summaryrefslogtreecommitdiffstats
path: root/dom/media/MediaStreamGraphImpl.h
blob: c7197549326a136293379cd3738b2ff95825e636 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef MOZILLA_MEDIASTREAMGRAPHIMPL_H_
#define MOZILLA_MEDIASTREAMGRAPHIMPL_H_

#include "MediaStreamGraph.h"

#include "nsDataHashtable.h"

#include "nsITimer.h"
#include "mozilla/Monitor.h"
#include "mozilla/TimeStamp.h"
#include "nsIMemoryReporter.h"
#include "nsIThread.h"
#include "nsIRunnable.h"
#include "nsIAsyncShutdown.h"
#include "Latency.h"
#include "mozilla/Services.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/WeakPtr.h"
#include "GraphDriver.h"
#include "AudioMixer.h"

namespace mozilla {

template <typename T>
class LinkedList;
#ifdef MOZ_WEBRTC
class AudioOutputObserver;
#endif

/**
 * A per-stream update message passed from the media graph thread to the
 * main thread.
 */
struct StreamUpdate
{
  RefPtr<MediaStream> mStream;
  StreamTime mNextMainThreadCurrentTime;
  bool mNextMainThreadFinished;
};

/**
 * This represents a message run on the graph thread to modify stream or graph
 * state.  These are passed from main thread to graph thread through
 * AppendMessage(), or scheduled on the graph thread with
 * RunMessageAfterProcessing().  A ControlMessage
 * always has a weak reference to a particular affected stream.
 */
class ControlMessage
{
public:
  explicit ControlMessage(MediaStream* aStream) : mStream(aStream)
  {
    MOZ_COUNT_CTOR(ControlMessage);
  }
  // All these run on the graph thread
  virtual ~ControlMessage()
  {
    MOZ_COUNT_DTOR(ControlMessage);
  }
  // Do the action of this message on the MediaStreamGraph thread. Any actions
  // affecting graph processing should take effect at mProcessedTime.
  // All stream data for times < mProcessedTime has already been
  // computed.
  virtual void Run() = 0;
  // RunDuringShutdown() is only relevant to messages generated on the main
  // thread (for AppendMessage()).
  // When we're shutting down the application, most messages are ignored but
  // some cleanup messages should still be processed (on the main thread).
  // This must not add new control messages to the graph.
  virtual void RunDuringShutdown() {}
  MediaStream* GetStream() { return mStream; }

protected:
  // We do not hold a reference to mStream. The graph will be holding
  // a reference to the stream until the Destroy message is processed. The
  // last message referencing a stream is the Destroy message for that stream.
  MediaStream* mStream;
};

class MessageBlock
{
public:
  nsTArray<UniquePtr<ControlMessage>> mMessages;
};

/**
 * The implementation of a media stream graph. This class is private to this
 * file. It's not in the anonymous namespace because MediaStream needs to
 * be able to friend it.
 *
 * There can be multiple MediaStreamGraph per process: one per AudioChannel.
 * Additionaly, each OfflineAudioContext object creates its own MediaStreamGraph
 * object too.
 */
class MediaStreamGraphImpl : public MediaStreamGraph,
                             public nsIMemoryReporter,
                             public nsITimerCallback
{
public:
  NS_DECL_THREADSAFE_ISUPPORTS
  NS_DECL_NSIMEMORYREPORTER
  NS_DECL_NSITIMERCALLBACK

  /**
   * Use aGraphDriverRequested with SYSTEM_THREAD_DRIVER or AUDIO_THREAD_DRIVER
   * to create a MediaStreamGraph which provides support for real-time audio
   * and/or video.  Set it to OFFLINE_THREAD_DRIVER in order to create a
   * non-realtime instance which just churns through its inputs and produces
   * output.  Those objects currently only support audio, and are used to
   * implement OfflineAudioContext.  They do not support MediaStream inputs.
   */
  explicit MediaStreamGraphImpl(GraphDriverType aGraphDriverRequested,
                                TrackRate aSampleRate,
                                dom::AudioChannel aChannel);

  /**
   * Unregisters memory reporting and deletes this instance. This should be
   * called instead of calling the destructor directly.
   */
  void Destroy();

