summaryrefslogtreecommitdiffstats
path: root/build/unix/elfhack/elfhack.cpp
blob: 8c1184237e1795d8d8334d3dd795475ba03becff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#undef NDEBUG
#include <assert.h>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include "elfxx.h"

#define ver "0"
#define elfhack_data ".elfhack.data.v" ver
#define elfhack_text ".elfhack.text.v" ver

#ifndef R_ARM_V4BX
#define R_ARM_V4BX 0x28
#endif
#ifndef R_ARM_CALL
#define R_ARM_CALL 0x1c
#endif
#ifndef R_ARM_JUMP24
#define R_ARM_JUMP24 0x1d
#endif
#ifndef R_ARM_THM_JUMP24
#define R_ARM_THM_JUMP24 0x1e
#endif

char *rundir = nullptr;

template <typename T>
struct wrapped {
    T value;
};

class Elf_Addr_Traits {
public:
    typedef wrapped<Elf32_Addr> Type32;
    typedef wrapped<Elf64_Addr> Type64;

    template <class endian, typename R, typename T>
    static inline void swap(T &t, R &r) {
        r.value = endian::swap(t.value);
    }
};

typedef serializable<Elf_Addr_Traits> Elf_Addr;

class Elf_RelHack_Traits {
public:
    typedef Elf32_Rel Type32;
    typedef Elf32_Rel Type64;

    template <class endian, typename R, typename T>
    static inline void swap(T &t, R &r) {
        r.r_offset = endian::swap(t.r_offset);
        r.r_info = endian::swap(t.r_info);
    }
};

typedef serializable<Elf_RelHack_Traits> Elf_RelHack;

class ElfRelHack_Section: public ElfSection {
public:
    ElfRelHack_Section(Elf_Shdr &s)
    : ElfSection(s, nullptr, nullptr)
    {
        name = elfhack_data;
    };

    void serialize(std::ofstream &file, char ei_class, char ei_data)
    {
        for (std::vector<Elf_RelHack>::iterator i = rels.begin();
             i != rels.end(); ++i)
            (*i).serialize(file, ei_class, ei_data);
    }

    bool isRelocatable() {
        return true;
    }

    void push_back(Elf_RelHack &r) {
        rels.push_back(r);
        shdr.sh_size = rels.size() * shdr.sh_entsize;
    }
private:
    std::vector<Elf_RelHack> rels;
};

class ElfRelHackCode_Section: public ElfSection {
public:
    ElfRelHackCode_Section(Elf_Shdr &s, Elf &e, unsigned int init)
    : ElfSection(s, nullptr, nullptr), parent(e), init(init) {
        std::string file(rundir);
        file += "/inject/";
        switch (parent.getMachine()) {
        case EM_386:
            file += "x86";
            break;
        case EM_X86_64:
            file += "x86_64";
            break;
        case EM_ARM:
            file += "arm";
            break;
        default:
            throw std::runtime_error("unsupported architecture");
        }
        file += ".o";
        std::ifstream inject(file.c_str(), std::ios::in|std::ios::binary);
        elf = new Elf(inject);
        if (elf->getType() != ET_REL)
            throw std::runtime_error("object for injected code is not ET_REL");
        if (elf->getMachine() != parent.getMachine())
            throw std::runtime_error("architecture of object for injected code doesn't match");

        ElfSymtab_Section *symtab = nullptr;

        // Find the symbol table.
        for (ElfSection *section = elf->getSection(1); section != nullptr;
             section = section->getNext()) {
            if (section->getType() == SHT_SYMTAB)
                symtab = (ElfSymtab_Section *) section;
        }
        if (symtab == nullptr)
            throw std::runtime_error("Couldn't find a symbol table for the injected code");

        // Find the init symbol
        entry_point = -1;
        Elf_SymValue *sym = symtab->lookup(init ? "init" : "init_noinit");
        if (!sym)
            throw std::runtime_error("Couldn't find an 'init' symbol in the injected code");

        entry_point = sym->value.getValue();

        // Get all relevant sections from the injected code object.
        add_code_section(sym->value.getSection());

