1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
const { immutableUpdate } = require("resource://devtools/shared/ThreadSafeDevToolsUtils.js");
const { Visitor, walk } = require("resource://devtools/shared/heapsnapshot/CensusUtils.js");
const { deduplicatePaths } = require("resource://devtools/shared/heapsnapshot/shortest-paths");
const DEFAULT_MAX_DEPTH = 4;
const DEFAULT_MAX_SIBLINGS = 15;
const DEFAULT_MAX_NUM_PATHS = 5;
/**
* A single node in a dominator tree.
*
* @param {NodeId} nodeId
* @param {NodeSize} retainedSize
*/
function DominatorTreeNode(nodeId, label, shallowSize, retainedSize) {
// The id of this node.
this.nodeId = nodeId;
// The label structure generated by describing the given node.
this.label = label;
// The shallow size of this node.
this.shallowSize = shallowSize;
// The retained size of this node.
this.retainedSize = retainedSize;
// The id of this node's parent or undefined if this node is the root.
this.parentId = undefined;
// An array of immediately dominated child `DominatorTreeNode`s, or undefined.
this.children = undefined;
// An object of the form returned by `deduplicatePaths`, encoding the set of
// the N shortest retaining paths for this node as a graph.
this.shortestPaths = undefined;
// True iff the `children` property does not contain every immediately
// dominated node.
//
// * If children is an array and this property is true: the array does not
// contain the complete set of immediately dominated children.
// * If children is an array and this property is false: the array contains
// the complete set of immediately dominated children.
// * If children is undefined and this property is true: there exist
// immediately dominated children for this node, but they have not been
// loaded yet.
// * If children is undefined and this property is false: this node does not
// dominate any others and therefore has no children.
this.moreChildrenAvailable = true;
}
DominatorTreeNode.prototype = null;
module.exports = DominatorTreeNode;
/**
* Add `child` to the `parent`'s set of children.
*
* @param {DominatorTreeNode} parent
* @param {DominatorTreeNode} child
*/
DominatorTreeNode.addChild = function (parent, child) {
if (parent.children === undefined) {
parent.children = [];
}
parent.children.push(child);
child.parentId = parent.nodeId;
};
/**
* A Visitor that is used to generate a label for a node in the heap snapshot
* and get its shallow size as well while we are at it.
*/
function LabelAndShallowSizeVisitor() {
// As we walk the description, we accumulate edges in this array.
this._labelPieces = [];
// Once we reach the non-zero count leaf node in the description, we move the
// labelPieces here to signify that we no longer need to accumulate edges.
this._label = undefined;
// Once we reach the non-zero count leaf node in the description, we grab the
// shallow size and place it here.
this._shallowSize = 0;
}
DominatorTreeNode.LabelAndShallowSizeVisitor = LabelAndShallowSizeVisitor;
LabelAndShallowSizeVisitor.prototype = Object.create(Visitor);
/**
* @overrides Visitor.prototype.enter
*/
LabelAndShallowSizeVisitor.prototype.enter = function (breakdown, report, edge) {
if (this._labelPieces && edge) {
this._labelPieces.push(edge);
}
};
/**
* @overrides Visitor.prototype.exit
*/
LabelAndShallowSizeVisitor.prototype.exit = function (breakdown, report, edge) {
if (this._labelPieces && edge) {
this._labelPieces.pop();
}
};
/**
* @overrides Visitor.prototype.count
*/
LabelAndShallowSizeVisitor.prototype.count = function (breakdown, report, edge) {
if (report.count === 0) {
return;
}
this._label = this._labelPieces;
this._labelPieces = undefined;
this._shallowSize = report.bytes;
};
/**
* Get the generated label structure accumulated by this visitor.
*
* @returns {Object}
*/
LabelAndShallowSizeVisitor.prototype.label = function () {
return this._label;
};
/**
* Get the shallow size of the node this visitor visited.
*
* @returns {Number}
*/
LabelAndShallowSizeVisitor.prototype.shallowSize = function () {
return this._shallowSize;
};
/**
* Generate a label structure for the node with the given id and grab its
* shallow size.
*
* What is a "label" structure? HeapSnapshot.describeNode essentially takes a
* census of a single node rather than the whole heap graph. The resulting
* report has only one count leaf that is non-zero. The label structure is the
* path in this report from the root to the non-zero count leaf.
*
* @param {Number} nodeId
* @param {HeapSnapshot} snapshot
* @param {Object} breakdown
*
* @returns {Object}
* An object with the following properties:
* - {Number} shallowSize
* - {Object} label
*/
DominatorTreeNode.getLabelAndShallowSize = function (nodeId,
snapshot,
breakdown) {
const description = snapshot.describeNode(breakdown, nodeId);
const visitor = new LabelAndShallowSizeVisitor();
walk(breakdown, description, visitor);
return {
label: visitor.label(),
shallowSize: visitor.shallowSize(),
};
};
/**
* Do a partial traversal of the given dominator tree and convert it into a tree
* of `DominatorTreeNode`s. Dominator trees have a node for every node in the
* snapshot's heap graph, so we must not allocate a JS object for every node. It
* would be way too many and the node count is effectively unbounded.