  // Main thread only.
  /**
   * This runs every time we need to sync state from the media graph thread
   * to the main thread while the main thread is not in the middle
   * of a script. It runs during a "stable state" (per HTML5) or during
   * an event posted to the main thread.
   * The boolean affects which boolean controlling runnable dispatch is cleared
   */
  void RunInStableState(bool aSourceIsMSG);
  /**
   * Ensure a runnable to run RunInStableState is posted to the appshell to
   * run at the next stable state (per HTML5).
   * See EnsureStableStateEventPosted.
   */
  void EnsureRunInStableState();
  /**
   * Called to apply a StreamUpdate to its stream.
   */
  void ApplyStreamUpdate(StreamUpdate* aUpdate);
  /**
   * Append a ControlMessage to the message queue. This queue is drained
   * during RunInStableState; the messages will run on the graph thread.
   */
  void AppendMessage(UniquePtr<ControlMessage> aMessage);

  // Shutdown helpers.

  static already_AddRefed<nsIAsyncShutdownClient>
  GetShutdownBarrier()
  {
    nsCOMPtr<nsIAsyncShutdownService> svc = services::GetAsyncShutdown();
    MOZ_RELEASE_ASSERT(svc);

    nsCOMPtr<nsIAsyncShutdownClient> barrier;
    nsresult rv = svc->GetProfileBeforeChange(getter_AddRefs(barrier));
    if (!barrier) {
      // We are probably in a content process. We need to do cleanup at
      // XPCOM shutdown in leakchecking builds.
      rv = svc->GetXpcomWillShutdown(getter_AddRefs(barrier));
    }
    MOZ_RELEASE_ASSERT(NS_SUCCEEDED(rv));
    MOZ_RELEASE_ASSERT(barrier);
    return barrier.forget();
  }

  class ShutdownTicket final
  {
  public:
    explicit ShutdownTicket(nsIAsyncShutdownBlocker* aBlocker) : mBlocker(aBlocker) {}
    NS_INLINE_DECL_REFCOUNTING(ShutdownTicket)
  private:
    ~ShutdownTicket()
    {
      nsCOMPtr<nsIAsyncShutdownClient> barrier = GetShutdownBarrier();
      barrier->RemoveBlocker(mBlocker);
    }

    nsCOMPtr<nsIAsyncShutdownBlocker> mBlocker;
  };

  /**
   * Make this MediaStreamGraph enter forced-shutdown state. This state
   * will be noticed by the media graph thread, which will shut down all streams
   * and other state controlled by the media graph thread.
   * This is called during application shutdown.
   */
  void ForceShutDown(ShutdownTicket* aShutdownTicket);

  /**
   * Called before the thread runs.
   */
  void Init();

  /**
   * Respond to CollectReports with sizes collected on the graph thread.
   */
  static void
  FinishCollectReports(nsIHandleReportCallback* aHandleReport,
                       nsISupports* aData,
                       const nsTArray<AudioNodeSizes>& aAudioStreamSizes);

  // The following methods run on the graph thread (or possibly the main thread
  // if mLifecycleState > LIFECYCLE_RUNNING)
  void CollectSizesForMemoryReport(
         already_AddRefed<nsIHandleReportCallback> aHandleReport,
         already_AddRefed<nsISupports> aHandlerData);

  /**
   * Returns true if this MediaStreamGraph should keep running
   */
  bool UpdateMainThreadState();

  /**
   * Returns true if this MediaStreamGraph should keep running
   */
  bool OneIteration(GraphTime aStateEnd);

  /**
   * Called from the driver, when the graph thread is about to stop, to tell
   * the main thread to attempt to begin cleanup.  The main thread may either
   * shutdown or revive the graph depending on whether it receives new
   * messages.
   */
  void SignalMainThreadCleanup();

  bool Running() const
  {
    mMonitor.AssertCurrentThreadOwns();
    return mLifecycleState == LIFECYCLE_RUNNING;
  }

  /* This is the end of the current iteration, that is, the current time of the
   * graph. */
  GraphTime IterationEnd() const;

