/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "LulMain.h" #include <string.h> #include <stdlib.h> #include <stdio.h> #include <algorithm> // std::sort #include <string> #include "mozilla/Assertions.h" #include "mozilla/ArrayUtils.h" #include "mozilla/CheckedInt.h" #include "mozilla/DebugOnly.h" #include "mozilla/MemoryChecking.h" #include "mozilla/Sprintf.h" #include "LulCommonExt.h" #include "LulElfExt.h" #include "LulMainInt.h" #include "platform-linux-lul.h" // for gettid() // Set this to 1 for verbose logging #define DEBUG_MAIN 0 namespace lul { using std::string; using std::vector; using std::pair; using mozilla::CheckedInt; using mozilla::DebugOnly; // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING // // Some functions in this file are marked RUNS IN NO-MALLOC CONTEXT. // Any such function -- and, hence, the transitive closure of those // reachable from it -- must not do any dynamic memory allocation. // Doing so risks deadlock. There is exactly one root function for // the transitive closure: Lul::Unwind. // // WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING //////////////////////////////////////////////////////////////// // RuleSet // //////////////////////////////////////////////////////////////// static const char* NameOf_DW_REG(int16_t aReg) { switch (aReg) { case DW_REG_CFA: return "cfa"; #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) case DW_REG_INTEL_XBP: return "xbp"; case DW_REG_INTEL_XSP: return "xsp"; case DW_REG_INTEL_XIP: return "xip"; #elif defined(LUL_ARCH_arm) case DW_REG_ARM_R7: return "r7"; case DW_REG_ARM_R11: return "r11"; case DW_REG_ARM_R12: return "r12"; case DW_REG_ARM_R13: return "r13"; case DW_REG_ARM_R14: return "r14"; case DW_REG_ARM_R15: return "r15"; #else # error "Unsupported arch" #endif default: return "???"; } } string LExpr::ShowRule(const char* aNewReg) const { char buf[64]; string res = string(aNewReg) + "="; switch (mHow) { case UNKNOWN: res += "Unknown"; break; case NODEREF: SprintfLiteral(buf, "%s+%d", NameOf_DW_REG(mReg), (int)mOffset); res += buf; break; case DEREF: SprintfLiteral(buf, "*(%s+%d)", NameOf_DW_REG(mReg), (int)mOffset); res += buf; break; case PFXEXPR: SprintfLiteral(buf, "PfxExpr-at-%d", (int)mOffset); res += buf; break; default: res += "???"; break; } return res; } void RuleSet::Print(void(*aLog)(const char*)) const { char buf[96]; SprintfLiteral(buf, "[%llx .. %llx]: let ", (unsigned long long int)mAddr, (unsigned long long int)(mAddr + mLen - 1)); string res = string(buf); res += mCfaExpr.ShowRule("cfa"); res += " in"; // For each reg we care about, print the recovery expression. #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) res += mXipExpr.ShowRule(" RA"); res += mXspExpr.ShowRule(" SP"); res += mXbpExpr.ShowRule(" BP"); #elif defined(LUL_ARCH_arm) res += mR15expr.ShowRule(" R15"); res += mR7expr .ShowRule(" R7" ); res += mR11expr.ShowRule(" R11"); res += mR12expr.ShowRule(" R12"); res += mR13expr.ShowRule(" R13"); res += mR14expr.ShowRule(" R14"); #else # error "Unsupported arch" #endif aLog(res.c_str()); } LExpr* RuleSet::ExprForRegno(DW_REG_NUMBER aRegno) { switch (aRegno) { case DW_REG_CFA: return &mCfaExpr; # if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) case DW_REG_INTEL_XIP: return &mXipExpr; case DW_REG_INTEL_XSP: return &mXspExpr; case DW_REG_INTEL_XBP: return &mXbpExpr; # elif defined(LUL_ARCH_arm) case DW_REG_ARM_R15: return &mR15expr; case DW_REG_ARM_R14: return &mR14expr; case DW_REG_ARM_R13: return &mR13expr; case DW_REG_ARM_R12: return &mR12expr; case DW_REG_ARM_R11: return &mR11expr; case DW_REG_ARM_R7: return &mR7expr; # else # error "Unknown arch" # endif default: return nullptr; } } RuleSet::RuleSet() { mAddr = 0; mLen = 0; // The only other fields are of type LExpr and those are initialised // by LExpr::LExpr(). } //////////////////////////////////////////////////////////////// // SecMap // //////////////////////////////////////////////////////////////// // See header file LulMainInt.h for comments about invariants. SecMap::SecMap(void(*aLog)(const char*)) : mSummaryMinAddr(1) , mSummaryMaxAddr(0) , mUsable(true) , mLog(aLog) {} SecMap::~SecMap() { mRuleSets.clear(); } // RUNS IN NO-MALLOC CONTEXT RuleSet* SecMap::FindRuleSet(uintptr_t ia) { // Binary search mRuleSets to find one that brackets |ia|. // lo and hi need to be signed, else the loop termination tests // don't work properly. Note that this works correctly even when // mRuleSets.size() == 0. // Can't do this until the array has been sorted and preened. MOZ_ASSERT(mUsable); long int lo = 0; long int hi = (long int)mRuleSets.size() - 1; while (true) { // current unsearched space is from lo to hi, inclusive. if (lo > hi) { // not found return nullptr; } long int mid = lo + ((hi - lo) / 2); RuleSet* mid_ruleSet = &mRuleSets[mid]; uintptr_t mid_minAddr = mid_ruleSet->mAddr; uintptr_t mid_maxAddr = mid_minAddr + mid_ruleSet->mLen - 1; if (ia < mid_minAddr) { hi = mid-1; continue; } if (ia > mid_maxAddr) { lo = mid+1; continue; } MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr); return mid_ruleSet; } // NOTREACHED } // Add a RuleSet to the collection. The rule is copied in. Calling // this makes the map non-searchable. void SecMap::AddRuleSet(const RuleSet* rs) { mUsable = false; mRuleSets.push_back(*rs); } // Add a PfxInstr to the vector of such instrs, and return the index // in the vector. Calling this makes the map non-searchable. uint32_t SecMap::AddPfxInstr(PfxInstr pfxi) { mUsable = false; mPfxInstrs.push_back(pfxi); return mPfxInstrs.size() - 1; } static bool CmpRuleSetsByAddrLE(const RuleSet& rs1, const RuleSet& rs2) { return rs1.mAddr < rs2.mAddr; } // Prepare the map for searching. Completely remove any which don't // fall inside the specified range [start, +len). void SecMap::PrepareRuleSets(uintptr_t aStart, size_t aLen) { if (mRuleSets.empty()) { return; } MOZ_ASSERT(aLen > 0); if (aLen == 0) { // This should never happen. mRuleSets.clear(); return; } // Sort by start addresses. std::sort(mRuleSets.begin(), mRuleSets.end(), CmpRuleSetsByAddrLE); // Detect any entry not completely contained within [start, +len). // Set its length to zero, so that the next pass will remove it. for (size_t i = 0; i < mRuleSets.size(); ++i) { RuleSet* rs = &mRuleSets[i]; if (rs->mLen > 0 && (rs->mAddr < aStart || rs->mAddr + rs->mLen > aStart + aLen)) { rs->mLen = 0; } } // Iteratively truncate any overlaps and remove any zero length // entries that might result, or that may have been present // initially. Unless the input is seriously screwy, this is // expected to iterate only once. while (true) { size_t i; size_t n = mRuleSets.size(); size_t nZeroLen = 0; if (n == 0) { break; } for (i = 1; i < n; ++i) { RuleSet* prev = &mRuleSets[i-1]; RuleSet* here = &mRuleSets[i]; MOZ_ASSERT(prev->mAddr <= here->mAddr); if (prev->mAddr + prev->mLen > here->mAddr) { prev->mLen = here->mAddr - prev->mAddr; } if (prev->mLen == 0) nZeroLen++; } if (mRuleSets[n-1].mLen == 0) { nZeroLen++; } // At this point, the entries are in-order and non-overlapping. // If none of them are zero-length, we are done. if (nZeroLen == 0) { break; } // Slide back the entries to remove the zero length ones. size_t j = 0; // The write-point. for (i = 0; i < n; ++i) { if (mRuleSets[i].mLen == 0) { continue; } if (j != i) mRuleSets[j] = mRuleSets[i]; ++j; } MOZ_ASSERT(i == n); MOZ_ASSERT(nZeroLen <= n); MOZ_ASSERT(j == n - nZeroLen); while (nZeroLen > 0) { mRuleSets.pop_back(); nZeroLen--; } MOZ_ASSERT(mRuleSets.size() == j); } size_t n = mRuleSets.size(); #ifdef DEBUG // Do a final check on the rules: their address ranges must be // ascending, non overlapping, non zero sized. if (n > 0) { MOZ_ASSERT(mRuleSets[0].mLen > 0); for (size_t i = 1; i < n; ++i) { RuleSet* prev = &mRuleSets[i-1]; RuleSet* here = &mRuleSets[i]; MOZ_ASSERT(prev->mAddr < here->mAddr); MOZ_ASSERT(here->mLen > 0); MOZ_ASSERT(prev->mAddr + prev->mLen <= here->mAddr); } } #endif // Set the summary min and max address values. if (n == 0) { // Use the values defined in comments in the class declaration. mSummaryMinAddr = 1; mSummaryMaxAddr = 0; } else { mSummaryMinAddr = mRuleSets[0].mAddr; mSummaryMaxAddr = mRuleSets[n-1].mAddr + mRuleSets[n-1].mLen - 1; } char buf[150]; SprintfLiteral(buf, "PrepareRuleSets: %d entries, smin/smax 0x%llx, 0x%llx\n", (int)n, (unsigned long long int)mSummaryMinAddr, (unsigned long long int)mSummaryMaxAddr); buf[sizeof(buf)-1] = 0; mLog(buf); // Is now usable for binary search. mUsable = true; if (0) { mLog("\nRulesets after preening\n"); for (size_t i = 0; i < mRuleSets.size(); ++i) { mRuleSets[i].Print(mLog); mLog("\n"); } mLog("\n"); } } bool SecMap::IsEmpty() { return mRuleSets.empty(); } //////////////////////////////////////////////////////////////// // SegArray // //////////////////////////////////////////////////////////////// // A SegArray holds a set of address ranges that together exactly // cover an address range, with no overlaps or holes. Each range has // an associated value, which in this case has been specialised to be // a simple boolean. The representation is kept to minimal canonical // form in which adjacent ranges with the same associated value are // merged together. Each range is represented by a |struct Seg|. // // SegArrays are used to keep track of which parts of the address // space are known to contain instructions. class SegArray { public: void add(uintptr_t lo, uintptr_t hi, bool val) { if (lo > hi) { return; } split_at(lo); if (hi < UINTPTR_MAX) { split_at(hi+1); } std::vector<Seg>::size_type iLo, iHi, i; iLo = find(lo); iHi = find(hi); for (i = iLo; i <= iHi; ++i) { mSegs[i].val = val; } preen(); } // RUNS IN NO-MALLOC CONTEXT bool getBoundingCodeSegment(/*OUT*/uintptr_t* rx_min, /*OUT*/uintptr_t* rx_max, uintptr_t addr) { std::vector<Seg>::size_type i = find(addr); if (!mSegs[i].val) { return false; } *rx_min = mSegs[i].lo; *rx_max = mSegs[i].hi; return true; } SegArray() { Seg s(0, UINTPTR_MAX, false); mSegs.push_back(s); } private: struct Seg { Seg(uintptr_t lo, uintptr_t hi, bool val) : lo(lo), hi(hi), val(val) {} uintptr_t lo; uintptr_t hi; bool val; }; void preen() { for (std::vector<Seg>::iterator iter = mSegs.begin(); iter < mSegs.end()-1; ++iter) { if (iter[0].val != iter[1].val) { continue; } iter[0].hi = iter[1].hi; mSegs.erase(iter+1); // Back up one, so as not to miss an opportunity to merge // with the entry after this one. --iter; } } // RUNS IN NO-MALLOC CONTEXT std::vector<Seg>::size_type find(uintptr_t a) { long int lo = 0; long int hi = (long int)mSegs.size(); while (true) { // The unsearched space is lo .. hi inclusive. if (lo > hi) { // Not found. This can't happen. return (std::vector<Seg>::size_type)(-1); } long int mid = lo + ((hi - lo) / 2); uintptr_t mid_lo = mSegs[mid].lo; uintptr_t mid_hi = mSegs[mid].hi; if (a < mid_lo) { hi = mid-1; continue; } if (a > mid_hi) { lo = mid+1; continue; } return (std::vector<Seg>::size_type)mid; } } void split_at(uintptr_t a) { std::vector<Seg>::size_type i = find(a); if (mSegs[i].lo == a) { return; } mSegs.insert( mSegs.begin()+i+1, mSegs[i] ); mSegs[i].hi = a-1; mSegs[i+1].lo = a; } void show() { printf("<< %d entries:\n", (int)mSegs.size()); for (std::vector<Seg>::iterator iter = mSegs.begin(); iter < mSegs.end(); ++iter) { printf(" %016llx %016llx %s\n", (unsigned long long int)(*iter).lo, (unsigned long long int)(*iter).hi, (*iter).val ? "true" : "false"); } printf(">>\n"); } std::vector<Seg> mSegs; }; //////////////////////////////////////////////////////////////// // PriMap // //////////////////////////////////////////////////////////////// class PriMap { public: explicit PriMap(void (*aLog)(const char*)) : mLog(aLog) {} ~PriMap() { for (std::vector<SecMap*>::iterator iter = mSecMaps.begin(); iter != mSecMaps.end(); ++iter) { delete *iter; } mSecMaps.clear(); } // RUNS IN NO-MALLOC CONTEXT pair<const RuleSet*, const vector<PfxInstr>*> Lookup(uintptr_t ia) { SecMap* sm = FindSecMap(ia); return pair<const RuleSet*, const vector<PfxInstr>*> (sm ? sm->FindRuleSet(ia) : nullptr, sm ? sm->GetPfxInstrs() : nullptr); } // Add a secondary map. No overlaps allowed w.r.t. existing // secondary maps. void AddSecMap(SecMap* aSecMap) { // We can't add an empty SecMap to the PriMap. But that's OK // since we'd never be able to find anything in it anyway. if (aSecMap->IsEmpty()) { return; } // Iterate through the SecMaps and find the right place for this // one. At the same time, ensure that the in-order // non-overlapping invariant is preserved (and, generally, holds). // FIXME: this gives a cost that is O(N^2) in the total number of // shared objects in the system. ToDo: better. MOZ_ASSERT(aSecMap->mSummaryMinAddr <= aSecMap->mSummaryMaxAddr); size_t num_secMaps = mSecMaps.size(); uintptr_t i; for (i = 0; i < num_secMaps; ++i) { SecMap* sm_i = mSecMaps[i]; MOZ_ASSERT(sm_i->mSummaryMinAddr <= sm_i->mSummaryMaxAddr); if (aSecMap->mSummaryMinAddr < sm_i->mSummaryMaxAddr) { // |aSecMap| needs to be inserted immediately before mSecMaps[i]. break; } } MOZ_ASSERT(i <= num_secMaps); if (i == num_secMaps) { // It goes at the end. mSecMaps.push_back(aSecMap); } else { std::vector<SecMap*>::iterator iter = mSecMaps.begin() + i; mSecMaps.insert(iter, aSecMap); } char buf[100]; SprintfLiteral(buf, "AddSecMap: now have %d SecMaps\n", (int)mSecMaps.size()); buf[sizeof(buf)-1] = 0; mLog(buf); } // Remove and delete any SecMaps in the mapping, that intersect // with the specified address range. void RemoveSecMapsInRange(uintptr_t avma_min, uintptr_t avma_max) { MOZ_ASSERT(avma_min <= avma_max); size_t num_secMaps = mSecMaps.size(); if (num_secMaps > 0) { intptr_t i; // Iterate from end to start over the vector, so as to ensure // that the special case where |avma_min| and |avma_max| denote // the entire address space, can be completed in time proportional // to the number of elements in the map. for (i = (intptr_t)num_secMaps-1; i >= 0; i--) { SecMap* sm_i = mSecMaps[i]; if (sm_i->mSummaryMaxAddr < avma_min || avma_max < sm_i->mSummaryMinAddr) { // There's no overlap. Move on. continue; } // We need to remove mSecMaps[i] and slide all those above it // downwards to cover the hole. mSecMaps.erase(mSecMaps.begin() + i); delete sm_i; } } } // Return the number of currently contained SecMaps. size_t CountSecMaps() { return mSecMaps.size(); } // Assess heuristically whether the given address is an instruction // immediately following a call instruction. // RUNS IN NO-MALLOC CONTEXT bool MaybeIsReturnPoint(TaggedUWord aInstrAddr, SegArray* aSegArray) { if (!aInstrAddr.Valid()) { return false; } uintptr_t ia = aInstrAddr.Value(); // Assume that nobody would be crazy enough to put code in the // first or last page. if (ia < 4096 || ((uintptr_t)(-ia)) < 4096) { return false; } // See if it falls inside a known r-x mapped area. Poking around // outside such places risks segfaulting. uintptr_t insns_min, insns_max; bool b = aSegArray->getBoundingCodeSegment(&insns_min, &insns_max, ia); if (!b) { // no code (that we know about) at this address return false; } // |ia| falls within an r-x range. So we can // safely poke around in [insns_min, insns_max]. #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) // Is the previous instruction recognisably a CALL? This is // common for the 32- and 64-bit versions, except for the // simm32(%rip) case, which is 64-bit only. // // For all other cases, the 64 bit versions are either identical // to the 32 bit versions, or have an optional extra leading REX.W // byte (0x41). Since the extra 0x41 is optional we have to // ignore it, with the convenient result that the same matching // logic works for both 32- and 64-bit cases. uint8_t* p = (uint8_t*)ia; # if defined(LUL_ARCH_x64) // CALL simm32(%rip) == FF15 simm32 if (ia - 6 >= insns_min && p[-6] == 0xFF && p[-5] == 0x15) { return true; } # endif // CALL rel32 == E8 rel32 (both 32- and 64-bit) if (ia - 5 >= insns_min && p[-5] == 0xE8) { return true; } // CALL *%eax .. CALL *%edi == FFD0 .. FFD7 (32-bit) // CALL *%rax .. CALL *%rdi == FFD0 .. FFD7 (64-bit) // CALL *%r8 .. CALL *%r15 == 41FFD0 .. 41FFD7 (64-bit) if (ia - 2 >= insns_min && p[-2] == 0xFF && p[-1] >= 0xD0 && p[-1] <= 0xD7) { return true; } // Almost all of the remaining cases that occur in practice are // of the form CALL *simm8(reg) or CALL *simm32(reg). // // 64 bit cases: // // call *simm8(%rax) FF50 simm8 // call *simm8(%rcx) FF51 simm8 // call *simm8(%rdx) FF52 simm8 // call *simm8(%rbx) FF53 simm8 // call *simm8(%rsp) FF5424 simm8 // call *simm8(%rbp) FF55 simm8 // call *simm8(%rsi) FF56 simm8 // call *simm8(%rdi) FF57 simm8 // // call *simm8(%r8) 41FF50 simm8 // call *simm8(%r9) 41FF51 simm8 // call *simm8(%r10) 41FF52 simm8 // call *simm8(%r11) 41FF53 simm8 // call *simm8(%r12) 41FF5424 simm8 // call *simm8(%r13) 41FF55 simm8 // call *simm8(%r14) 41FF56 simm8 // call *simm8(%r15) 41FF57 simm8 // // call *simm32(%rax) FF90 simm32 // call *simm32(%rcx) FF91 simm32 // call *simm32(%rdx) FF92 simm32 // call *simm32(%rbx) FF93 simm32 // call *simm32(%rsp) FF9424 simm32 // call *simm32(%rbp) FF95 simm32 // call *simm32(%rsi) FF96 simm32 // call *simm32(%rdi) FF97 simm32 // // call *simm32(%r8) 41FF90 simm32 // call *simm32(%r9) 41FF91 simm32 // call *simm32(%r10) 41FF92 simm32 // call *simm32(%r11) 41FF93 simm32 // call *simm32(%r12) 41FF9424 simm32 // call *simm32(%r13) 41FF95 simm32 // call *simm32(%r14) 41FF96 simm32 // call *simm32(%r15) 41FF97 simm32 // // 32 bit cases: // // call *simm8(%eax) FF50 simm8 // call *simm8(%ecx) FF51 simm8 // call *simm8(%edx) FF52 simm8 // call *simm8(%ebx) FF53 simm8 // call *simm8(%esp) FF5424 simm8 // call *simm8(%ebp) FF55 simm8 // call *simm8(%esi) FF56 simm8 // call *simm8(%edi) FF57 simm8 // // call *simm32(%eax) FF90 simm32 // call *simm32(%ecx) FF91 simm32 // call *simm32(%edx) FF92 simm32 // call *simm32(%ebx) FF93 simm32 // call *simm32(%esp) FF9424 simm32 // call *simm32(%ebp) FF95 simm32 // call *simm32(%esi) FF96 simm32 // call *simm32(%edi) FF97 simm32 if (ia - 3 >= insns_min && p[-3] == 0xFF && (p[-2] >= 0x50 && p[-2] <= 0x57 && p[-2] != 0x54)) { // imm8 case, not including %esp/%rsp return true; } if (ia - 4 >= insns_min && p[-4] == 0xFF && p[-3] == 0x54 && p[-2] == 0x24) { // imm8 case for %esp/%rsp return true; } if (ia - 6 >= insns_min && p[-6] == 0xFF && (p[-5] >= 0x90 && p[-5] <= 0x97 && p[-5] != 0x94)) { // imm32 case, not including %esp/%rsp return true; } if (ia - 7 >= insns_min && p[-7] == 0xFF && p[-6] == 0x94 && p[-5] == 0x24) { // imm32 case for %esp/%rsp return true; } #elif defined(LUL_ARCH_arm) if (ia & 1) { uint16_t w0 = 0, w1 = 0; // The return address has its lowest bit set, indicating a return // to Thumb code. ia &= ~(uintptr_t)1; if (ia - 2 >= insns_min && ia - 1 <= insns_max) { w1 = *(uint16_t*)(ia - 2); } if (ia - 4 >= insns_min && ia - 1 <= insns_max) { w0 = *(uint16_t*)(ia - 4); } // Is it a 32-bit Thumb call insn? // BL simm26 (Encoding T1) if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) { return true; } // BLX simm26 (Encoding T2) if ((w0 & 0xF800) == 0xF000 && (w1 & 0xC000) == 0xC000) { return true; } // Other possible cases: // (BLX Rm, Encoding T1). // BLX Rm (encoding T1, 16 bit, inspect w1 and ignore w0.) // 0100 0111 1 Rm 000 } else { // Returning to ARM code. uint32_t a0 = 0; if ((ia & 3) == 0 && ia - 4 >= insns_min && ia - 1 <= insns_max) { a0 = *(uint32_t*)(ia - 4); } // Leading E forces unconditional only -- fix. It could be // anything except F, which is the deprecated NV code. // BL simm26 (Encoding A1) if ((a0 & 0xFF000000) == 0xEB000000) { return true; } // Other possible cases: // BLX simm26 (Encoding A2) //if ((a0 & 0xFE000000) == 0xFA000000) // return true; // BLX (register) (A1): BLX <c> <Rm> // cond 0001 0010 1111 1111 1111 0011 Rm // again, cond can be anything except NV (0xF) } #else # error "Unsupported arch" #endif // Not an insn we recognise. return false; } private: // RUNS IN NO-MALLOC CONTEXT SecMap* FindSecMap(uintptr_t ia) { // Binary search mSecMaps to find one that brackets |ia|. // lo and hi need to be signed, else the loop termination tests // don't work properly. long int lo = 0; long int hi = (long int)mSecMaps.size() - 1; while (true) { // current unsearched space is from lo to hi, inclusive. if (lo > hi) { // not found return nullptr; } long int mid = lo + ((hi - lo) / 2); SecMap* mid_secMap = mSecMaps[mid]; uintptr_t mid_minAddr = mid_secMap->mSummaryMinAddr; uintptr_t mid_maxAddr = mid_secMap->mSummaryMaxAddr; if (ia < mid_minAddr) { hi = mid-1; continue; } if (ia > mid_maxAddr) { lo = mid+1; continue; } MOZ_ASSERT(mid_minAddr <= ia && ia <= mid_maxAddr); return