1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
//
// Copyright (c) 2002-2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// CallDAG.h: Implements a call graph DAG of functions to be re-used accross
// analyses, allows to efficiently traverse the functions in topological
// order.
#include "compiler/translator/CallDAG.h"
#include "compiler/translator/InfoSink.h"
namespace sh
{
// The CallDAGCreator does all the processing required to create the CallDAG
// structure so that the latter contains only the necessary variables.
class CallDAG::CallDAGCreator : public TIntermTraverser
{
public:
CallDAGCreator(TInfoSinkBase *info)
: TIntermTraverser(true, false, true),
mCreationInfo(info),
mCurrentFunction(nullptr),
mCurrentIndex(0)
{
}
InitResult assignIndices()
{
int skipped = 0;
for (auto &it : mFunctions)
{
// Skip unimplemented functions
if (it.second.node)
{
InitResult result = assignIndicesInternal(&it.second);
if (result != INITDAG_SUCCESS)
{
*mCreationInfo << "\n";
return result;
}
}
else
{
skipped++;
}
}
ASSERT(mFunctions.size() == mCurrentIndex + skipped);
return INITDAG_SUCCESS;
}
void fillDataStructures(std::vector<Record> *records, std::map<int, int> *idToIndex)
{
ASSERT(records->empty());
ASSERT(idToIndex->empty());
records->resize(mCurrentIndex);
for (auto &it : mFunctions)
{
CreatorFunctionData &data = it.second;
// Skip unimplemented functions
if (!data.node)
{
continue;
}
ASSERT(data.index < records->size());
Record &record = (*records)[data.index];
record.name = data.name.data();
record.node = data.node;
record.callees.reserve(data.callees.size());
for (auto &callee : data.callees)
{
record.callees.push_back(static_cast<int>(callee->index));
}
(*idToIndex)[data.node->getFunctionSymbolInfo()->getId()] =
static_cast<int>(data.index);
}
}
private:
struct CreatorFunctionData
{
CreatorFunctionData()
: node(nullptr),
index(0),
indexAssigned(false),
visiting(false)
{
}
std::set<CreatorFunctionData*> callees;
TIntermFunctionDefinition *node;
TString name;
size_t index;
bool indexAssigned;
bool visiting;
};
bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override
{
// Create the record if need be and remember the node.
if (visit == PreVisit)
{
auto it = mFunctions.find(node->getFunctionSymbolInfo()->getName());
if (it == mFunctions.end())
{
mCurrentFunction = &mFunctions[node->getFunctionSymbolInfo()->getName()];
}
else
{
mCurrentFunction = &it->second;
}
mCurrentFunction->node = node;
mCurrentFunction->name = node->getFunctionSymbolInfo()->getName();
}
else if (visit == PostVisit)
{
mCurrentFunction = nullptr;
}
return true;
}
// Aggregates the AST node for each function as well as the name of the functions called by it
bool visitAggregate(Visit visit, TIntermAggregate *node) override
{
switch (node->getOp())
{
case EOpPrototype:
if (visit == PreVisit)
{
// Function declaration, create an empty record.
auto &record = mFunctions[node->getFunctionSymbolInfo()->getName()];
record.name = node->getFunctionSymbolInfo()->getName();
}
break;
case EOpFunctionCall:
{
// Function call, add the callees
if (visit == PreVisit)
{
// Do not handle calls to builtin functions
if (node->isUserDefined())
{
auto it = mFunctions.find(node->getFunctionSymbolInfo()->getName());
ASSERT(it != mFunctions.end());
// We might be in a top-level function call to set a global variable
if (mCurrentFunction)
{
mCurrentFunction->callees.insert(&it->second);
}
}
}
break;
}
default:
break;
}
return true;
}
// Recursively assigns indices to a sub DAG
InitResult assignIndicesInternal(CreatorFunctionData *root)
{
// Iterative implementation of the index assignment algorithm. A recursive version
// would be prettier but since the CallDAG creation runs before the limiting of the
// call depth, we might get stack overflows (computation of the call depth uses the
// CallDAG).