  /**
   * Ensure there is an event posted to the main thread to run RunInStableState.
   * mMonitor must be held.
   * See EnsureRunInStableState
   */
  void EnsureStableStateEventPosted();
  /**
   * Generate messages to the main thread to update it for all state changes.
   * mMonitor must be held.
   */
  void PrepareUpdatesToMainThreadState(bool aFinalUpdate);
  /**
   * Returns false if there is any stream that has finished but not yet finished
   * playing out.
   */
  bool AllFinishedStreamsNotified();
  /**
   * If we are rendering in non-realtime mode, we don't want to send messages to
   * the main thread at each iteration for performance reasons. We instead
   * notify the main thread at the same rate
   */
  bool ShouldUpdateMainThread();
  // The following methods are the various stages of RunThread processing.
  /**
   * Advance all stream state to mStateComputedTime.
   */
  void UpdateCurrentTimeForStreams(GraphTime aPrevCurrentTime);
  /**
   * Process chunks for all streams and raise events for properties that have
   * changed, such as principalId.
   */
  void ProcessChunkMetadata(GraphTime aPrevCurrentTime);
  /**
   * Process chunks for the given stream and interval, and raise events for
   * properties that have changed, such as principalId.
   */
  template<typename C, typename Chunk>
  void ProcessChunkMetadataForInterval(MediaStream* aStream,
                                       TrackID aTrackID,
                                       C& aSegment,
                                       StreamTime aStart,
                                       StreamTime aEnd);
  /**
   * Process graph messages in mFrontMessageQueue.
   */
  void RunMessagesInQueue();
  /**
   * Update stream processing order and recompute stream blocking until
   * aEndBlockingDecisions.
   */
  void UpdateGraph(GraphTime aEndBlockingDecisions);

  void SwapMessageQueues()
  {
    MOZ_ASSERT(CurrentDriver()->OnThread());
    MOZ_ASSERT(mFrontMessageQueue.IsEmpty());
    mMonitor.AssertCurrentThreadOwns();
    mFrontMessageQueue.SwapElements(mBackMessageQueue);
  }
  /**
   * Do all the processing and play the audio and video, from
   * mProcessedTime to mStateComputedTime.
   */
  void Process();
  /**
   * Extract any state updates pending in aStream, and apply them.
   */
  void ExtractPendingInput(SourceMediaStream* aStream,
                           GraphTime aDesiredUpToTime,
                           bool* aEnsureNextIteration);

  /**
   * For use during ProcessedMediaStream::ProcessInput() or
   * MediaStreamListener callbacks, when graph state cannot be changed.
   * Schedules |aMessage| to run after processing, at a time when graph state
   * can be changed.  Graph thread.
   */
  void RunMessageAfterProcessing(UniquePtr<ControlMessage> aMessage);

  /**
   * Called when a suspend/resume/close operation has been completed, on the
   * graph thread.
   */
  void AudioContextOperationCompleted(MediaStream* aStream,
                                      void* aPromise,
                                      dom::AudioContextOperation aOperation);

  /**
   * Apply and AudioContext operation (suspend/resume/closed), on the graph
   * thread.
   */
  void ApplyAudioContextOperationImpl(MediaStream* aDestinationStream,
                                      const nsTArray<MediaStream*>& aStreams,
                                      dom::AudioContextOperation aOperation,
                                      void* aPromise);

  /**
   * Increment suspend count on aStream and move it to mSuspendedStreams if
   * necessary.
   */
  void IncrementSuspendCount(MediaStream* aStream);
  /**
   * Increment suspend count on aStream and move it to mStreams if
   * necessary.
   */
  void DecrementSuspendCount(MediaStream* aStream);

  /*
   * Move streams from the mStreams to mSuspendedStream if suspending/closing an
   * AudioContext, or the inverse when resuming an AudioContext.
   */
  void SuspendOrResumeStreams(dom::AudioContextOperation aAudioContextOperation,
                              const nsTArray<MediaStream*>& aStreamSet);

  /**
   * Determine if we have any audio tracks, or are about to add any audiotracks.
   * Also checks if we'll need the AEC running (i.e. microphone input tracks)
   */
  bool AudioTrackPresent(bool& aNeedsAEC);

  /**
   * Sort mStreams so that every stream not in a cycle is after any streams
   * it depends on, and every stream in a cycle is marked as being in a cycle.
   * Also sets mIsConsumed on every stream.
   */
  void UpdateStreamOrder();