mid_secMap; } // NOTREACHED } private: // sorted array of per-object ranges, non overlapping, non empty std::vector<SecMap*> mSecMaps; // a logging sink, for debugging. void (*mLog)(const char*); }; //////////////////////////////////////////////////////////////// // LUL // //////////////////////////////////////////////////////////////// #define LUL_LOG(_str) \ do { \ char buf[200]; \ SprintfLiteral(buf, \ "LUL: pid %d tid %d lul-obj %p: %s", \ getpid(), gettid(), this, (_str)); \ buf[sizeof(buf)-1] = 0; \ mLog(buf); \ } while (0) LUL::LUL(void (*aLog)(const char*)) : mLog(aLog) , mAdminMode(true) , mAdminThreadId(gettid()) , mPriMap(new PriMap(aLog)) , mSegArray(new SegArray()) , mUSU(new UniqueStringUniverse()) { LUL_LOG("LUL::LUL: Created object"); } LUL::~LUL() { LUL_LOG("LUL::~LUL: Destroyed object"); delete mPriMap; delete mSegArray; mLog = nullptr; delete mUSU; } void LUL::MaybeShowStats() { // This is racey in the sense that it can't guarantee that // n_new == n_new_Context + n_new_CFI + n_new_Scanned // if it should happen that mStats is updated by some other thread // in between computation of n_new and n_new_{Context,CFI,Scanned}. // But it's just stats printing, so we don't really care. uint32_t n_new = mStats - mStatsPrevious; if (n_new >= 5000) { uint32_t n_new_Context = mStats.mContext - mStatsPrevious.mContext; uint32_t n_new_CFI = mStats.mCFI - mStatsPrevious.mCFI; uint32_t n_new_Scanned = mStats.mScanned - mStatsPrevious.mScanned; mStatsPrevious = mStats; char buf[200]; SprintfLiteral(buf, "LUL frame stats: TOTAL %5u" " CTX %4u CFI %4u SCAN %4u", n_new, n_new_Context, n_new_CFI, n_new_Scanned); buf[sizeof(buf)-1] = 0; mLog(buf); } } void LUL::EnableUnwinding() { LUL_LOG("LUL::EnableUnwinding"); // Don't assert for Admin mode here. That is, tolerate a call here // if we are already in Unwinding mode. MOZ_ASSERT(gettid() == mAdminThreadId); mAdminMode = false; } void LUL::NotifyAfterMap(uintptr_t aRXavma, size_t aSize, const char* aFileName, const void* aMappedImage) { MOZ_ASSERT(mAdminMode); MOZ_ASSERT(gettid() == mAdminThreadId); mLog(":\n"); char buf[200]; SprintfLiteral(buf, "NotifyMap %llx %llu %s\n", (unsigned long long int)aRXavma, (unsigned long long int)aSize, aFileName); buf[sizeof(buf)-1] = 0; mLog(buf); // Ignore obviously-stupid notifications. if (aSize > 0) { // Here's a new mapping, for this object. SecMap* smap = new SecMap(mLog); // Read CFI or EXIDX unwind data into |smap|. if (!aMappedImage) { (void)lul::ReadSymbolData( string(aFileName), std::vector<string>(), smap, (void*)aRXavma, aSize, mUSU, mLog); } else { (void)lul::ReadSymbolDataInternal( (const uint8_t*)aMappedImage, string(aFileName), std::vector<string>(), smap, (void*)aRXavma, aSize, mUSU, mLog); } mLog("NotifyMap .. preparing entries\n"); smap->PrepareRuleSets(aRXavma, aSize); SprintfLiteral(buf, "NotifyMap got %lld entries\n", (long long int)smap->Size()); buf[sizeof(buf)-1] = 0; mLog(buf); // Add it to the primary map (the top level set of mapped objects). mPriMap->AddSecMap(smap); // Tell the segment array about the mapping, so that the stack // scan and __kernel_syscall mechanisms know where valid code is. mSegArray->add(aRXavma, aRXavma + aSize - 1, true); } } void LUL::NotifyExecutableArea(uintptr_t aRXavma, size_t aSize) { MOZ_ASSERT(mAdminMode); MOZ_ASSERT(gettid() == mAdminThreadId); mLog(":\n"); char buf[200]; SprintfLiteral(buf, "NotifyExecutableArea %llx %llu\n", (unsigned long long int)aRXavma, (unsigned long long int)aSize); buf[sizeof(buf)-1] = 0; mLog(buf); // Ignore obviously-stupid notifications. if (aSize > 0) { // Tell the segment array about the mapping, so that the stack // scan and __kernel_syscall mechanisms know where valid code is. mSegArray->add(aRXavma, aRXavma + aSize - 1, true); } } void LUL::NotifyBeforeUnmap(uintptr_t aRXavmaMin, uintptr_t aRXavmaMax) { MOZ_ASSERT(mAdminMode); MOZ_ASSERT(gettid() == mAdminThreadId); mLog(":\n"); char buf[100]; SprintfLiteral(buf, "NotifyUnmap %016llx-%016llx\n", (unsigned long long int)aRXavmaMin, (unsigned long long int)aRXavmaMax); buf[sizeof(buf)-1] = 0; mLog(buf); MOZ_ASSERT(aRXavmaMin <= aRXavmaMax); // Remove from the primary map, any secondary maps that intersect // with the address range. Also delete the secondary maps. mPriMap->RemoveSecMapsInRange(aRXavmaMin, aRXavmaMax); // Tell the segment array that the address range no longer // contains valid code. mSegArray->add(aRXavmaMin, aRXavmaMax, false); SprintfLiteral(buf, "NotifyUnmap: now have %d SecMaps\n", (int)mPriMap->CountSecMaps()); buf[sizeof(buf)-1] = 0; mLog(buf); } size_t LUL::CountMappings() { MOZ_ASSERT(mAdminMode); MOZ_ASSERT(gettid() == mAdminThreadId); return mPriMap->CountSecMaps(); } // RUNS IN NO-MALLOC CONTEXT static TaggedUWord DerefTUW(TaggedUWord aAddr, const StackImage* aStackImg) { if (!aAddr.Valid()) { return TaggedUWord(); } // Lower limit check. |aAddr.Value()| is the lowest requested address // and |aStackImg->mStartAvma| is the lowest address we actually have, // so the comparison is straightforward. if (aAddr.Value() < aStackImg->mStartAvma) { return TaggedUWord(); } // Upper limit check. We must compute the highest requested address // and the highest address we actually have, but being careful to // avoid overflow. In particular if |aAddr| is 0xFFF...FFF or the // 3/7 values below that, then we will get overflow. See bug #1245477. typedef CheckedInt<uintptr_t> CheckedUWord; CheckedUWord highest_requested_plus_one = CheckedUWord(aAddr.Value()) + CheckedUWord(sizeof(uintptr_t)); CheckedUWord highest_available_plus_one = CheckedUWord(aStackImg->mStartAvma) + CheckedUWord(aStackImg->mLen); if (!highest_requested_plus_one.isValid() // overflow? || !highest_available_plus_one.isValid() // overflow? || (highest_requested_plus_one.value() > highest_available_plus_one.value())) { // in range? return TaggedUWord(); } return TaggedUWord(*(uintptr_t*)(aStackImg->mContents + aAddr.Value() - aStackImg->mStartAvma)); } // RUNS IN NO-MALLOC CONTEXT static TaggedUWord EvaluateReg(int16_t aReg, const UnwindRegs* aOldRegs, TaggedUWord aCFA) { switch (aReg) { case DW_REG_CFA: return aCFA; #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) case DW_REG_INTEL_XBP: return aOldRegs->xbp; case DW_REG_INTEL_XSP: return aOldRegs->xsp; case DW_REG_INTEL_XIP: return aOldRegs->xip; #elif defined(LUL_ARCH_arm) case DW_REG_ARM_R7: return aOldRegs->r7; case DW_REG_ARM_R11: return aOldRegs->r11; case DW_REG_ARM_R12: return aOldRegs->r12; case DW_REG_ARM_R13: return aOldRegs->r13; case DW_REG_ARM_R14: return aOldRegs->r14; case DW_REG_ARM_R15: return aOldRegs->r15; #else # error "Unsupported arch" #endif default: MOZ_ASSERT(0); return TaggedUWord(); } } // RUNS IN NO-MALLOC CONTEXT // See prototype for comment. TaggedUWord EvaluatePfxExpr(int32_t start, const UnwindRegs* aOldRegs, TaggedUWord aCFA, const StackImage* aStackImg, const