summaryrefslogtreecommitdiffstats
path: root/dom/media/webaudio/blink/Biquad.cpp
blob: 3aa5260725c397444df965c473bc0b20bd728d6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "Biquad.h"

#include <float.h>
#include <algorithm>
#include <math.h>

namespace WebCore {

Biquad::Biquad()
{
    // Initialize as pass-thru (straight-wire, no filter effect)
    setNormalizedCoefficients(1, 0, 0, 1, 0, 0);

    reset(); // clear filter memory
}

Biquad::~Biquad()
{
}

void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess)
{
    // Create local copies of member variables
    double x1 = m_x1;
    double x2 = m_x2;
    double y1 = m_y1;
    double y2 = m_y2;

    double b0 = m_b0;
    double b1 = m_b1;
    double b2 = m_b2;
    double a1 = m_a1;
    double a2 = m_a2;

    for (size_t i = 0; i < framesToProcess; ++i) {
        // FIXME: this can be optimized by pipelining the multiply adds...
        double x = sourceP[i];
        double y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2;

        destP[i] = y;

        // Update state variables
        x2 = x1;
        x1 = x;
        y2 = y1;
        y1 = y;
    }

    // Avoid introducing a stream of subnormals when input is silent and the
    // tail approaches zero.
    // TODO: Remove this code when Bug 1157635 is fixed.
    if (x1 == 0.0 && x2 == 0.0 && (y1 != 0.0 || y2 != 0.0) &&
        fabs(y1) < FLT_MIN && fabs(y2) < FLT_MIN) {
      // Flush future values to zero (until there is new input).
      y1 = y2 = 0.0;
      // Flush calculated values.
      for (int i = framesToProcess; i-- && fabsf(destP[i]) < FLT_MIN; ) {
        destP[i] = 0.0f;
      }
    }
    // Local variables back to member.
    m_x1 = x1;
    m_x2 = x2;
    m_y1 = y1;
    m_y2 = y2;
}

void Biquad::reset()
{
    m_x1 = m_x2 = m_y1 = m_y2 = 0;
}

void Biquad::setLowpassParams(double cutoff, double resonance)
{
    // Limit cutoff to 0 to 1.
    cutoff = std::max(0.0, std::min(cutoff, 1.0));

    if (cutoff == 1) {
        // When cutoff is 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    } else if (cutoff > 0) {
        // Compute biquad coefficients for lowpass filter
        resonance = std::max(0.0, resonance); // can't go negative
        double g = pow(10.0, -0.05 * resonance);
        double w0 = M_PI * cutoff;
        double cos_w0 = cos(w0);
        double alpha = 0.5 * sin(w0) * g;

        double b1 = 1.0 - cos_w0;
        double b0 = 0.5 * b1;
        double b2 = b0;
        double a0 = 1.0 + alpha;
        double a1 = -2.0 * cos_w0;
        double a2 = 1.0 - alpha;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
        // When cutoff is zero, nothing gets through the filter, so set
        // coefficients up correctly.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setHighpassParams(double cutoff, double resonance)
{
    // Limit cutoff to 0 to 1.
    cutoff = std::max(0.0, std::min(cutoff, 1.0));

    if (cutoff == 1) {
        // The z-transform is 0.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    } else if (cutoff > 0) {
        // Compute biquad coefficients for highpass filter
        resonance = std::max(0.0, resonance); // can't go negative
        double g = pow(10.0, -0.05 * resonance);
        double w0 = M_PI * cutoff;
        double cos_w0 = cos(w0);
        double alpha = 0.5 * sin(w0) * g;

        double b1 = -1.0 - cos_w0;
        double b0 = -0.5 * b1;
        double b2 = b0;
        double a0 = 1.0 + alpha;
        double a1 = -2.0 * cos_w0;
        double a2 = 1.0 - alpha;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
      // When cutoff is zero, we need to be careful because the above
      // gives a quadratic divided by the same quadratic, with poles
      // and zeros on the unit circle in the same place. When cutoff
      // is zero, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2)
{
    double a0Inverse = 1 / a0;

    m_b0 = b0 * a0Inverse;
    m_b1 = b1 * a0Inverse;
    m_b2 = b2 * a0Inverse;
    m_a1 = a1 * a0Inverse;
    m_a2 = a2 * a0Inverse;
}

void Biquad::setLowShelfParams(double frequency, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    double A = pow(10.0, dbGain / 40);

    if (frequency == 1) {
        // The z-transform is a constant gain.
        setNormalizedCoefficients(A * A, 0, 0,
                                  1, 0, 0);
    } else if (frequency > 0) {
        double w0 = M_PI * frequency;
        double S = 1; // filter slope (1 is max value)
        double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
        double k = cos(w0);
        double k2 = 2 * sqrt(A) * alpha;
        double aPlusOne = A + 1;
        double aMinusOne = A - 1;

        double b0 = A * (aPlusOne - aMinusOne * k + k2);
        double b1 = 2 * A * (aMinusOne - aPlusOne * k);
        double b2 = A * (aPlusOne - aMinusOne * k - k2);
        double a0 = aPlusOne + aMinusOne * k + k2;
        double a1 = -2 * (aMinusOne + aPlusOne * k);
        double a2 = aPlusOne + aMinusOne * k - k2;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
        // When frequency is 0, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setHighShelfParams(double frequency, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    double A = pow(10.0, dbGain / 40);