  /**
   * Returns smallest value of t such that t is a multiple of
   * WEBAUDIO_BLOCK_SIZE and t > aTime.
   */
  GraphTime RoundUpToNextAudioBlock(GraphTime aTime);
  /**
   * Produce data for all streams >= aStreamIndex for the current time interval.
   * Advances block by block, each iteration producing data for all streams
   * for a single block.
   * This is called whenever we have an AudioNodeStream in the graph.
   */
  void ProduceDataForStreamsBlockByBlock(uint32_t aStreamIndex,
                                         TrackRate aSampleRate);
  /**
   * If aStream will underrun between aTime, and aEndBlockingDecisions, returns
   * the time at which the underrun will start. Otherwise return
   * aEndBlockingDecisions.
   */
  GraphTime WillUnderrun(MediaStream* aStream, GraphTime aEndBlockingDecisions);

  /**
   * Given a graph time aTime, convert it to a stream time taking into
   * account the time during which aStream is scheduled to be blocked.
   */
  StreamTime GraphTimeToStreamTimeWithBlocking(MediaStream* aStream, GraphTime aTime);

  /**
   * Call NotifyHaveCurrentData on aStream's listeners.
   */
  void NotifyHasCurrentData(MediaStream* aStream);
  /**
   * If aStream needs an audio stream but doesn't have one, create it.
   * If aStream doesn't need an audio stream but has one, destroy it.
   */
  void CreateOrDestroyAudioStreams(MediaStream* aStream);
  /**
   * Queue audio (mix of stream audio and silence for blocked intervals)
   * to the audio output stream. Returns the number of frames played.
   */
  StreamTime PlayAudio(MediaStream* aStream);
  /**
   * No more data will be forthcoming for aStream. The stream will end
   * at the current buffer end point. The StreamTracks's tracks must be
   * explicitly set to finished by the caller.
   */
  void OpenAudioInputImpl(int aID,
                          AudioDataListener *aListener);
  virtual nsresult OpenAudioInput(int aID,
                                  AudioDataListener *aListener) override;
  void CloseAudioInputImpl(AudioDataListener *aListener);
  virtual void CloseAudioInput(AudioDataListener *aListener) override;

  void FinishStream(MediaStream* aStream);
  /**
   * Compute how much stream data we would like to buffer for aStream.
   */
  StreamTime GetDesiredBufferEnd(MediaStream* aStream);
  /**
   * Returns true when there are no active streams.
   */
  bool IsEmpty() const
  {
    return mStreams.IsEmpty() && mSuspendedStreams.IsEmpty() && mPortCount == 0;
  }

  /**
   * Add aStream to the graph and initializes its graph-specific state.
   */
  void AddStreamGraphThread(MediaStream* aStream);
  /**
   * Remove aStream from the graph. Ensures that pending messages about the
   * stream back to the main thread are flushed.
   */
  void RemoveStreamGraphThread(MediaStream* aStream);
  /**
   * Remove aPort from the graph and release it.
   */
  void DestroyPort(MediaInputPort* aPort);
  /**
   * Mark the media stream order as dirty.
   */
  void SetStreamOrderDirty()
  {
    mStreamOrderDirty = true;
  }

  // Always stereo for now.
  uint32_t AudioChannelCount() const { return 2; }

  double MediaTimeToSeconds(GraphTime aTime) const
  {
    NS_ASSERTION(aTime > -STREAM_TIME_MAX && aTime <= STREAM_TIME_MAX,
                 "Bad time");
    return static_cast<double>(aTime)/GraphRate();
  }

  GraphTime SecondsToMediaTime(double aS) const
  {
    NS_ASSERTION(0 <= aS && aS <= TRACK_TICKS_MAX/TRACK_RATE_MAX,
                 "Bad seconds");
    return GraphRate() * aS;
  }

  GraphTime MillisecondsToMediaTime(int32_t aMS) const
  {
    return RateConvertTicksRoundDown(GraphRate(), 1000, aMS);
  }

  /**
   * Signal to the graph that the thread has paused indefinitly,
   * or resumed.
   */
  void PausedIndefinitly();
  void ResumedFromPaused();

  /**
   * Not safe to call off the MediaStreamGraph thread unless monitor is held!
   */
  GraphDriver* CurrentDriver() const
  {
    AssertOnGraphThreadOrNotRunning();
    return mDriver;
  }

  bool RemoveMixerCallback(MixerCallbackReceiver* aReceiver)
  {
    return mMixer.RemoveCallback(aReceiver);
  }