vector<PfxInstr>& aPfxInstrs) { // A small evaluation stack, and a stack pointer, which points to // the highest numbered in-use element. const int N_STACK = 10; TaggedUWord stack[N_STACK]; int stackPointer = -1; for (int i = 0; i < N_STACK; i++) stack[i] = TaggedUWord(); # define PUSH(_tuw) \ do { \ if (stackPointer >= N_STACK-1) goto fail; /* overflow */ \ stack[++stackPointer] = (_tuw); \ } while (0) # define POP(_lval) \ do { \ if (stackPointer < 0) goto fail; /* underflow */ \ _lval = stack[stackPointer--]; \ } while (0) // Cursor in the instruction sequence. size_t curr = start + 1; // Check the start point is sane. size_t nInstrs = aPfxInstrs.size(); if (start < 0 || (size_t)start >= nInstrs) goto fail; { // The instruction sequence must start with PX_Start. If not, // something is seriously wrong. PfxInstr first = aPfxInstrs[start]; if (first.mOpcode != PX_Start) goto fail; // Push the CFA on the stack to start with (or not), as required by // the original DW_OP_*expression* CFI. if (first.mOperand != 0) PUSH(aCFA); } while (true) { if (curr >= nInstrs) goto fail; // ran off the end of the sequence PfxInstr pfxi = aPfxInstrs[curr++]; if (pfxi.mOpcode == PX_End) break; // we're done switch (pfxi.mOpcode) { case PX_Start: // This should appear only at the start of the sequence. goto fail; case PX_End: // We just took care of that, so we shouldn't see it again. MOZ_ASSERT(0); goto fail; case PX_SImm32: PUSH(TaggedUWord((intptr_t)pfxi.mOperand)); break; case PX_DwReg: { DW_REG_NUMBER reg = (DW_REG_NUMBER)pfxi.mOperand; MOZ_ASSERT(reg != DW_REG_CFA); PUSH(EvaluateReg(reg, aOldRegs, aCFA)); break; } case PX_Deref: { TaggedUWord addr; POP(addr); PUSH(DerefTUW(addr, aStackImg)); break; } case PX_Add: { TaggedUWord x, y; POP(x); POP(y); PUSH(y + x); break; } case PX_Sub: { TaggedUWord x, y; POP(x); POP(y); PUSH(y - x); break; } case PX_And: { TaggedUWord x, y; POP(x); POP(y); PUSH(y & x); break; } case PX_Or: { TaggedUWord x, y; POP(x); POP(y); PUSH(y | x); break; } case PX_CmpGES: { TaggedUWord x, y; POP(x); POP(y); PUSH(y.CmpGEs(x)); break; } case PX_Shl: { TaggedUWord x, y; POP(x); POP(y); PUSH(y << x); break; } default: MOZ_ASSERT(0); goto fail; } } // while (true) // Evaluation finished. The top value on the stack is the result. if (stackPointer >= 0) { return stack[stackPointer]; } // Else fall through fail: return TaggedUWord(); # undef PUSH # undef POP } // RUNS IN NO-MALLOC CONTEXT TaggedUWord LExpr::EvaluateExpr(const UnwindRegs* aOldRegs, TaggedUWord aCFA, const StackImage* aStackImg, const vector<PfxInstr>* aPfxInstrs) const { switch (mHow) { case UNKNOWN: return TaggedUWord(); case NODEREF: { TaggedUWord tuw = EvaluateReg(mReg, aOldRegs, aCFA); tuw = tuw + TaggedUWord((intptr_t)mOffset); return tuw; } case DEREF: { TaggedUWord tuw = EvaluateReg(mReg, aOldRegs, aCFA); tuw = tuw + TaggedUWord((intptr_t)mOffset); return DerefTUW(tuw, aStackImg); } case PFXEXPR: { MOZ_ASSERT(aPfxInstrs); if (!aPfxInstrs) { return TaggedUWord(); } return EvaluatePfxExpr(mOffset, aOldRegs, aCFA, aStackImg, *aPfxInstrs); } default: MOZ_ASSERT(0); return TaggedUWord(); } } // RUNS IN NO-MALLOC CONTEXT static void UseRuleSet(/*MOD*/UnwindRegs* aRegs, const StackImage* aStackImg, const RuleSet* aRS, const vector<PfxInstr>* aPfxInstrs) { // Take a copy of regs, since we'll need to refer to the old values // whilst computing the new ones. UnwindRegs old_regs = *aRegs; // Mark all the current register values as invalid, so that the // caller can see, on our return, which ones have been computed // anew. If we don't even manage to compute a new PC value, then // the caller will have to abandon the unwind. // FIXME: Create and use instead: aRegs->SetAllInvalid(); #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) aRegs->xbp = TaggedUWord(); aRegs->xsp = TaggedUWord(); aRegs->xip = TaggedUWord(); #elif defined(LUL_ARCH_arm) aRegs->r7 = TaggedUWord(); aRegs->r11 = TaggedUWord(); aRegs->r12 = TaggedUWord(); aRegs->r13 = TaggedUWord(); aRegs->r14 = TaggedUWord(); aRegs->r15 = TaggedUWord(); #else # error "Unsupported arch" #endif // This is generally useful. const TaggedUWord inval = TaggedUWord(); // First, compute the CFA. TaggedUWord cfa = aRS->mCfaExpr.EvaluateExpr(&old_regs, inval/*old cfa*/, aStackImg, aPfxInstrs); // If we didn't manage to compute the CFA, well .. that's ungood, // but keep going anyway. It'll be OK provided none of the register // value rules mention the CFA. In any case, compute the new values // for each register that we're tracking. #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) aRegs->xbp = aRS->mXbpExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->xsp = aRS->mXspExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->xip = aRS->mXipExpr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); #elif defined(LUL_ARCH_arm) aRegs->r7 = aRS->mR7expr .EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->r11 = aRS->mR11expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->r12 = aRS->mR12expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->r13 = aRS->mR13expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->r14 = aRS->mR14expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); aRegs->r15 = aRS->mR15expr.EvaluateExpr(&old_regs, cfa, aStackImg, aPfxInstrs); #else # error "Unsupported arch" #endif // We're done. Any regs for which we didn't manage to compute a // new value will now be marked as invalid. } // RUNS IN NO-MALLOC CONTEXT void LUL::Unwind(/*OUT*/uintptr_t* aFramePCs, /*OUT*/uintptr_t* aFrameSPs, /*OUT*/size_t* aFramesUsed, /*OUT*/size_t* aScannedFramesAcquired, size_t aFramesAvail, size_t aScannedFramesAllowed, UnwindRegs* aStartRegs, StackImage* aStackImg) { MOZ_ASSERT(!mAdminMode); ///////////////////////////////////////////////////////// // BEGIN UNWIND *aFramesUsed = 0; UnwindRegs regs = *aStartRegs; TaggedUWord last_valid_sp = TaggedUWord(); // Stack-scan control unsigned int n_scanned_frames = 0; // # s-s frames recovered so far static const int NUM_SCANNED_WORDS = 50; // max allowed scan length while (true) { if (DEBUG_MAIN) { char buf[300]; mLog("\n"); #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) SprintfLiteral(buf, "LoopTop: rip %d/%llx rsp %d/%llx rbp %d/%llx\n", (int)regs.xip.Valid(), (unsigned long long int)regs.xip.Value(), (int)regs.xsp.Valid(), (unsigned long long int)regs.xsp.Value(), (int)regs.xbp.Valid(), (unsigned long long int)regs.xbp.Value()); buf[sizeof(buf)-1] = 0; mLog(buf); #elif defined(LUL_ARCH_arm) SprintfLiteral(buf, "LoopTop: r15 %d/%llx r7 %d/%llx r11 %d/%llx" " r12 %d/%llx r13 %d/%llx r14 %d/%llx\n", (int)regs.r15.Valid(), (unsigned long long int)regs.r15.Value(), (int)regs.r7.Valid(), (unsigned long long int)regs.r7.Value(), (int)regs.r11.Valid(), (unsigned long long int)regs.r11.Value(), (int)regs.r12.Valid(), (unsigned long long int)regs.r12.Value(), (int)regs.r13.Valid(), (unsigned