1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsSMILKeySpline.h"
#include <stdint.h>
#include <math.h>
#define NEWTON_ITERATIONS 4
#define NEWTON_MIN_SLOPE 0.02
#define SUBDIVISION_PRECISION 0.0000001
#define SUBDIVISION_MAX_ITERATIONS 10
const double nsSMILKeySpline::kSampleStepSize =
1.0 / double(kSplineTableSize - 1);
void
nsSMILKeySpline::Init(double aX1,
double aY1,
double aX2,
double aY2)
{
mX1 = aX1;
mY1 = aY1;
mX2 = aX2;
mY2 = aY2;
if (mX1 != mY1 || mX2 != mY2)
CalcSampleValues();
}
double
nsSMILKeySpline::GetSplineValue(double aX) const
{
if (mX1 == mY1 && mX2 == mY2)
return aX;
return CalcBezier(GetTForX(aX), mY1, mY2);
}
void
nsSMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, double& aDY) const
{
double t = GetTForX(aX);
aDX = GetSlope(t, mX1, mX2);
aDY = GetSlope(t, mY1, mY2);
}
void
nsSMILKeySpline::CalcSampleValues()
{
for (uint32_t i = 0; i < kSplineTableSize; ++i) {
mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2);
}
}
/*static*/ double
nsSMILKeySpline::CalcBezier(double aT,
double aA1,
double aA2)
{
// use Horner's scheme to evaluate the Bezier polynomial
return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
}
/*static*/ double
nsSMILKeySpline::GetSlope(double aT,
double aA1,
double aA2)
{
return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
}
double
nsSMILKeySpline::GetTForX(double aX) const
{
// Early return when aX == 1.0 to avoid floating-point inaccuracies.
if (aX == 1.0) {
return 1.0;
}
// Find interval where t lies
double intervalStart = 0.0;
const double* currentSample = &mSampleValues[1];
const double* const lastSample = &mSampleValues[kSplineTableSize - 1];
for (; currentSample != lastSample && *currentSample <= aX;
++currentSample) {
intervalStart += kSampleStepSize;
}
--currentSample; // t now lies between *currentSample and *currentSample+1
// Interpolate to provide an initial guess for t
double dist = (aX - *currentSample) /
(*(currentSample+1) - *currentSample);
double guessForT = intervalStart + dist * kSampleStepSize;
// Check the slope to see what strategy to use. If the slope is too small
// Newton-Raphson iteration won't converge on a root so we use bisection
// instead.
double initialSlope = GetSlope(guessForT, mX1, mX2);
if (initialSlope >= NEWTON_MIN_SLOPE) {
return NewtonRaphsonIterate(aX, guessForT);
} else if (initialSlope == 0.0) {
return guessForT;
} else {
return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
}
}
double
nsSMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const
{
// Refine guess with Newton-Raphson iteration
for (uint32_t i = 0; i < NEWTON_ITERATIONS; ++i) {
// We're trying to find where f(t) = aX,
// so we're actually looking for a root for: CalcBezier(t) - aX
double currentX = CalcBezier(aGuessT, mX1, mX2) - aX;
double currentSlope = GetSlope(aGuessT, mX1, mX2);
if (currentSlope == 0.0)
return aGuessT;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
double
nsSMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const
{
double currentX;
double currentT;
uint32_t i = 0;
do
{
currentT = aA + (aB - aA) / 2.0;
currentX = CalcBezier(currentT, mX1, mX2) - aX;
if (currentX > 0.0) {
aB = currentT;
} else {
aA = currentT;
}
} while (fabs(currentX) > SUBDIVISION_PRECISION
&& ++i < SUBDIVISION_MAX_ITERATIONS);
return currentT;
}
|