  /**
   * Effectively set the new driver, while we are switching.
   * It is only safe to call this at the very end of an iteration, when there
   * has been a SwitchAtNextIteration call during the iteration. The driver
   * should return and pass the control to the new driver shortly after.
   * We can also switch from Revive() (on MainThread), in which case the
   * monitor is held
   */
  void SetCurrentDriver(GraphDriver* aDriver)
  {
    AssertOnGraphThreadOrNotRunning();
    mDriver = aDriver;
  }

  Monitor& GetMonitor()
  {
    return mMonitor;
  }

  void EnsureNextIteration()
  {
    mNeedAnotherIteration = true; // atomic
    // Note: GraphDriver must ensure that there's no race on setting
    // mNeedAnotherIteration and mGraphDriverAsleep -- see WaitForNextIteration()
    if (mGraphDriverAsleep) { // atomic
      MonitorAutoLock mon(mMonitor);
      CurrentDriver()->WakeUp(); // Might not be the same driver; might have woken already
    }
  }

  void EnsureNextIterationLocked()
  {
    mNeedAnotherIteration = true; // atomic
    if (mGraphDriverAsleep) { // atomic
      CurrentDriver()->WakeUp(); // Might not be the same driver; might have woken already
    }
  }

  // Capture Stream API. This allows to get a mixed-down output for a window.
  void RegisterCaptureStreamForWindow(uint64_t aWindowId,
                                      ProcessedMediaStream* aCaptureStream);
  void UnregisterCaptureStreamForWindow(uint64_t aWindowId);
  already_AddRefed<MediaInputPort>
  ConnectToCaptureStream(uint64_t aWindowId, MediaStream* aMediaStream);

  class StreamSet {
  public:
    class iterator {
    public:
      explicit iterator(MediaStreamGraphImpl& aGraph)
        : mGraph(&aGraph), mArrayNum(-1), mArrayIndex(0)
      {
        ++(*this);
      }
      iterator() : mGraph(nullptr), mArrayNum(2), mArrayIndex(0) {}
      MediaStream* operator*()
      {
        return Array()->ElementAt(mArrayIndex);
      }
      iterator operator++()
      {
        ++mArrayIndex;
        while (mArrayNum < 2 &&
          (mArrayNum < 0 || mArrayIndex >= Array()->Length())) {
          ++mArrayNum;
          mArrayIndex = 0;
        }
        return *this;
      }
      bool operator==(const iterator& aOther) const
      {
        return mArrayNum == aOther.mArrayNum && mArrayIndex == aOther.mArrayIndex;
      }
      bool operator!=(const iterator& aOther) const
      {
        return !(*this == aOther);
      }
    private:
      nsTArray<MediaStream*>* Array()
      {
        return mArrayNum == 0 ? &mGraph->mStreams : &mGraph->mSuspendedStreams;
      }
      MediaStreamGraphImpl* mGraph;
      int mArrayNum;
      uint32_t mArrayIndex;
    };

    explicit StreamSet(MediaStreamGraphImpl& aGraph) : mGraph(aGraph) {}
    iterator begin() { return iterator(mGraph); }
    iterator end() { return iterator(); }
  private:
    MediaStreamGraphImpl& mGraph;
  };
  StreamSet AllStreams() { return StreamSet(*this); }

  // Data members
  //
  /**
   * Graphs own owning references to their driver, until shutdown. When a driver
   * switch occur, previous driver is either deleted, or it's ownership is
   * passed to a event that will take care of the asynchronous cleanup, as
   * audio stream can take some time to shut down.
   */
  RefPtr<GraphDriver> mDriver;

  // The following state is managed on the graph thread only, unless
  // mLifecycleState > LIFECYCLE_RUNNING in which case the graph thread
  // is not running and this state can be used from the main thread.