long long int)regs.r13.Value(), (int)regs.r14.Valid(), (unsigned long long int)regs.r14.Value()); buf[sizeof(buf)-1] = 0; mLog(buf); #else # error "Unsupported arch" #endif } #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) TaggedUWord ia = regs.xip; TaggedUWord sp = regs.xsp; #elif defined(LUL_ARCH_arm) TaggedUWord ia = (*aFramesUsed == 0 ? regs.r15 : regs.r14); TaggedUWord sp = regs.r13; #else # error "Unsupported arch" #endif if (*aFramesUsed >= aFramesAvail) { break; } // If we don't have a valid value for the PC, give up. if (!ia.Valid()) { break; } // If this is the innermost frame, record the SP value, which // presumably is valid. If this isn't the innermost frame, and we // have a valid SP value, check that its SP value isn't less that // the one we've seen so far, so as to catch potential SP value // cycles. if (*aFramesUsed == 0) { last_valid_sp = sp; } else { MOZ_ASSERT(last_valid_sp.Valid()); if (sp.Valid()) { if (sp.Value() < last_valid_sp.Value()) { // Hmm, SP going in the wrong direction. Let's stop. break; } // Remember where we got to. last_valid_sp = sp; } } // For the innermost frame, the IA value is what we need. For all // other frames, it's actually the return address, so back up one // byte so as to get it into the calling instruction. aFramePCs[*aFramesUsed] = ia.Value() - (*aFramesUsed == 0 ? 0 : 1); aFrameSPs[*aFramesUsed] = sp.Valid() ? sp.Value() : 0; (*aFramesUsed)++; // Find the RuleSet for the current IA, if any. This will also // query the backing (secondary) maps if it isn't found in the // thread-local cache. // If this isn't the innermost frame, back up into the calling insn. if (*aFramesUsed > 1) { ia = ia + TaggedUWord((uintptr_t)(-1)); } pair<const RuleSet*, const vector<PfxInstr>*> ruleset_and_pfxinstrs = mPriMap->Lookup(ia.Value()); const RuleSet* ruleset = ruleset_and_pfxinstrs.first; const vector<PfxInstr>* pfxinstrs = ruleset_and_pfxinstrs.second; if (DEBUG_MAIN) { char buf[100]; SprintfLiteral(buf, "ruleset for 0x%llx = %p\n", (unsigned long long int)ia.Value(), ruleset); buf[sizeof(buf)-1] = 0; mLog(buf); } ///////////////////////////////////////////// //// // On 32 bit x86-linux, syscalls are often done via the VDSO // function __kernel_vsyscall, which doesn't have a corresponding // object that we can read debuginfo from. That effectively kills // off all stack traces for threads blocked in syscalls. Hence // special-case by looking at the code surrounding the program // counter. // // 0xf7757420 <__kernel_vsyscall+0>: push %ecx // 0xf7757421 <__kernel_vsyscall+1>: push %edx // 0xf7757422 <__kernel_vsyscall+2>: push %ebp // 0xf7757423 <__kernel_vsyscall+3>: mov %esp,%ebp // 0xf7757425 <__kernel_vsyscall+5>: sysenter // 0xf7757427 <__kernel_vsyscall+7>: nop // 0xf7757428 <__kernel_vsyscall+8>: nop // 0xf7757429 <__kernel_vsyscall+9>: nop // 0xf775742a <__kernel_vsyscall+10>: nop // 0xf775742b <__kernel_vsyscall+11>: nop // 0xf775742c <__kernel_vsyscall+12>: nop // 0xf775742d <__kernel_vsyscall+13>: nop // 0xf775742e <__kernel_vsyscall+14>: int $0x80 // 0xf7757430 <__kernel_vsyscall+16>: pop %ebp // 0xf7757431 <__kernel_vsyscall+17>: pop %edx // 0xf7757432 <__kernel_vsyscall+18>: pop %ecx // 0xf7757433 <__kernel_vsyscall+19>: ret // // In cases where the sampled thread is blocked in a syscall, its // program counter will point at "pop %ebp". Hence we look for // the sequence "int $0x80; pop %ebp; pop %edx; pop %ecx; ret", and // the corresponding register-recovery actions are: // new_ebp = *(old_esp + 0) // new eip = *(old_esp + 12) // new_esp = old_esp + 16 // // It may also be the case that the program counter points two // nops before the "int $0x80", viz, is __kernel_vsyscall+12, in // the case where the syscall has been restarted but the thread // hasn't been rescheduled. The code below doesn't handle that; // it could easily be made to. // #if defined(LUL_PLAT_x86_android) || defined(LUL_PLAT_x86_linux) if (!ruleset && *aFramesUsed == 1 && ia.Valid() && sp.Valid()) { uintptr_t insns_min, insns_max; uintptr_t eip = ia.Value(); bool b = mSegArray->getBoundingCodeSegment(&insns_min, &insns_max, eip); if (b && eip - 2 >= insns_min && eip + 3 <= insns_max) { uint8_t* eipC = (uint8_t*)eip; if (eipC[-2] == 0xCD && eipC[-1] == 0x80 && eipC[0] == 0x5D && eipC[1] == 0x5A && eipC[2] == 0x59 && eipC[3] == 0xC3) { TaggedUWord sp_plus_0 = sp; TaggedUWord sp_plus_12 = sp; TaggedUWord sp_plus_16 = sp; sp_plus_12 = sp_plus_12 + TaggedUWord(12); sp_plus_16 = sp_plus_16 + TaggedUWord(16); TaggedUWord new_ebp = DerefTUW(sp_plus_0, aStackImg); TaggedUWord new_eip = DerefTUW(sp_plus_12, aStackImg); TaggedUWord new_esp = sp_plus_16; if (new_ebp.Valid() && new_eip.Valid() && new_esp.Valid()) { regs.xbp = new_ebp; regs.xip = new_eip; regs.xsp = new_esp; continue; } } } } #endif //// ///////////////////////////////////////////// // So, do we have a ruleset for this address? If so, use it now. if (ruleset) { if (DEBUG_MAIN) { ruleset->Print(mLog); mLog("\n"); } // Use the RuleSet to compute the registers for the previous // frame. |regs| is modified in-place. UseRuleSet(®s, aStackImg, ruleset, pfxinstrs); } else { // There's no RuleSet for the specified address, so see if // it's possible to get anywhere by stack-scanning. // Use stack scanning frugally. if (n_scanned_frames++ >= aScannedFramesAllowed) { break; } // We can't scan the stack without a valid, aligned stack pointer. if (!sp.IsAligned()) { break; } bool scan_succeeded = false; for (int i = 0; i < NUM_SCANNED_WORDS; ++i) { TaggedUWord aWord = DerefTUW(sp, aStackImg); // aWord is something we fished off the stack. It should be // valid, unless we overran the stack bounds. if (!aWord.Valid()) { break; } // Now, does aWord point inside a text section and immediately // after something that looks like a call instruction? if (mPriMap->MaybeIsReturnPoint(aWord, mSegArray)) { // Yes it does. Update the unwound registers heuristically, // using the same schemes as Breakpad does. scan_succeeded = true; (*aScannedFramesAcquired)++; #if defined(LUL_ARCH_x64) || defined(LUL_ARCH_x86) // The same logic applies for the 32- and 64-bit cases. // Register names of the form xsp etc refer to (eg) esp in // the 32-bit case and rsp in the 64-bit case. # if defined(LUL_ARCH_x64) const int wordSize = 8; # else const int wordSize = 4; # endif // The return address -- at XSP -- will have been pushed by // the CALL instruction. So the caller's XSP value // immediately before and after that CALL instruction is the // word above XSP. regs.xsp = sp + TaggedUWord(wordSize); // aWord points at the return point, so back up one byte // to put it in the calling instruction. regs.xip = aWord + TaggedUWord((uintptr_t)(-1)); // Computing a new value from the frame pointer is more tricky. if (regs.xbp.Valid() && sp.Valid() && regs.xbp.Value() == sp.Value() - wordSize) { // One possibility is that the