        // Adjust code sections offsets according to their size
        std::vector<ElfSection *>::iterator c = code.begin();
        (*c)->getShdr().sh_addr = 0;
        for(ElfSection *last = *(c++); c != code.end(); c++) {
            unsigned int addr = last->getShdr().sh_addr + last->getSize();
            if (addr & ((*c)->getAddrAlign() - 1))
                addr = (addr | ((*c)->getAddrAlign() - 1)) + 1;
            (*c)->getShdr().sh_addr = addr;
            // We need to align this section depending on the greater
            // alignment required by code sections.
            if (shdr.sh_addralign < (*c)->getAddrAlign())
                shdr.sh_addralign = (*c)->getAddrAlign();
        }
        shdr.sh_size = code.back()->getAddr() + code.back()->getSize();
        data = new char[shdr.sh_size];
        char *buf = data;
        for (c = code.begin(); c != code.end(); c++) {
            memcpy(buf, (*c)->getData(), (*c)->getSize());
            buf += (*c)->getSize();
        }
        name = elfhack_text;
    }

    ~ElfRelHackCode_Section() {
        delete elf;
    }

    void serialize(std::ofstream &file, char ei_class, char ei_data)
    {
        // Readjust code offsets
        for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); c++)
            (*c)->getShdr().sh_addr += getAddr();

        // Apply relocations
        for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); c++) {
            for (ElfSection *rel = elf->getSection(1); rel != nullptr; rel = rel->getNext())
                if (((rel->getType() == SHT_REL) ||
                     (rel->getType() == SHT_RELA)) &&
                    (rel->getInfo().section == *c)) {
                    if (rel->getType() == SHT_REL)
                        apply_relocations((ElfRel_Section<Elf_Rel> *)rel, *c);
                    else
                        apply_relocations((ElfRel_Section<Elf_Rela> *)rel, *c);
                }
            }

        ElfSection::serialize(file, ei_class, ei_data);
    }

    bool isRelocatable() {
        return true;
    }

    unsigned int getEntryPoint() {
        return entry_point;
    }
private:
    void add_code_section(ElfSection *section)
    {
        if (section) {
            /* Don't add section if it's already been added in the past */
            for (auto s = code.begin(); s != code.end(); ++s) {
                if (section == *s)
                    return;
            }
            code.push_back(section);
            find_code(section);
        }
    }

    /* Look at the relocations associated to the given section to find other
     * sections that it requires */
    void find_code(ElfSection *section)
    {
        for (ElfSection *s = elf->getSection(1); s != nullptr;
             s = s->getNext()) {
            if (((s->getType() == SHT_REL) ||
                 (s->getType() == SHT_RELA)) &&
                (s->getInfo().section == section)) {
                if (s->getType() == SHT_REL)
                    scan_relocs_for_code((ElfRel_Section<Elf_Rel> *)s);
                else
                    scan_relocs_for_code((ElfRel_Section<Elf_Rela> *)s);
            }
        }
    }

    template <typename Rel_Type>
    void scan_relocs_for_code(ElfRel_Section<Rel_Type> *rel)
    {
        ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
        for (auto r = rel->rels.begin(); r != rel->rels.end(); r++) {
            ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
            add_code_section(section);
        }
    }

    class pc32_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            return addr + addend - offset - base_addr;
        }
    };

    class arm_plt32_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            // We don't care about sign_extend because the only case where this is
            // going to be used only jumps forward.
            Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr) >> 2;
            tmp = (addend + tmp) & 0x00ffffff;
            return (addend & 0xff000000) | tmp;
        }
    };

    class arm_thm_jump24_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            /* Follows description of b.w and bl instructions as per
               ARM Architecture Reference Manual ARM® v7-A and ARM® v7-R edition, A8.6.16
               We limit ourselves to Encoding T4 of b.w and Encoding T1 of bl.
               We don't care about sign_extend because the only case where this is
               going to be used only jumps forward. */
            Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr);
            unsigned int word0 = addend & 0xffff,
                         word1 = addend >> 16;

            /* Encoding T4 of B.W is 10x1 ; Encoding T1 of BL is 11x1. */
            unsigned int type = (word1 & 0xd000) >> 12;
            if (((word0 & 0xf800) != 0xf000) || ((type & 0x9) != 0x9))
                throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for B.W <label> and BL <label>");