  /**
   * The graph keeps a reference to each stream.
   * References are maintained manually to simplify reordering without
   * unnecessary thread-safe refcount changes.
   */
  nsTArray<MediaStream*> mStreams;
  /**
   * This stores MediaStreams that are part of suspended AudioContexts.
   * mStreams and mSuspendStream are disjoint sets: a stream is either suspended
   * or not suspended. Suspended streams are not ordered in UpdateStreamOrder,
   * and are therefore not doing any processing.
   */
  nsTArray<MediaStream*> mSuspendedStreams;
  /**
   * Suspended AudioContext IDs
   */
  nsTHashtable<nsUint64HashKey> mSuspendedContexts;
  /**
   * Streams from mFirstCycleBreaker to the end of mStreams produce output
   * before they receive input.  They correspond to DelayNodes that are in
   * cycles.
   */
  uint32_t mFirstCycleBreaker;
  /**
   * Blocking decisions have been computed up to this time.
   * Between each iteration, this is the same as mProcessedTime.
   */
  GraphTime mStateComputedTime = 0;
  /**
   * All stream contents have been computed up to this time.
   * The next batch of updates from the main thread will be processed
   * at this time.  This is behind mStateComputedTime during processing.
   */
  GraphTime mProcessedTime = 0;
  /**
   * Date of the last time we updated the main thread with the graph state.
   */
  TimeStamp mLastMainThreadUpdate;
  /**
   * Number of active MediaInputPorts
   */
  int32_t mPortCount;

  /**
   * Devices to use for cubeb input & output, or NULL for no input (void*),
   * and boolean to control if we want input/output
   */
  bool mInputWanted;
  int mInputDeviceID;
  bool mOutputWanted;
  int mOutputDeviceID;
  // Maps AudioDataListeners to a usecount of streams using the listener
  // so we can know when it's no longer in use.
  nsDataHashtable<nsPtrHashKey<AudioDataListener>, uint32_t> mInputDeviceUsers;

  // True if the graph needs another iteration after the current iteration.
  Atomic<bool> mNeedAnotherIteration;
  // GraphDriver may need a WakeUp() if something changes
  Atomic<bool> mGraphDriverAsleep;

  // mMonitor guards the data below.
  // MediaStreamGraph normally does its work without holding mMonitor, so it is
  // not safe to just grab mMonitor from some thread and start monkeying with
  // the graph. Instead, communicate with the graph thread using provided
  // mechanisms such as the ControlMessage queue.
  Monitor mMonitor;

  // Data guarded by mMonitor (must always be accessed with mMonitor held,
  // regardless of the value of mLifecycleState).

  /**
   * State to copy to main thread
   */
  nsTArray<StreamUpdate> mStreamUpdates;
  /**
   * Runnables to run after the next update to main thread state.
   */
  nsTArray<nsCOMPtr<nsIRunnable> > mUpdateRunnables;
  /**
   * A list of batches of messages to process. Each batch is processed
   * as an atomic unit.
   */
  /*
   * Message queue processed by the MSG thread during an iteration.
   * Accessed on graph thread only.
   */
  nsTArray<MessageBlock> mFrontMessageQueue;
  /*
   * Message queue in which the main thread appends messages.
   * Access guarded by mMonitor.
   */
  nsTArray<MessageBlock> mBackMessageQueue;

  /* True if there will messages to process if we swap the message queues. */
  bool MessagesQueued() const
  {
    mMonitor.AssertCurrentThreadOwns();
    return !mBackMessageQueue.IsEmpty();
  }
  /**
   * This enum specifies where this graph is in its lifecycle. This is used
   * to control shutdown.
   * Shutdown is tricky because it can happen in two different ways:
   * 1) Shutdown due to inactivity. RunThread() detects that it has no
   * pending messages and no streams, and exits. The next RunInStableState()
   * checks if there are new pending messages from the main thread (true only
   * if new stream creation raced with shutdown); if there are, it revives
   * RunThread(), otherwise it commits to shutting down the graph. New stream
   * creation after this point will create a new graph. An async event is
   * dispatched to Shutdown() the graph's threads and then delete the graph
   * object.
   * 2) Forced shutdown at application shutdown, or completion of a
   * non-realtime graph. A flag is set, RunThread() detects the flag and
   * exits, the next RunInStableState() detects the flag, and dispatches the
   * async event to Shutdown() the graph's threads. However the graph object
   * is not deleted. New messages for the graph are processed synchronously on
   * the main thread if necessary. When the last stream is destroyed, the
   * graph object is deleted.
   *
   * This should be kept in sync with the LifecycleState_str array in
   * MediaStreamGraph.cpp
   */
  enum LifecycleState
  {
    // The graph thread hasn't started yet.
    LIFECYCLE_THREAD_NOT_STARTED,
    // RunThread() is running normally.
    LIFECYCLE_RUNNING,
    // In the following states, the graph thread is not running so
    // all "graph thread only" state in this class can be used safely
    // on the main thread.
    // RunThread() has exited and we're waiting for the next
    // RunInStableState(), at which point we can clean up the main-thread
    // side of the graph.
    LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP,
    // RunInStableState() posted a ShutdownRunnable, and we're waiting for it
    // to shut down the graph thread(s).
    LIFECYCLE_WAITING_FOR_THREAD_SHUTDOWN,
    // Graph threads have shut down but we're waiting for remaining streams
    // to be destroyed. Only happens during application shutdown and on
    // completed non-realtime graphs, since normally we'd only shut down a
    // realtime graph when it has no streams.
    LIFECYCLE_WAITING_FOR_STREAM_DESTRUCTION
  };
  /**
   * Modified only in mMonitor.  Transitions to
   * LIFECYCLE_WAITING_FOR_MAIN_THREAD_CLEANUP occur on the graph thread at
   * the end of an iteration.  All other transitions occur on the main thread.
   */
  LifecycleState mLifecycleState;
  /**
   * The graph should stop processing at or after this time.
   */
  GraphTime mEndTime;