    if (frequency == 1) {
        // The z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    } else if (frequency > 0) {
        double w0 = M_PI * frequency;
        double S = 1; // filter slope (1 is max value)
        double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
        double k = cos(w0);
        double k2 = 2 * sqrt(A) * alpha;
        double aPlusOne = A + 1;
        double aMinusOne = A - 1;

        double b0 = A * (aPlusOne + aMinusOne * k + k2);
        double b1 = -2 * A * (aMinusOne + aPlusOne * k);
        double b2 = A * (aPlusOne + aMinusOne * k - k2);
        double a0 = aPlusOne - aMinusOne * k + k2;
        double a1 = 2 * (aMinusOne - aPlusOne * k);
        double a2 = aPlusOne - aMinusOne * k - k2;

        setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
    } else {
        // When frequency = 0, the filter is just a gain, A^2.
        setNormalizedCoefficients(A * A, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setPeakingParams(double frequency, double Q, double dbGain)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    double A = pow(10.0, dbGain / 40);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = M_PI * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1 + alpha * A;
            double b1 = -2 * k;
            double b2 = 1 - alpha * A;
            double a0 = 1 + alpha / A;
            double a1 = -2 * k;
            double a2 = 1 - alpha / A;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is A^2, so
            // set the filter that way.
            setNormalizedCoefficients(A * A, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setAllpassParams(double frequency, double Q)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = M_PI * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1 - alpha;
            double b1 = -2 * k;
            double b2 = 1 + alpha;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is -1, so
            // set the filter that way.
            setNormalizedCoefficients(-1, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setNotchParams(double frequency, double Q)
{
    // Clip frequencies to between 0 and 1, inclusive.
    frequency = std::max(0.0, std::min(frequency, 1.0));

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        if (Q > 0) {
            double w0 = M_PI * frequency;
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = 1;
            double b1 = -2 * k;
            double b2 = 1;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is 0, so
            // set the filter that way.
            setNormalizedCoefficients(0, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When frequency is 0 or 1, the z-transform is 1.
        setNormalizedCoefficients(1, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setBandpassParams(double frequency, double Q)
{
    // No negative frequencies allowed.
    frequency = std::max(0.0, frequency);

    // Don't let Q go negative, which causes an unstable filter.
    Q = std::max(0.0, Q);

    if (frequency > 0 && frequency < 1) {
        double w0 = M_PI * frequency;
        if (Q > 0) {
            double alpha = sin(w0) / (2 * Q);
            double k = cos(w0);

            double b0 = alpha;
            double b1 = 0;
            double b2 = -alpha;
            double a0 = 1 + alpha;
            double a1 = -2 * k;
            double a2 = 1 - alpha;

            setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
        } else {
            // When Q = 0, the above formulas have problems. If we look at
            // the z-transform, we can see that the limit as Q->0 is 1, so
            // set the filter that way.
            setNormalizedCoefficients(1, 0, 0,
                                      1, 0, 0);
        }
    } else {
        // When the cutoff is zero, the z-transform approaches 0, if Q
        // > 0. When both Q and cutoff are zero, the z-transform is
        // pretty much undefined. What should we do in this case?
        // For now, just make the filter 0. When the cutoff is 1, the
        // z-transform also approaches 0.
        setNormalizedCoefficients(0, 0, 0,
                                  1, 0, 0);
    }
}

void Biquad::setZeroPolePairs(const Complex &zero, const Complex &pole)
{
    double b0 = 1;
    double b1 = -2 * zero.real();

    double zeroMag = abs(zero);
    double b2 = zeroMag * zeroMag;

    double a1 = -2 * pole.real();

    double poleMag = abs(pole);
    double a2 = poleMag * poleMag;
    setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
}

void Biquad::setAllpassPole(const Complex &pole)
{
    Complex zero = Complex(1, 0) / pole;
    setZeroPolePairs(zero, pole);
}

void Biquad::getFrequencyResponse(int nFrequencies,
                                  const float* frequency,
                                  float* magResponse,
                                  float* phaseResponse)
{
    // Evaluate the Z-transform of the filter at given normalized
    // frequency from 0 to 1.  (1 corresponds to the Nyquist
    // frequency.)
    //
    // The z-transform of the filter is
    //
    // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
    //
    // Evaluate as
    //
    // b0 + (b1 + b2*z1)*z1
    // --------------------
    // 1 + (a1 + a2*z1)*z1
    //
    // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)

    // Make local copies of the coefficients as a micro-optimization.
    double b0 = m_b0;
    double b1 = m_b1;
    double b2 = m_b2;
    double a1 = m_a1;
    double a2 = m_a2;

    for (int k = 0; k < nFrequencies; ++k) {
        double omega = -M_PI * frequency[k];
        Complex z = Complex(cos(omega), sin(omega));
        Complex numerator = b0 + (b1 + b2 * z) * z;
        Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z;
        // Strangely enough, using complex division:
        // e.g. Complex response = numerator / denominator;
        // fails on our test machines, yielding infinities and NaNs, so we do
        // things the long way here.
        double n = norm(denominator);
        double r = (real(numerator)*real(denominator) + imag(numerator)*imag(denominator)) / n;
        double i = (imag(numerator)*real(denominator) - real(numerator)*imag(denominator)) / n;
        std::complex<double> response = std::complex<double>(r, i);

        magResponse[k] = static_cast<float>(abs(response));
        phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response)));
    }
}

} // namespace WebCore