1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "PathSkia.h"
#include <math.h>
#include "DrawTargetSkia.h"
#include "Logging.h"
#include "HelpersSkia.h"
#include "PathHelpers.h"
namespace mozilla {
namespace gfx {
PathBuilderSkia::PathBuilderSkia(const Matrix& aTransform, const SkPath& aPath, FillRule aFillRule)
: mPath(aPath)
{
SkMatrix matrix;
GfxMatrixToSkiaMatrix(aTransform, matrix);
mPath.transform(matrix);
SetFillRule(aFillRule);
}
PathBuilderSkia::PathBuilderSkia(FillRule aFillRule)
{
SetFillRule(aFillRule);
}
void
PathBuilderSkia::SetFillRule(FillRule aFillRule)
{
mFillRule = aFillRule;
if (mFillRule == FillRule::FILL_WINDING) {
mPath.setFillType(SkPath::kWinding_FillType);
} else {
mPath.setFillType(SkPath::kEvenOdd_FillType);
}
}
void
PathBuilderSkia::MoveTo(const Point &aPoint)
{
mPath.moveTo(SkFloatToScalar(aPoint.x), SkFloatToScalar(aPoint.y));
}
void
PathBuilderSkia::LineTo(const Point &aPoint)
{
if (!mPath.countPoints()) {
MoveTo(aPoint);
} else {
mPath.lineTo(SkFloatToScalar(aPoint.x), SkFloatToScalar(aPoint.y));
}
}
void
PathBuilderSkia::BezierTo(const Point &aCP1,
const Point &aCP2,
const Point &aCP3)
{
if (!mPath.countPoints()) {
MoveTo(aCP1);
}
mPath.cubicTo(SkFloatToScalar(aCP1.x), SkFloatToScalar(aCP1.y),
SkFloatToScalar(aCP2.x), SkFloatToScalar(aCP2.y),
SkFloatToScalar(aCP3.x), SkFloatToScalar(aCP3.y));
}
void
PathBuilderSkia::QuadraticBezierTo(const Point &aCP1,
const Point &aCP2)
{
if (!mPath.countPoints()) {
MoveTo(aCP1);
}
mPath.quadTo(SkFloatToScalar(aCP1.x), SkFloatToScalar(aCP1.y),
SkFloatToScalar(aCP2.x), SkFloatToScalar(aCP2.y));
}
void
PathBuilderSkia::Close()
{
mPath.close();
}
void
PathBuilderSkia::Arc(const Point &aOrigin, float aRadius, float aStartAngle,
float aEndAngle, bool aAntiClockwise)
{
ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, aAntiClockwise);
}
Point
PathBuilderSkia::CurrentPoint() const
{
int pointCount = mPath.countPoints();
if (!pointCount) {
return Point(0, 0);
}
SkPoint point = mPath.getPoint(pointCount - 1);
return Point(SkScalarToFloat(point.fX), SkScalarToFloat(point.fY));
}
already_AddRefed<Path>
PathBuilderSkia::Finish()
{
return MakeAndAddRef<PathSkia>(mPath, mFillRule);
}
void
PathBuilderSkia::AppendPath(const SkPath &aPath)
{
mPath.addPath(aPath);
}
already_AddRefed<PathBuilder>
PathSkia::CopyToBuilder(FillRule aFillRule) const
{
return TransformedCopyToBuilder(Matrix(), aFillRule);
}
already_AddRefed<PathBuilder>
PathSkia::TransformedCopyToBuilder(const Matrix &aTransform, FillRule aFillRule) const
{
return MakeAndAddRef<PathBuilderSkia>(aTransform, mPath, aFillRule);
}
static bool
SkPathContainsPoint(const SkPath& aPath, const Point& aPoint, const Matrix& aTransform)
{
Matrix inverse = aTransform;
if (!inverse.Invert()) {
return false;
}
SkPoint point = PointToSkPoint(inverse.TransformPoint(aPoint));
return aPath.contains(point.fX, point.fY);
}
bool
PathSkia::ContainsPoint(const Point &aPoint, const Matrix &aTransform) const
{
if (!mPath.isFinite()) {
return false;
}
return SkPathContainsPoint(mPath, aPoint, aTransform);
}
bool
PathSkia::StrokeContainsPoint(const StrokeOptions &aStrokeOptions,
const Point &aPoint,
const Matrix &aTransform) const
{
if (!mPath.isFinite()) {
return false;
}
SkPaint paint;
if (!StrokeOptionsToPaint(paint, aStrokeOptions)) {
return false;
}
SkPath strokePath;
paint.getFillPath(mPath, &strokePath);
return SkPathContainsPoint(strokePath, aPoint, aTransform);
}
Rect
PathSkia::GetBounds(const Matrix &aTransform) const
{
if (!mPath.isFinite()) {
return Rect();
}
Rect bounds = SkRectToRect(mPath.getBounds());
return aTransform.TransformBounds(bounds);
}
Rect
PathSkia::GetStrokedBounds(const StrokeOptions &aStrokeOptions,
const Matrix &aTransform) const
{
if (!mPath.isFinite()) {
return Rect();
}
SkPaint paint;
if (!StrokeOptionsToPaint(paint, aStrokeOptions)) {
return Rect();
}
SkPath result;
paint.getFillPath(mPath, &result);
Rect bounds = SkRectToRect(result.getBounds());
return aTransform.TransformBounds(bounds);
}
void
PathSkia::StreamToSink(PathSink *aSink) const
{
SkPath::RawIter iter(mPath);
SkPoint points[4];
SkPath::Verb currentVerb;
while ((currentVerb = iter.next(points)) != SkPath::kDone_Verb) {
switch (currentVerb) {
case SkPath::kMove_Verb:
aSink->MoveTo(SkPointToPoint(points[0]));
break;
case SkPath::kLine_Verb:
aSink->LineTo(SkPointToPoint(points[1]));
break;
case SkPath::kCubic_Verb:
aSink->BezierTo(SkPointToPoint(points[1]),
SkPointToPoint(points[2]),
SkPointToPoint(points[3]));
break;
case SkPath::kQuad_Verb:
aSink->QuadraticBezierTo(SkPointToPoint(points[1]),
SkPointToPoint(points[2]));
break;
case SkPath::kClose_Verb:
aSink->Close();
break;
default:
MOZ_ASSERT(false);
// Unexpected verb found in path!
}
}
}
} // namespace gfx
} // namespace mozilla
|