutput output)
: TCompiler(type, spec, output) {
}
void TranslatorGLSL::initBuiltInFunctionEmulator(BuiltInFunctionEmulator *emu,
ShCompileOptions compileOptions)
{
if (compileOptions & SH_EMULATE_ABS_INT_FUNCTION)
{
InitBuiltInAbsFunctionEmulatorForGLSLWorkarounds(emu, getShaderType());
}
if (compileOptions & SH_EMULATE_ISNAN_FLOAT_FUNCTION)
{
InitBuiltInIsnanFunctionEmulatorForGLSLWorkarounds(emu, getShaderVersion());
}
int targetGLSLVersion = ShaderOutputTypeToGLSLVersion(getOutputType());
InitBuiltInFunctionEmulatorForGLSLMissingFunctions(emu, getShaderType(), targetGLSLVersion);
}
void TranslatorGLSL::translate(TIntermNode *root, ShCompileOptions compileOptions)
{
TInfoSinkBase& sink = getInfoSink().obj;
// Write GLSL version.
writeVersion(root);
// Write extension behaviour as needed
writeExtensionBehavior(root);
// Write pragmas after extensions because some drivers consider pragmas
// like non-preprocessor tokens.
writePragma(compileOptions);
// If flattening the global invariant pragma, write invariant declarations for built-in
// variables. It should be harmless to do this twice in the case that the shader also explicitly
// did this. However, it's important to emit invariant qualifiers only for those built-in
// variables that are actually used, to avoid affecting the behavior of the shader.
if ((compileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && getPragma().stdgl.invariantAll)
{
ASSERT(wereVariablesCollected());
switch (getShaderType())
{
case GL_VERTEX_SHADER:
sink << "invariant gl_Position;\n";
// gl_PointSize should be declared invariant in both ESSL 1.00 and 3.00 fragment
// shaders if it's statically referenced.
conditionallyOutputInvariantDeclaration("gl_PointSize");
break;
case GL_FRAGMENT_SHADER:
// The preprocessor will reject this pragma if it's used in ESSL 3.00 fragment
// shaders, so we can use simple logic to determine whether to declare these
// variables invariant.
conditionallyOutputInvariantDeclaration("gl_FragCoord");
conditionallyOutputInvariantDeclaration("gl_PointCoord");
break;
default:
// Currently not reached, but leave this in for future expansion.
ASSERT(false);
break;
}
}
if ((compileOptions & SH_REWRITE_TEXELFETCHOFFSET_TO_TEXELFETCH) != 0)
{
sh::RewriteTexelFetchOffset(root, getSymbolTable(), getShaderVersion());
}
bool precisionEmulation = getResources().WEBGL_debug_shader_precision && getPragma().debugShaderPrecision;
if (precisionEmulation)
{
EmulatePrecision emulatePrecision(getSymbolTable(), getShaderVersion());
root->traverse(&emulatePrecision);
emulatePrecision.updateTree();
emulatePrecision.writeEmulationHelpers(sink, getShaderVersion(), getOutputType());
}
// Write emulated built-in functions if needed.
if (!getBuiltInFunctionEmulator().IsOutputEmpty())
{
sink << "// BEGIN: Generated code for built-in function emulation\n\n";
sink << "#define webgl_emu_precision\n\n";
getBuiltInFunctionEmulator().OutputEmulatedFunctions(sink);
sink << "// END: Generated code for built-in function emulation\n\n";
}
// Write array bounds clamping emulation if needed.
getArrayBoundsClamper().OutputClampingFunctionDefinition(sink);
// Declare gl_FragColor and glFragData as webgl_FragColor and webgl_FragData
// if it's core profile shaders and they are used.