            /* When the target address points to ARM code, switch a BL to a
             * BLX. This however can't be done with a B.W without adding a
             * trampoline, which is not supported as of now. */
            if ((addr & 0x1) == 0) {
                if (type == 0x9)
                    throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for BL <label> when label points to ARM code");
                /* The address of the target is always relative to a 4-bytes
                 * aligned address, so if the address of the BL instruction is
                 * not 4-bytes aligned, adjust for it. */
                if ((base_addr + offset) & 0x2)
                    tmp += 2;
                /* Encoding T2 of BLX is 11x0. */
                type = 0xc;
            }

            unsigned int s = (word0 & (1 << 10)) >> 10;
            unsigned int j1 = (word1 & (1 << 13)) >> 13;
            unsigned int j2 = (word1 & (1 << 11)) >> 11;
            unsigned int i1 = j1 ^ s ? 0 : 1;
            unsigned int i2 = j2 ^ s ? 0 : 1;

            tmp += ((s << 24) | (i1 << 23) | (i2 << 22) | ((word0 & 0x3ff) << 12) | ((word1 & 0x7ff) << 1));

            s = (tmp & (1 << 24)) >> 24;
            j1 = ((tmp & (1 << 23)) >> 23) ^ !s;
            j2 = ((tmp & (1 << 22)) >> 22) ^ !s;

            return 0xf000 | (s << 10) | ((tmp & (0x3ff << 12)) >> 12) |
                   (type << 28) | (j1 << 29) | (j2 << 27) | ((tmp & 0xffe) << 15);
        }
    };

    class gotoff_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            return addr + addend;
        }
    };

    template <class relocation_type>
    void apply_relocation(ElfSection *the_code, char *base, Elf_Rel *r, unsigned int addr)
    {
        relocation_type relocation;
        Elf32_Addr value;
        memcpy(&value, base + r->r_offset, 4);
        value = relocation(the_code->getAddr(), r->r_offset, value, addr);
        memcpy(base + r->r_offset, &value, 4);
    }

    template <class relocation_type>
    void apply_relocation(ElfSection *the_code, char *base, Elf_Rela *r, unsigned int addr)
    {
        relocation_type relocation;
        Elf32_Addr value = relocation(the_code->getAddr(), r->r_offset, r->r_addend, addr);
        memcpy(base + r->r_offset, &value, 4);
    }

    template <typename Rel_Type>
    void apply_relocations(ElfRel_Section<Rel_Type> *rel, ElfSection *the_code)
    {
        assert(rel->getType() == Rel_Type::sh_type);
        char *buf = data + (the_code->getAddr() - code.front()->getAddr());
        // TODO: various checks on the sections
        ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
        for (typename std::vector<Rel_Type>::iterator r = rel->rels.begin(); r != rel->rels.end(); r++) {
            // TODO: various checks on the symbol
            const char *name = symtab->syms[ELF32_R_SYM(r->r_info)].name;
            unsigned int addr;
            if (symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection() == nullptr) {
                if (strcmp(name, "relhack") == 0) {
                    addr = getNext()->getAddr();
                } else if (strcmp(name, "elf_header") == 0) {
                    // TODO: change this ungly hack to something better
                    ElfSection *ehdr = parent.getSection(1)->getPrevious()->getPrevious();
                    addr = ehdr->getAddr();
                } else if (strcmp(name, "original_init") == 0) {
                    addr = init;
                } else if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") == 0) {
                    // We actually don't need a GOT, but need it as a reference for
                    // GOTOFF relocations. We'll just use the start of the ELF file
                    addr = 0;
                } else if (strcmp(name, "") == 0) {
                    // This is for R_ARM_V4BX, until we find something better
                    addr = -1;
                } else {
                    throw std::runtime_error("Unsupported symbol in relocation");
                }
            } else {
                ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
                assert((section->getType() == SHT_PROGBITS) && (section->getFlags() & SHF_EXECINSTR));
                addr = symtab->syms[ELF32_R_SYM(r->r_info)].value.getValue();
            }
            // Do the relocation
#define REL(machine, type) (EM_ ## machine | (R_ ## machine ## _ ## type << 8))
            switch (elf->getMachine() | (ELF32_R_TYPE(r->r_info) << 8)) {
            case REL(X86_64, PC32):
            case REL(386, PC32):
            case REL(386, GOTPC):
            case REL(ARM, GOTPC):
            case REL(ARM, REL32):
                apply_relocation<pc32_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, CALL):
            case REL(ARM, JUMP24):
            case REL(ARM, PLT32):
                apply_relocation<arm_plt32_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, THM_PC22 /* THM_CALL */):
            case REL(ARM, THM_JUMP24):
                apply_relocation<arm_thm_jump24_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(386, GOTOFF):
            case REL(ARM, GOTOFF):
                apply_relocation<gotoff_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, V4BX):
                // Ignore R_ARM_V4BX relocations
                break;
            default:
                throw std::runtime_error("Unsupported relocation type");
            }
        }
    }