ASSERT(root);
if (root->indexAssigned)
{
return INITDAG_SUCCESS;
}
// If we didn't have to detect recursion, functionsToProcess could be a simple queue
// in which we add the function being processed's callees. However in order to detect
// recursion we need to know which functions we are currently visiting. For that reason
// functionsToProcess will look like a concatenation of segments of the form
// [F visiting = true, subset of F callees with visiting = false] and the following
// segment (if any) will be start with a callee of F.
// This way we can remember when we started visiting a function, to put visiting back
// to false.
TVector<CreatorFunctionData *> functionsToProcess;
functionsToProcess.push_back(root);
InitResult result = INITDAG_SUCCESS;
while (!functionsToProcess.empty())
{
CreatorFunctionData *function = functionsToProcess.back();
if (function->visiting)
{
function->visiting = false;
function->index = mCurrentIndex++;
function->indexAssigned = true;
functionsToProcess.pop_back();
continue;
}
if (!function->node)
{
*mCreationInfo << "Undefined function '" << function->name
<< ")' used in the following call chain:";
result = INITDAG_UNDEFINED;
break;
}
if (function->indexAssigned)
{
functionsToProcess.pop_back();
continue;
}
function->visiting = true;
for (auto callee : function->callees)
{
functionsToProcess.push_back(callee);
// Check if the callee is already being visited after pushing it so that it appears
// in the chain printed in the info log.
if (callee->visiting)
{
*mCreationInfo << "Recursive function call in the following call chain:";
result = INITDAG_RECURSION;
break;
}
}
if (result != INITDAG_SUCCESS)
{
break;
}
}
// The call chain is made of the function we were visiting when the error was detected.
if (result != INITDAG_SUCCESS)
{
bool first = true;
for (auto function : functionsToProcess)
{
if (function->visiting)
{
if (!first)
{
*mCreationInfo << " -> ";
}
*mCreationInfo << function->name << ")";
first = false;
}
}
}
return result;
}
TInfoSinkBase *mCreationInfo;
std::map<TString, CreatorFunctionData> mFunctions;
CreatorFunctionData *mCurrentFunction;
size_t mCurrentIndex;
};
// CallDAG
CallDAG::CallDAG()
{
}
CallDAG::~CallDAG()
{
}
const size_t CallDAG::InvalidIndex = std::numeric_limits<size_t>::max();
size_t CallDAG::findIndex(const TFunctionSymbolInfo *functionInfo) const
{
auto it = mFunctionIdToIndex.find(functionInfo->getId());
if (it == mFunctionIdToIndex.end())
{
return InvalidIndex;
}
else
{
return it->second;
}
}
const CallDAG::Record &CallDAG::getRecordFromIndex(size_t index) const
{
ASSERT(index != InvalidIndex && index < mRecords.size());
return mRecords[index];
}
const CallDAG::Record &CallDAG::getRecord(const TIntermAggregate *function) const
{
size_t index = findIndex(function->getFunctionSymbolInfo());
ASSERT(index != InvalidIndex && index < mRecords.size());
return mRecords[index];
}
size_t CallDAG::size() const
{
return mRecords.size();
}
void CallDAG::clear()
{
mRecords.clear();
mFunctionIdToIndex.clear();
}
CallDAG::InitResult CallDAG::init(TIntermNode *root, TInfoSinkBase *info)
{
ASSERT(info);
CallDAGCreator creator(info);
// Creates the mapping of functions to callees
root->traverse(&creator);
// Does the topological sort and detects recursions
InitResult result = creator.assignIndices();
if (result != INITDAG_SUCCESS)
{
return result;
}
creator.fillDataStructures(&mRecords, &mFunctionIdToIndex);
return INITDAG_SUCCESS;
}
} // namespace sh
|