callee begins with the standard // preamble "push %xbp; mov %xsp, %xbp". In which case, the // (1) caller's XBP value will be at the word below XSP, and // (2) the current (callee's) XBP will point at that word: regs.xbp = DerefTUW(regs.xbp, aStackImg); } else if (regs.xbp.Valid() && sp.Valid() && regs.xbp.Value() >= sp.Value() + wordSize) { // If that didn't work out, maybe the callee didn't change // XBP, so it still holds the caller's value. For that to // be plausible, XBP will need to have a value at least // higher than XSP since that holds the purported return // address. In which case do nothing, since XBP already // holds the "right" value. } else { // Mark XBP as invalid, so that subsequent unwind iterations // don't assume it holds valid data. regs.xbp = TaggedUWord(); } // Move on to the next word up the stack sp = sp + TaggedUWord(wordSize); #elif defined(LUL_ARCH_arm) // Set all registers to be undefined, except for SP(R13) and // PC(R15). // aWord points either at the return point, if returning to // ARM code, or one insn past the return point if returning // to Thumb code. In both cases, aWord-2 is guaranteed to // fall within the calling instruction. regs.r15 = aWord + TaggedUWord((uintptr_t)(-2)); // Make SP be the word above the location where the return // address was found. regs.r13 = sp + TaggedUWord(4); // All other regs are undefined. regs.r7 = regs.r11 = regs.r12 = regs.r14 = TaggedUWord(); // Move on to the next word up the stack sp = sp + TaggedUWord(4); #else # error "Unknown plat" #endif break; } } // for (int i = 0; i < NUM_SCANNED_WORDS; i++) // We tried to make progress by scanning the stack, but failed. // So give up -- fall out of the top level unwind loop. if (!scan_succeeded) { break; } } } // top level unwind loop // END UNWIND ///////////////////////////////////////////////////////// } //////////////////////////////////////////////////////////////// // LUL Unit Testing // //////////////////////////////////////////////////////////////// static const int LUL_UNIT_TEST_STACK_SIZE = 16384; // This function is innermost in the test call sequence. It uses LUL // to unwind, and compares the result with the sequence specified in // the director string. These need to agree in order for the test to // pass. In order not to screw up the results, this function needs // to have a not-very big stack frame, since we're only presenting // the innermost LUL_UNIT_TEST_STACK_SIZE bytes of stack to LUL, and // that chunk unavoidably includes the frame for this function. // // This function must not be inlined into its callers. Doing so will // cause the expected-vs-actual backtrace consistency checking to // fail. Prints summary results to |aLUL|'s logging sink and also // returns a boolean indicating whether or not the test passed. static __attribute__((noinline)) bool GetAndCheckStackTrace(LUL* aLUL, const char* dstring) { // Get hold of the current unwind-start registers. UnwindRegs startRegs; memset(&startRegs, 0, sizeof(startRegs)); #if defined(LUL_PLAT_x64_linux) volatile uintptr_t block[3]; MOZ_ASSERT(sizeof(block) == 24); __asm__ __volatile__( "leaq 0(%%rip), %%r15" "\n\t" "movq %%r15, 0(%0)" "\n\t" "movq %%rsp, 8(%0)" "\n\t" "movq %%rbp, 16(%0)" "\n" : : "r"(&block[0]) : "memory", "r15" ); startRegs.xip = TaggedUWord(block[0]); startRegs.xsp = TaggedUWord(block[1]); startRegs.xbp = TaggedUWord(block[2]); const uintptr_t REDZONE_SIZE = 128; uintptr_t start = block[1] - REDZONE_SIZE; #elif defined(LUL_PLAT_x86_linux) || defined(LUL_PLAT_x86_android) volatile uintptr_t block[3]; MOZ_ASSERT(sizeof(block) == 12); __asm__ __volatile__( ".byte 0xE8,0x00,0x00,0x00,0x00"/*call next insn*/ "\n\t" "popl %%edi" "\n\t" "movl %%edi, 0(%0)" "\n\t" "movl %%esp, 4(%0)" "\n\t" "movl %%ebp, 8(%0)" "\n" : : "r"(&block[0]) : "memory", "edi" ); startRegs.xip = TaggedUWord(block[0]); startRegs.xsp = TaggedUWord(block[1]); startRegs.xbp = TaggedUWord(block[2]); const uintptr_t REDZONE_SIZE = 0; uintptr_t start = block[1] - REDZONE_SIZE; #elif defined(LUL_PLAT_arm_android) volatile uintptr_t block[6]; MOZ_ASSERT(sizeof(block) == 24); __asm__ __volatile__( "mov r0, r15" "\n\t" "str r0, [%0, #0]" "\n\t" "str r14, [%0, #4]" "\n\t" "str r13, [%0, #8]" "\n\t" "str r12, [%0, #12]" "\n\t" "str r11, [%0, #16]" "\n\t" "str r7, [%0, #20]" "\n" : : "r"(&block[0]) : "memory", "r0" ); startRegs.r15 = TaggedUWord(block[0]); startRegs.r14 = TaggedUWord(block[1]); startRegs.r13 = TaggedUWord(block[2]); startRegs.r12 = TaggedUWord(block[3]); startRegs.r11 = TaggedUWord(block[4]); startRegs.r7 = TaggedUWord(block[5]); const uintptr_t REDZONE_SIZE = 0; uintptr_t start = block[1] - REDZONE_SIZE; #else # error "Unsupported platform" #endif // Get hold of the innermost LUL_UNIT_TEST_STACK_SIZE bytes of the // stack. uintptr_t end = start + LUL_UNIT_TEST_STACK_SIZE; uintptr_t ws = sizeof(void*); start &= ~(ws-1); end &= ~(ws-1); uintptr_t nToCopy = end - start; if (nToCopy > lul::N_STACK_BYTES) { nToCopy = lul::N_STACK_BYTES; } MOZ_ASSERT(nToCopy <= lul::N_STACK_BYTES); StackImage* stackImg = new StackImage(); stackImg->mLen = nToCopy; stackImg->mStartAvma = start; if (nToCopy > 0) { MOZ_MAKE_MEM_DEFINED((void*)start, nToCopy); memcpy(&stackImg->mContents[0], (void*)start, nToCopy); } // Unwind it. const int MAX_TEST_FRAMES = 64; uintptr_t framePCs[MAX_TEST_FRAMES]; uintptr_t frameSPs[MAX_TEST_FRAMES]; size_t framesAvail = mozilla::ArrayLength(framePCs); size_t framesUsed = 0; size_t scannedFramesAllowed = 0; size_t scannedFramesAcquired = 0; aLUL->Unwind( &framePCs[0], &frameSPs[0], &framesUsed, &scannedFramesAcquired, framesAvail, scannedFramesAllowed, &startRegs, stackImg ); delete stackImg; //if (0) { // // Show what we have. // fprintf(stderr, "Got %d frames:\n", (int)framesUsed); // for (size_t i = 0; i < framesUsed; i++) { // fprintf(stderr, " [%2d] SP %p PC %p\n", // (int)i, (void*)frameSPs[i], (void*)framePCs[i]); // } // fprintf(stderr, "\n"); //} // Check to see if there's a consistent binding between digits in // the director string ('1' .. '8') and the PC values acquired by // the unwind. If there isn't, the unwinding has failed somehow. uintptr_t binding[8]; // binding for '1' .. binding for '8' memset((void*)binding, 0, sizeof(binding)); // The general plan is to work backwards along the director string // and forwards along the framePCs array. Doing so corresponds to // working outwards from the innermost frame of the recursive test set. const char* cursor = dstring; // Find the end. This leaves |cursor| two bytes past the first // character we want to look at -- see comment below. while (*cursor) cursor++; // Counts the number of consistent frames. size_t nConsistent = 0; // Iterate back to the start of the director string. The starting // points are a bit complex. We can't use framePCs[0] because that // contains the PC in this frame (above). We can't use