    Elf *elf, &parent;
    std::vector<ElfSection *> code;
    unsigned int init;
    int entry_point;
};

unsigned int get_addend(Elf_Rel *rel, Elf *elf) {
    ElfLocation loc(rel->r_offset, elf);
    Elf_Addr addr(loc.getBuffer(), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
    return addr.value;
}

unsigned int get_addend(Elf_Rela *rel, Elf *elf) {
    return rel->r_addend;
}

void set_relative_reloc(Elf_Rel *rel, Elf *elf, unsigned int value) {
    ElfLocation loc(rel->r_offset, elf);
    Elf_Addr addr;
    addr.value = value;
    addr.serialize(const_cast<char *>(loc.getBuffer()), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
}

void set_relative_reloc(Elf_Rela *rel, Elf *elf, unsigned int value) {
    // ld puts the value of relocated relocations both in the addend and
    // at r_offset. For consistency, keep it that way.
    set_relative_reloc((Elf_Rel *)rel, elf, value);
    rel->r_addend = value;
}

void maybe_split_segment(Elf *elf, ElfSegment *segment, bool fill)
{
    std::list<ElfSection *>::iterator it = segment->begin();
    for (ElfSection *last = *(it++); it != segment->end(); last = *(it++)) {
        // When two consecutive non-SHT_NOBITS sections are apart by more
        // than the alignment of the section, the second can be moved closer
        // to the first, but this requires the segment to be split.
        if (((*it)->getType() != SHT_NOBITS) && (last->getType() != SHT_NOBITS) &&
            ((*it)->getOffset() - last->getOffset() - last->getSize() > segment->getAlign())) {
            // Probably very wrong.
            Elf_Phdr phdr;
            phdr.p_type = PT_LOAD;
            phdr.p_vaddr = 0;
            phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
            phdr.p_flags = segment->getFlags();
            phdr.p_align = segment->getAlign();
            phdr.p_filesz = (unsigned int)-1;
            phdr.p_memsz = (unsigned int)-1;
            ElfSegment *newSegment = new ElfSegment(&phdr);
            elf->insertSegmentAfter(segment, newSegment);
            ElfSection *section = *it;
            for (; it != segment->end(); ++it) {
                newSegment->addSection(*it);
            }
            for (it = newSegment->begin(); it != newSegment->end(); it++) {
                segment->removeSection(*it);
            }
            // Fill the virtual address space gap left between the two PT_LOADs
            // with a new PT_LOAD with no permissions. This avoids the linker
            // (especially bionic's) filling the gap with anonymous memory,
            // which breakpad doesn't like.
            // /!\ running strip on a elfhacked binary will break this filler
            // PT_LOAD.
            if (!fill)
                break;
            // Insert dummy segment to normalize the entire Elf with the header
            // sizes adjusted, before inserting a filler segment.
            {
              memset(&phdr, 0, sizeof(phdr));
              ElfSegment dummySegment(&phdr);
              elf->insertSegmentAfter(segment, &dummySegment);
              elf->normalize();
              elf->removeSegment(&dummySegment);
            }
            ElfSection *previous = section->getPrevious();
            phdr.p_type = PT_LOAD;
            phdr.p_vaddr = (previous->getAddr() + previous->getSize() + segment->getAlign() - 1) & ~(segment->getAlign() - 1);
            phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
            phdr.p_flags = 0;
            phdr.p_align = 0;
            phdr.p_filesz = (section->getAddr() & ~(newSegment->getAlign() - 1)) - phdr.p_vaddr;
            phdr.p_memsz = phdr.p_filesz;
            if (phdr.p_filesz) {
                newSegment = new ElfSegment(&phdr);
                assert(newSegment->isElfHackFillerSegment());
                elf->insertSegmentAfter(segment, newSegment);
            } else {
                elf->normalize();
            }
            break;
        }
    }
}

template <typename Rel_Type>
int do_relocation_section(Elf *elf, unsigned int rel_type, unsigned int rel_type2, bool force, bool fill)
{
    ElfDynamic_Section *dyn = elf->getDynSection();
    if (dyn == nullptr) {
        fprintf(stderr, "Couldn't find SHT_DYNAMIC section\n");
        return -1;
    }

    ElfSegment *relro = elf->getSegmentByType(PT_GNU_RELRO);