*
* Go no deeper down the tree than `maxDepth` and only consider at most
* `maxSiblings` within any single node's children.
*
* @param {DominatorTree} dominatorTree
* @param {HeapSnapshot} snapshot
* @param {Object} breakdown
* @param {Number} maxDepth
* @param {Number} maxSiblings
*
* @returns {DominatorTreeNode}
*/
DominatorTreeNode.partialTraversal = function (dominatorTree,
snapshot,
breakdown,
maxDepth = DEFAULT_MAX_DEPTH,
maxSiblings = DEFAULT_MAX_SIBLINGS) {
function dfs(nodeId, depth) {
const { label, shallowSize } =
DominatorTreeNode.getLabelAndShallowSize(nodeId, snapshot, breakdown);
const retainedSize = dominatorTree.getRetainedSize(nodeId);
const node = new DominatorTreeNode(nodeId, label, shallowSize, retainedSize);
const childNodeIds = dominatorTree.getImmediatelyDominated(nodeId);
const newDepth = depth + 1;
if (newDepth < maxDepth) {
const endIdx = Math.min(childNodeIds.length, maxSiblings);
for (let i = 0; i < endIdx; i++) {
DominatorTreeNode.addChild(node, dfs(childNodeIds[i], newDepth));
}
node.moreChildrenAvailable = endIdx < childNodeIds.length;
} else {
node.moreChildrenAvailable = childNodeIds.length > 0;
}
return node;
}
return dfs(dominatorTree.root, 0);
};
/**
* Insert more children into the given (partially complete) dominator tree.
*
* The tree is updated in an immutable and persistent manner: a new tree is
* returned, but all unmodified subtrees (which is most) are shared with the
* original tree. Only the modified nodes are re-allocated.
*
* @param {DominatorTreeNode} tree
* @param {Array<NodeId>} path
* @param {Array<DominatorTreeNode>} newChildren
* @param {Boolean} moreChildrenAvailable
*
* @returns {DominatorTreeNode}
*/
DominatorTreeNode.insert = function (tree, path, newChildren, moreChildrenAvailable) {
function insert(tree, i) {
if (tree.nodeId !== path[i]) {
return tree;
}
if (i == path.length - 1) {
return immutableUpdate(tree, {
children: (tree.children || []).concat(newChildren),
moreChildrenAvailable,
});
}
return tree.children
? immutableUpdate(tree, {
children: tree.children.map(c => insert(c, i + 1))
})
: tree;
}
return insert(tree, 0);
};
/**
* Get the new canonical node with the given `id` in `tree` that exists along
* `path`. If there is no such node along `path`, return null.
*
* This is useful if we have a reference to a now-outdated DominatorTreeNode due
* to a recent call to DominatorTreeNode.insert and want to get the up-to-date
* version. We don't have to walk the whole tree: if there is an updated version
* of the node then it *must* be along the path.
*
* @param {NodeId} id
* @param {DominatorTreeNode} tree
* @param {Array<NodeId>} path
*
* @returns {DominatorTreeNode|null}
*/
DominatorTreeNode.getNodeByIdAlongPath = function (id, tree, path) {
function find(node, i) {
if (!node || node.nodeId !== path[i]) {
return null;
}
if (node.nodeId === id) {
return node;
}
if (i === path.length - 1 || !node.children) {
return null;
}
const nextId = path[i + 1];
return find(node.children.find(c => c.nodeId === nextId), i + 1);
}
return find(tree, 0);
};
/**
* Find the shortest retaining paths for the given set of DominatorTreeNodes,
* and populate each node's `shortestPaths` property with them in place.
*
* @param {HeapSnapshot} snapshot
* @param {Object} breakdown
* @param {NodeId} start
* @param {Array<DominatorTreeNode>} treeNodes
* @param {Number} maxNumPaths
*/
DominatorTreeNode.attachShortestPaths = function (snapshot,
breakdown,
start,
treeNodes,
maxNumPaths = DEFAULT_MAX_NUM_PATHS) {
const idToTreeNode = new Map();
const targets = [];
for (let node of treeNodes) {
const id = node.nodeId;
idToTreeNode.set(id, node);
targets.push(id);
}
const shortestPaths = snapshot.computeShortestPaths(start,
targets,
maxNumPaths);
for (let [target, paths] of shortestPaths) {
const deduped = deduplicatePaths(target, paths);
deduped.nodes = deduped.nodes.map(id => {
const { label } =
DominatorTreeNode.getLabelAndShallowSize(id, snapshot, breakdown);
return { id, label };
});
idToTreeNode.get(target).shortestPaths = deduped;
}
};
|