framePCs[1] // because that will contain the PC at return point in the recursive // test group (TestFn[1-8]) for their call "out" to this function, // GetAndCheckStackTrace. Although LUL will compute a correct // return address, that will not be the same return address as for a // recursive call out of the the function to another function in the // group. Hence we can only start consistency checking at // framePCs[2]. // // To be consistent, then, we must ignore the last element in the // director string as that corresponds to framePCs[1]. Hence the // start points are: framePCs[2] and the director string 2 bytes // before the terminating zero. // // Also as a result of this, the number of consistent frames counted // will always be one less than the length of the director string // (not including its terminating zero). size_t frameIx; for (cursor = cursor-2, frameIx = 2; cursor >= dstring && frameIx < framesUsed; cursor--, frameIx++) { char c = *cursor; uintptr_t pc = framePCs[frameIx]; // If this doesn't hold, the director string is ill-formed. MOZ_ASSERT(c >= '1' && c <= '8'); int n = ((int)c) - ((int)'1'); if (binding[n] == 0) { // There's no binding for |c| yet, so install |pc| and carry on. binding[n] = pc; nConsistent++; continue; } // There's a pre-existing binding for |c|. Check it's consistent. if (binding[n] != pc) { // Not consistent. Give up now. break; } // Consistent. Keep going. nConsistent++; } // So, did we succeed? bool passed = nConsistent+1 == strlen(dstring); // Show the results. char buf[200]; SprintfLiteral(buf, "LULUnitTest: dstring = %s\n", dstring); buf[sizeof(buf)-1] = 0; aLUL->mLog(buf); SprintfLiteral(buf, "LULUnitTest: %d consistent, %d in dstring: %s\n", (int)nConsistent, (int)strlen(dstring), passed ? "PASS" : "FAIL"); buf[sizeof(buf)-1] = 0; aLUL->mLog(buf); return passed; } // Macro magic to create a set of 8 mutually recursive functions with // varying frame sizes. These will recurse amongst themselves as // specified by |strP|, the directory string, and call // GetAndCheckStackTrace when the string becomes empty, passing it the // original value of the string. This checks the result, printing // results on |aLUL|'s logging sink, and also returns a boolean // indicating whether or not the results are acceptable (correct). #define DECL_TEST_FN(NAME) \ bool NAME(LUL* aLUL, const char* strPorig, const char* strP); #define GEN_TEST_FN(NAME, FRAMESIZE) \ bool NAME(LUL* aLUL, const char* strPorig, const char* strP) { \ volatile char space[FRAMESIZE]; \ memset((char*)&space[0], 0, sizeof(space)); \ if (*strP == '\0') { \ /* We've come to the end of the director string. */ \ /* Take a stack snapshot. */ \ return GetAndCheckStackTrace(aLUL, strPorig); \ } else { \ /* Recurse onwards. This is a bit subtle. The obvious */ \ /* thing to do here is call onwards directly, from within the */ \ /* arms of the case statement. That gives a problem in that */ \ /* there will be multiple return points inside each function when */ \ /* unwinding, so it will be difficult to check for consistency */ \ /* against the director string. Instead, we make an indirect */ \ /* call, so as to guarantee that there is only one call site */ \ /* within each function. This does assume that the compiler */ \ /* won't transform it back to the simple direct-call form. */ \ /* To discourage it from doing so, the call is bracketed with */ \ /* __asm__ __volatile__ sections so as to make it not-movable. */ \ bool (*nextFn)(LUL*, const char*, const char*) = NULL; \ switch (*strP) { \ case '1': nextFn = TestFn1; break; \ case '2': nextFn = TestFn2; break; \ case '3': nextFn = TestFn3; break; \ case '4': nextFn = TestFn4; break; \ case '5': nextFn = TestFn5; break; \ case '6': nextFn = TestFn6; break; \ case '7': nextFn = TestFn7; break; \ case '8': nextFn = TestFn8; break; \ default: nextFn = TestFn8; break; \ } \ __asm__ __volatile__("":::"cc","memory"); \ bool passed = nextFn(aLUL, strPorig, strP+1); \ __asm__ __volatile__("":::"cc","memory"); \ return passed; \ } \ } // The test functions are mutually recursive, so it is necessary to // declare them before defining them. DECL_TEST_FN(TestFn1) DECL_TEST_FN(TestFn2) DECL_TEST_FN(TestFn3) DECL_TEST_FN(TestFn4) DECL_TEST_FN(TestFn5) DECL_TEST_FN(TestFn6) DECL_TEST_FN(TestFn7) DECL_TEST_FN(TestFn8) GEN_TEST_FN(TestFn1, 123) GEN_TEST_FN(TestFn2, 456) GEN_TEST_FN(TestFn3, 789) GEN_TEST_FN(TestFn4, 23) GEN_TEST_FN(TestFn5, 47) GEN_TEST_FN(TestFn6, 117) GEN_TEST_FN(TestFn7, 1) GEN_TEST_FN(TestFn8, 99) // This starts the test sequence going. Call here to generate a // sequence of calls as directed by the string |dstring|. The call // sequence will, from its innermost frame, finish by calling // GetAndCheckStackTrace() and passing it |dstring|. // GetAndCheckStackTrace() will unwind the stack, check consistency // of those results against |dstring|, and print a pass/fail message // to aLUL's logging sink. It also updates the counters in *aNTests // and aNTestsPassed. __attribute__((noinline)) void TestUnw(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, LUL* aLUL, const char* dstring) { // Ensure that the stack has at least this much space on it. This // makes it safe to saw off the top LUL_UNIT_TEST_STACK_SIZE bytes // and hand it to LUL. Safe in the sense that no segfault can // happen because the stack is at least this big. This is all // somewhat dubious in the sense that a sufficiently clever compiler // (clang, for one) can figure out that space[] is unused and delete // it from the frame. Hence the somewhat elaborate hoop jumping to // fill it up before the call and to at least appear to use the // value afterwards. int i; volatile char space[LUL_UNIT_TEST_STACK_SIZE]; for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) { space[i] = (char)(i & 0x7F); } // Really run the test. bool passed = TestFn1(aLUL, dstring, dstring); // Appear to use space[], by visiting the value to compute some kind // of checksum, and then (apparently) using the checksum. int sum = 0; for (i = 0; i < LUL_UNIT_TEST_STACK_SIZE; i++) { // If this doesn't fool LLVM, I don't know what will. sum += space[i] - 3*i; } __asm__ __volatile__("" : : "r"(sum)); // Update the counters. (*aNTests)++; if (passed) { (*aNTestsPassed)++; } } void RunLulUnitTests(/*OUT*/int* aNTests, /*OUT*/int*aNTestsPassed, LUL* aLUL) { aLUL->mLog(":\n"); aLUL->mLog("LULUnitTest: BEGIN\n"); *aNTests = *aNTestsPassed = 0; TestUnw(aNTests, aNTestsPassed, aLUL, "11111111"); TestUnw(aNTests, aNTestsPassed, aLUL, "11222211"); TestUnw(aNTests, aNTestsPassed, aLUL, "111222333"); TestUnw(aNTests, aNTestsPassed, aLUL, "1212121231212331212121212121212"); TestUnw(aNTests, aNTestsPassed, aLUL, "31415827271828325332173258"); TestUnw(aNTests, aNTestsPassed, aLUL, "123456781122334455667788777777777777777777777"); aLUL->mLog("LULUnitTest: END\n"); aLUL->mLog(":\n"); } } // namespace lul