    ElfRel_Section<Rel_Type> *section = (ElfRel_Section<Rel_Type> *)dyn->getSectionForType(Rel_Type::d_tag);
    assert(section->getType() == Rel_Type::sh_type);

    Elf32_Shdr relhack32_section =
        { 0, SHT_PROGBITS, SHF_ALLOC, 0, (Elf32_Off)-1, 0, SHN_UNDEF, 0,
          Elf_RelHack::size(elf->getClass()), Elf_RelHack::size(elf->getClass()) }; // TODO: sh_addralign should be an alignment, not size
    Elf32_Shdr relhackcode32_section =
        { 0, SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, 0, (Elf32_Off)-1, 0,
          SHN_UNDEF, 0, 1, 0 };

    unsigned int entry_sz = Elf_Addr::size(elf->getClass());

    // The injected code needs to be executed before any init code in the
    // binary. There are three possible cases:
    // - The binary has no init code at all. In this case, we will add a
    //   DT_INIT entry pointing to the injected code.
    // - The binary has a DT_INIT entry. In this case, we will interpose:
    //   we change DT_INIT to point to the injected code, and have the
    //   injected code call the original DT_INIT entry point.
    // - The binary has no DT_INIT entry, but has a DT_INIT_ARRAY. In this
    //   case, we interpose as well, by replacing the first entry in the
    //   array to point to the injected code, and have the injected code
    //   call the original first entry.
    // The binary may have .ctors instead of DT_INIT_ARRAY, for its init
    // functions, but this falls into the second case above, since .ctors
    // are actually run by DT_INIT code.
    ElfValue *value = dyn->getValueForType(DT_INIT);
    unsigned int original_init = value ? value->getValue() : 0;
    ElfSection *init_array = nullptr;
    if (!value || !value->getValue()) {
        value = dyn->getValueForType(DT_INIT_ARRAYSZ);
        if (value && value->getValue() >= entry_sz)
            init_array = dyn->getSectionForType(DT_INIT_ARRAY);
    }

    Elf_Shdr relhack_section(relhack32_section);
    Elf_Shdr relhackcode_section(relhackcode32_section);
    ElfRelHack_Section *relhack = new ElfRelHack_Section(relhack_section);

    ElfSymtab_Section *symtab = (ElfSymtab_Section *) section->getLink();
    Elf_SymValue *sym = symtab->lookup("__cxa_pure_virtual");

    std::vector<Rel_Type> new_rels;
    Elf_RelHack relhack_entry;
    relhack_entry.r_offset = relhack_entry.r_info = 0;
    size_t init_array_reloc = 0;
    for (typename std::vector<Rel_Type>::iterator i = section->rels.begin();
         i != section->rels.end(); i++) {
        // We don't need to keep R_*_NONE relocations
        if (!ELF32_R_TYPE(i->r_info))
            continue;
        ElfLocation loc(i->r_offset, elf);
        // __cxa_pure_virtual is a function used in vtables to point at pure
        // virtual methods. The __cxa_pure_virtual function usually abort()s.
        // These functions are however normally never called. In the case
        // where they would, jumping to the null address instead of calling
        // __cxa_pure_virtual is going to work just as well. So we can remove
        // relocations for the __cxa_pure_virtual symbol and null out the
        // content at the offset pointed by the relocation.
        if (sym) {
            if (sym->defined) {
                // If we are statically linked to libstdc++, the
                // __cxa_pure_virtual symbol is defined in our lib, and we
                // have relative relocations (rel_type) for it.
                if (ELF32_R_TYPE(i->r_info) == rel_type) {
                    Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
                    if (addr.value == sym->value.getValue()) {
                        memset((char *)loc.getBuffer(), 0, entry_sz);
                        continue;
                    }
                }
            } else {
                // If we are dynamically linked to libstdc++, the
                // __cxa_pure_virtual symbol is undefined in our lib, and we
                // have absolute relocations (rel_type2) for it.
                if ((ELF32_R_TYPE(i->r_info) == rel_type2) &&
                    (sym == &symtab->syms[ELF32_R_SYM(i->r_info)])) {
                    memset((char *)loc.getBuffer(), 0, entry_sz);
                    continue;
                }
            }
        }
        // Keep track of the relocation associated with the first init_array entry.
        if (init_array && i->r_offset == init_array->getAddr()) {
            if (init_array_reloc) {
                fprintf(stderr, "Found multiple relocations for the first init_array entry. Skipping\n");
                return -1;
            }
            new_rels.push_back(*i);
            init_array_reloc = new_rels.size();
        } else if (!(loc.getSection()->getFlags() & SHF_WRITE) || (ELF32_R_TYPE(i->r_info) != rel_type) ||
                   (relro && (i->r_offset >= relro->getAddr()) &&
                   (i->r_offset < relro->getAddr() + relro->getMemSize()))) {
            // Don't pack relocations happening in non writable sections.
            // Our injected code is likely not to be allowed to write there.
            new_rels.push_back(*i);
        } else {
            // TODO: check that i->r_addend == *i->r_offset
            if (i->r_offset == relhack_entry.r_offset + relhack_entry.r_info * entry_sz) {
                relhack_entry.r_info++;
            } else {
                if (relhack_entry.r_offset)
                    relhack->push_back(relhack_entry);
                relhack_entry.r_offset = i->r_offset;
                relhack_entry.r_info = 1;
            }
        }
    }
    if (relhack_entry.r_offset)
        relhack->push_back(relhack_entry);
    // Last entry must be nullptr
    relhack_entry.r_offset = relhack_entry.r_info = 0;
    relhack->push_back(relhack_entry);