if (getShaderType() == GL_FRAGMENT_SHADER)
{
const bool mayHaveESSL1SecondaryOutputs =
IsExtensionEnabled(getExtensionBehavior(), "GL_EXT_blend_func_extended") &&
getShaderVersion() == 100;
const bool declareGLFragmentOutputs = IsGLSL130OrNewer(getOutputType());
bool hasGLFragColor = false;
bool hasGLFragData = false;
bool hasGLSecondaryFragColor = false;
bool hasGLSecondaryFragData = false;
for (const auto &outputVar : outputVariables)
{
if (declareGLFragmentOutputs)
{
if (outputVar.name == "gl_FragColor")
{
ASSERT(!hasGLFragColor);
hasGLFragColor = true;
continue;
}
else if (outputVar.name == "gl_FragData")
{
ASSERT(!hasGLFragData);
hasGLFragData = true;
continue;
}
}
if (mayHaveESSL1SecondaryOutputs)
{
if (outputVar.name == "gl_SecondaryFragColorEXT")
{
ASSERT(!hasGLSecondaryFragColor);
hasGLSecondaryFragColor = true;
continue;
}
else if (outputVar.name == "gl_SecondaryFragDataEXT")
{
ASSERT(!hasGLSecondaryFragData);
hasGLSecondaryFragData = true;
continue;
}
}
}
ASSERT(!((hasGLFragColor || hasGLSecondaryFragColor) &&
(hasGLFragData || hasGLSecondaryFragData)));
if (hasGLFragColor)
{
sink << "out vec4 webgl_FragColor;\n";
}
if (hasGLFragData)
{
sink << "out vec4 webgl_FragData[gl_MaxDrawBuffers];\n";
}
if (hasGLSecondaryFragColor)
{
sink << "out vec4 angle_SecondaryFragColor;\n";
}
if (hasGLSecondaryFragData)
{
sink << "out vec4 angle_SecondaryFragData[" << getResources().MaxDualSourceDrawBuffers
<< "];\n";
}
}
if (getShaderType() == GL_COMPUTE_SHADER && isComputeShaderLocalSizeDeclared())
{
const sh::WorkGroupSize &localSize = getComputeShaderLocalSize();
sink << "layout (local_size_x=" << localSize[0] << ", local_size_y=" << localSize[1]
<< ", local_size_z=" << localSize[2] << ") in;\n";
}
// Write translated shader.
TOutputGLSL outputGLSL(sink, getArrayIndexClampingStrategy(), getHashFunction(), getNameMap(),
getSymbolTable(), getShaderType(), getShaderVersion(), getOutputType(),
compileOptions);
root->traverse(&outputGLSL);
}
bool TranslatorGLSL::shouldFlattenPragmaStdglInvariantAll()
{
// Required when outputting to any GLSL version greater than 1.20, but since ANGLE doesn't
// translate to that version, return true for the next higher version.
return IsGLSL130OrNewer(getOutputType());
}
bool TranslatorGLSL::shouldCollectVariables(ShCompileOptions compileOptions)
{
return (compileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) ||
TCompiler::shouldCollectVariables(compileOptions);
}
void TranslatorGLSL::writeVersion(TIntermNode *root)
{
TVersionGLSL versionGLSL(getShaderType(), getPragma(), getOutputType());
root->traverse(&versionGLSL);
int version = versionGLSL.getVersion();
// We need to write version directive only if it is greater than 110.
// If there is no version directive in the shader, 110 is implied.
if (version > 110)
{
TInfoSinkBase& sink = getInfoSink().obj;
sink << "#version " << version << "\n";
}
}
void TranslatorGLSL::writeExtensionBehavior(TIntermNode *root)
{
TInfoSinkBase& sink = getInfoSink().obj;
const TExtensionBehavior& extBehavior = getExtensionBehavior();
for (const auto &iter : extBehavior)
{
if (iter.second == EBhUndefined)
{
continue;
}
if (getOutputType() == SH_GLSL_COMPATIBILITY_OUTPUT)
{
// For GLSL output, we don't need to emit most extensions explicitly,
// but some we need to translate in GL compatibility profile.
if (iter.first == "GL_EXT_shader_texture_lod")
{
sink << "#extension GL_ARB_shader_texture_lod : " << getBehaviorString(iter.second)
<< "\n";
}
if (iter.first == "GL_EXT_draw_buffers")
{
sink << "#extension GL_ARB_draw_buffers : " << getBehaviorString(iter.second)
<< "\n";
}
}
}
// GLSL ES 3 explicit location qualifiers need to use an extension before GLSL 330
if (getShaderVersion() >= 300 && getOutputType() < SH_GLSL_330_CORE_OUTPUT)
{
sink << "#extension GL_ARB_explicit_attrib_location : require\n";
}
// Need to enable gpu_shader5 to have index constant sampler array indexing
if (getOutputType() != SH_ESSL_OUTPUT && getOutputType() < SH_GLSL_400_CORE_OUTPUT)
{
sink << "#extension GL_ARB_gpu_shader5 : ";
// Don't use "require" on WebGL 1 to avoid breaking WebGL on drivers that silently
// support index constant sampler array indexing, but don't have the extension.
if (getShaderVersion() >= 300)
{
sink << "require\n";
}
else
{
sink << "enable\n";
}
}
TExtensionGLSL extensionGLSL(getOutputType());
root->traverse(&extensionGLSL);
for (const auto &ext : extensionGLSL.getEnabledExtensions())
{
sink << "#extension " << ext << " : enable\n";
}
for (const auto &ext : extensionGLSL.getRequiredExtensions())
{
sink << "#extension " << ext << " : require\n";
}
}
void TranslatorGLSL::conditionallyOutputInvariantDeclaration(const char *builtinVaryingName)
{
if (isVaryingDefined(builtinVaryingName))
{
TInfoSinkBase &sink = getInfoSink().obj;
sink << "invariant " << builtinVaryingName << ";\n";
}
}
} // namespace sh
|