  /**
   * True when we need to do a forced shutdown during application shutdown.
   */
  bool mForceShutDown;

  /**
   * Drop this reference during shutdown to unblock shutdown.
   **/
  RefPtr<ShutdownTicket> mForceShutdownTicket;

  /**
   * True when we have posted an event to the main thread to run
   * RunInStableState() and the event hasn't run yet.
   */
  bool mPostedRunInStableStateEvent;

  // Main thread only

  /**
   * Messages posted by the current event loop task. These are forwarded to
   * the media graph thread during RunInStableState. We can't forward them
   * immediately because we want all messages between stable states to be
   * processed as an atomic batch.
   */
  nsTArray<UniquePtr<ControlMessage>> mCurrentTaskMessageQueue;
  /**
   * True when RunInStableState has determined that mLifecycleState is >
   * LIFECYCLE_RUNNING. Since only the main thread can reset mLifecycleState to
   * LIFECYCLE_RUNNING, this can be relied on to not change unexpectedly.
   */
  bool mDetectedNotRunning;
  /**
   * True when a stable state runner has been posted to the appshell to run
   * RunInStableState at the next stable state.
   */
  bool mPostedRunInStableState;
  /**
   * True when processing real-time audio/video.  False when processing non-realtime
   * audio.
   */
  bool mRealtime;
  /**
   * True when a non-realtime MediaStreamGraph has started to process input.  This
   * value is only accessed on the main thread.
   */
  bool mNonRealtimeProcessing;
  /**
   * True when a change has happened which requires us to recompute the stream
   * blocking order.
   */
  bool mStreamOrderDirty;
  /**
   * Hold a ref to the Latency logger
   */
  RefPtr<AsyncLatencyLogger> mLatencyLog;
  AudioMixer mMixer;
#ifdef MOZ_WEBRTC
  RefPtr<AudioOutputObserver> mFarendObserverRef;
#endif

  dom::AudioChannel AudioChannel() const { return mAudioChannel; }

  // used to limit graph shutdown time
  nsCOMPtr<nsITimer> mShutdownTimer;

private:
  virtual ~MediaStreamGraphImpl();

  MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf)

  /**
   * This class uses manual memory management, and all pointers to it are raw
   * pointers. However, in order for it to implement nsIMemoryReporter, it needs
   * to implement nsISupports and so be ref-counted. So it maintains a single
   * nsRefPtr to itself, giving it a ref-count of 1 during its entire lifetime,
   * and Destroy() nulls this self-reference in order to trigger self-deletion.
   */
  RefPtr<MediaStreamGraphImpl> mSelfRef;

  struct WindowAndStream
  {
    uint64_t mWindowId;
    RefPtr<ProcessedMediaStream> mCaptureStreamSink;
  };
  /**
   * Stream for window audio capture.
   */
  nsTArray<WindowAndStream> mWindowCaptureStreams;

#ifdef DEBUG
  /**
   * Used to assert when AppendMessage() runs ControlMessages synchronously.
   */
  bool mCanRunMessagesSynchronously;
#endif

  dom::AudioChannel mAudioChannel;
};

} // namespace mozilla

#endif /* MEDIASTREAMGRAPHIMPL_H_ */