    unsigned int old_end = section->getOffset() + section->getSize();

    if (init_array) {
        if (! init_array_reloc) {
            fprintf(stderr, "Didn't find relocation for DT_INIT_ARRAY's first entry. Skipping\n");
            return -1;
        }
        Rel_Type *rel = &new_rels[init_array_reloc - 1];
        unsigned int addend = get_addend(rel, elf);
        // Use relocated value of DT_INIT_ARRAY's first entry for the
        // function to be called by the injected code.
        if (ELF32_R_TYPE(rel->r_info) == rel_type) {
            original_init = addend;
        } else if (ELF32_R_TYPE(rel->r_info) == rel_type2) {
            ElfSymtab_Section *symtab = (ElfSymtab_Section *)section->getLink();
            original_init = symtab->syms[ELF32_R_SYM(rel->r_info)].value.getValue() + addend;
        } else {
            fprintf(stderr, "Unsupported relocation type for DT_INIT_ARRAY's first entry. Skipping\n");
            return -1;
        }
    }

    section->rels.assign(new_rels.begin(), new_rels.end());
    section->shrink(new_rels.size() * section->getEntSize());

    ElfRelHackCode_Section *relhackcode = new ElfRelHackCode_Section(relhackcode_section, *elf, original_init);
    relhackcode->insertBefore(section);
    relhack->insertAfter(relhackcode);
    if (section->getOffset() + section->getSize() >= old_end) {
        fprintf(stderr, "No gain. Skipping\n");
        return -1;
    }

    // Adjust PT_LOAD segments
    for (ElfSegment *segment = elf->getSegmentByType(PT_LOAD); segment;
         segment = elf->getSegmentByType(PT_LOAD, segment)) {
        maybe_split_segment(elf, segment, fill);
    }

    // Ensure Elf sections will be at their final location.
    elf->normalize();
    ElfLocation *init = new ElfLocation(relhackcode, relhackcode->getEntryPoint());
    if (init_array) {
        // Adjust the first DT_INIT_ARRAY entry to point at the injected code
        // by transforming its relocation into a relative one pointing to the
        // address of the injected code.
        Rel_Type *rel = &section->rels[init_array_reloc - 1];
        rel->r_info = ELF32_R_INFO(0, rel_type); // Set as a relative relocation
        set_relative_reloc(&section->rels[init_array_reloc - 1], elf, init->getValue());
    } else if (!dyn->setValueForType(DT_INIT, init)) {
        fprintf(stderr, "Can't grow .dynamic section to set DT_INIT. Skipping\n");
        return -1;
    }
    // TODO: adjust the value according to the remaining number of relative relocations
    if (dyn->getValueForType(Rel_Type::d_tag_count))
        dyn->setValueForType(Rel_Type::d_tag_count, new ElfPlainValue(0));

    return 0;
}

static inline int backup_file(const char *name)
{
    std::string fname(name);
    fname += ".bak";
    return rename(name, fname.c_str());
}

void do_file(const char *name, bool backup = false, bool force = false, bool fill = false)
{
    std::ifstream file(name, std::ios::in|std::ios::binary);
    Elf elf(file);
    unsigned int size = elf.getSize();
    fprintf(stderr, "%s: ", name);
    if (elf.getType() != ET_DYN) {
        fprintf(stderr, "Not a shared object. Skipping\n");
        return;
    }

    for (ElfSection *section = elf.getSection(1); section != nullptr;
         section = section->getNext()) {
        if (section->getName() &&
            (strncmp(section->getName(), ".elfhack.", 9) == 0)) {
            fprintf(stderr, "Already elfhacked. Skipping\n");
            return;
        }
    }

    int exit = -1;
    switch (elf.getMachine()) {
    case EM_386:
        exit = do_relocation_section<Elf_Rel>(&elf, R_386_RELATIVE, R_386_32, force, fill);
        break;
    case EM_X86_64:
        exit = do_relocation_section<Elf_Rela>(&elf, R_X86_64_RELATIVE, R_X86_64_64, force, fill);
        break;
    case EM_ARM:
        exit = do_relocation_section<Elf_Rel>(&elf, R_ARM_RELATIVE, R_ARM_ABS32, force, fill);
        break;
    }
    if (exit == 0) {
        if (!force && (elf.getSize() >= size)) {
            fprintf(stderr, "No gain. Skipping\n");
        } else if (backup && backup_file(name) != 0) {
            fprintf(stderr, "Couln't create backup file\n");
        } else {
            std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
            elf.write(ofile);
            fprintf(stderr, "Reduced by %d bytes\n", size - elf.getSize());
        }
    }
}

void undo_file(const char *name, bool backup = false)
{
    std::ifstream file(name, std::ios::in|std::ios::binary);
    Elf elf(file);
    unsigned int size = elf.getSize();
    fprintf(stderr, "%s: ", name);
    if (elf.getType() != ET_DYN) {
        fprintf(stderr, "Not a shared object. Skipping\n");
        return;
    }

    ElfSection *data = nullptr, *text = nullptr;
    for (ElfSection *section = elf.getSection(1); section != nullptr;
         section = section->getNext()) {
        if (section->getName() &&
            (strcmp(section->getName(), elfhack_data) == 0))
            data = section;
        if (section->getName() &&
            (strcmp(section->getName(), elfhack_text) == 0))
            text = section;
    }

    if (!data || !text) {
        fprintf(stderr, "Not elfhacked. Skipping\n");
        return;
    }
    if (data != text->getNext()) {
        fprintf(stderr, elfhack_data " section not following " elfhack_text ". Skipping\n");
        return;
    }

    ElfSegment *first = elf.getSegmentByType(PT_LOAD);
    ElfSegment *second = elf.getSegmentByType(PT_LOAD, first);
    ElfSegment *filler = nullptr;
    // If the second PT_LOAD is a filler from elfhack --fill, check the third.
    if (second->isElfHackFillerSegment()) {
        filler = second;
        second = elf.getSegmentByType(PT_LOAD, filler);
    }
    if (second->getFlags() != first->getFlags()) {
        fprintf(stderr, "Couldn't identify elfhacked PT_LOAD segments. Skipping\n");
        return;
    }
    // Move sections from the second PT_LOAD to the first, and remove the
    // second PT_LOAD segment.
    for (std::list<ElfSection *>::iterator section = second->begin();
         section != second->end(); ++section)
        first->addSection(*section);

    elf.removeSegment(second);
    if (filler)
        elf.removeSegment(filler);

    if (backup && backup_file(name) != 0) {
        fprintf(stderr, "Couln't create backup file\n");
    } else {
        std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
        elf.write(ofile);
        fprintf(stderr, "Grown by %d bytes\n", elf.getSize() - size);
    }
}

int main(int argc, char *argv[])
{
    int arg;
    bool backup = false;
    bool force = false;
    bool revert = false;
    bool fill = false;
    char *lastSlash = rindex(argv[0], '/');
    if (lastSlash != nullptr)
        rundir = strndup(argv[0], lastSlash - argv[0]);
    for (arg = 1; arg < argc; arg++) {
        if (strcmp(argv[arg], "-f") == 0)
            force = true;
        else if (strcmp(argv[arg], "-b") == 0)
            backup = true;
        else if (strcmp(argv[arg], "-r") == 0)
            revert = true;
        else if (strcmp(argv[arg], "--fill") == 0)
            fill = true;
        else if (revert) {
            undo_file(argv[arg], backup);
        } else
            do_file(argv[arg], backup, force, fill);
    }

    free(rundir);
    return 0;
}