/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "tools/txfm_analyzer/txfm_graph.h" #include #include #include typedef struct Node Node; void get_fun_name(char *str_fun_name, int str_buf_size, const TYPE_TXFM type, const int txfm_size) { if (type == TYPE_DCT) snprintf(str_fun_name, str_buf_size, "fdct%d_new", txfm_size); else if (type == TYPE_ADST) snprintf(str_fun_name, str_buf_size, "fadst%d_new", txfm_size); else if (type == TYPE_IDCT) snprintf(str_fun_name, str_buf_size, "idct%d_new", txfm_size); else if (type == TYPE_IADST) snprintf(str_fun_name, str_buf_size, "iadst%d_new", txfm_size); } void get_txfm_type_name(char *str_fun_name, int str_buf_size, const TYPE_TXFM type, const int txfm_size) { if (type == TYPE_DCT) snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size); else if (type == TYPE_ADST) snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size); else if (type == TYPE_IDCT) snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size); else if (type == TYPE_IADST) snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size); } void get_hybrid_2d_type_name(char *buf, int buf_size, const TYPE_TXFM type0, const TYPE_TXFM type1, const int txfm_size0, const int txfm_size1) { if (type0 == TYPE_DCT && type1 == TYPE_DCT) snprintf(buf, buf_size, "_dct_dct_%dx%d", txfm_size1, txfm_size0); else if (type0 == TYPE_DCT && type1 == TYPE_ADST) snprintf(buf, buf_size, "_dct_adst_%dx%d", txfm_size1, txfm_size0); else if (type0 == TYPE_ADST && type1 == TYPE_ADST) snprintf(buf, buf_size, "_adst_adst_%dx%d", txfm_size1, txfm_size0); else if (type0 == TYPE_ADST && type1 == TYPE_DCT) snprintf(buf, buf_size, "_adst_dct_%dx%d", txfm_size1, txfm_size0); } TYPE_TXFM get_inv_type(TYPE_TXFM type) { if (type == TYPE_DCT) return TYPE_IDCT; else if (type == TYPE_ADST) return TYPE_IADST; else if (type == TYPE_IDCT) return TYPE_DCT; else if (type == TYPE_IADST) return TYPE_ADST; else return TYPE_LAST; } void reference_dct_1d(double *in, double *out, int size) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < size; k++) { out[k] = 0; // initialize out[k] for (int n = 0; n < size; n++) { out[k] += in[n] * cos(PI * (2 * n + 1) * k / (2 * size)); } if (k == 0) out[k] = out[k] * kInvSqrt2; } } void reference_dct_2d(double *in, double *out, int size) { double *tempOut = new double[size * size]; // dct each row: in -> out for (int r = 0; r < size; r++) { reference_dct_1d(in + r * size, out + r * size, size); } for (int r = 0; r < size; r++) { // out ->tempOut for (int c = 0; c < size; c++) { tempOut[r * size + c] = out[c * size + r]; } } for (int r = 0; r < size; r++) { reference_dct_1d(tempOut + r * size, out + r * size, size); } delete[] tempOut; } void reference_adst_1d(double *in, double *out, int size) { for (int k = 0; k < size; k++) { out[k] = 0; // initialize out[k] for (int n = 0; n < size; n++) { out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size)); } } } void reference_hybrid_2d(double *in, double *out, int size, int type0, int type1) { double *tempOut = new double[size * size]; // dct each row: in -> out for (int r = 0; r < size; r++) { if (type0 == TYPE_DCT) reference_dct_1d(in + r * size, out + r * size, size); else reference_adst_1d(in + r * size, out + r * size, size); } for (int r = 0; r < size; r++) { // out ->tempOut for (int c = 0; c < size; c++) { tempOut[r * size + c] = out[c * size + r]; } } for (int r = 0; r < size; r++) { if (type1 == TYPE_DCT) reference_dct_1d(tempOut + r * size, out + r * size, size); else reference_adst_1d(tempOut + r * size, out + r * size, size); } delete[] tempOut; } void reference_hybrid_2d_new(double *in, double *out, int size0, int size1, int type0, int type1) { double *tempOut = new double[size0 * size1]; // dct each row: in -> out for (int r = 0; r < size1; r++) { if (type0 == TYPE_DCT) reference_dct_1d(in + r * size0, out + r * size0, size0); else reference_adst_1d(in + r * size0, out + r * size0, size0); } for (int r = 0; r < size1; r++) { // out ->tempOut for (int c = 0; c < size0; c++) { tempOut[c * size1 + r] = out[r * size0 + c]; } } for (int r = 0; r < size0; r++) { if (type1 == TYPE_DCT) reference_dct_1d(tempOut + r * size1, out + r * size1, size1); else reference_adst_1d(tempOut + r * size1, out + r * size1, size1); } delete[] tempOut; } unsigned int get_max_bit(unsigned int x) { int max_bit = -1; while (x) { x = x >> 1; max_bit++; } return max_bit; } unsigned int bitwise_reverse(unsigned int x, int max_bit) { x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16); x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); x = x >> (31 - max_bit); return x; } int get_idx(int ri, int ci, int cSize) { return ri * cSize + ci; } void add_node(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int in, double w) { int outIdx = get_idx(stage_idx, node_idx, node_num); int inIdx = get_idx(stage_idx - 1, in, node_num); int idx = node[outIdx].inNodeNum; if (idx < 2) { node[outIdx].inNode[idx] = &node[inIdx]; node[outIdx].inNodeIdx[idx] = in; node[outIdx].inWeight[idx] = w; idx++; node[outIdx].inNodeNum = idx; } else { printf("Error: inNode is full"); } } void connect_node(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int in0, double w0, int in1, double w1) { int outIdx = get_idx(stage_idx, node_idx, node_num); int inIdx0 = get_idx(stage_idx - 1, in0, node_num); int inIdx1 = get_idx(stage_idx - 1, in1, node_num); int idx = 0; // if(w0 != 0) { node[outIdx].inNode[idx] = &node[inIdx0]; node[outIdx].inNodeIdx[idx] = in0; node[outIdx].inWeight[idx] = w0; idx++; //} // if(w1 != 0) { node[outIdx].inNode[idx] = &node[inIdx1]; node[outIdx].inNodeIdx[idx] = in1; node[outIdx].inWeight[idx] = w1; idx++; //} node[outIdx].inNodeNum = idx; } void propagate(Node *node, int stage_num, int node_num, int stage_idx) { for (int ni = 0; ni < node_num; ni++) { int outIdx = get_idx(stage_idx, ni, node_num); node[outIdx].value = 0; for (int k = 0; k < node[outIdx].inNodeNum; k++) { node[outIdx].value += node[outIdx].inNode[k]->value * node[outIdx].inWeight[k]; } } } int64_t round_shift(int64_t value, int bit) { if (bit > 0) { if (value < 0) { return -round_shift(-value, bit); } else { return (value + (1 << (bit - 1))) >> bit; } } else { return value << (-bit); } } void round_shift_array(int32_t *arr, int size, int bit) { if (bit == 0) { return; } else { for (int i = 0; i < size; i++) { arr[i] = round_shift(arr[i], bit); } } } void graph_reset_visited(Node *node, int stage_num, int node_num) { for (int si = 0; si < stage_num; si++) { for (int ni = 0; ni < node_num; ni++) { int idx = get_idx(si, ni, node_num); node[idx].visited = 0; } } } void estimate_value(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int estimate_bit) { if (stage_idx > 0) { int outIdx = get_idx(stage_idx, node_idx, node_num); int64_t out = 0; node[outIdx].value = 0; for (int k = 0; k < node[outIdx].inNodeNum; k++) { int64_t w = round(node[outIdx].inWeight[k] * (1 << estimate_bit)); int64_t v = round(node[outIdx].inNode[k]->value); out += v * w; } node[outIdx].value = round_shift(out, estimate_bit); } } void amplify_value(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int amplify_bit) { int outIdx = get_idx(stage_idx, node_idx, node_num); node[outIdx].value = round_shift(round(node[outIdx].value), -amplify_bit); } void propagate_estimate_amlify(Node *node, int stage_num, int node_num, int stage_idx, int amplify_bit, int estimate_bit) { for (int ni = 0; ni < node_num; ni++) { estimate_value(node, stage_num, node_num, stage_idx, ni, estimate_bit); amplify_value(node, stage_num, node_num, stage_idx, ni, amplify_bit); } } void init_graph(Node *node, int stage_num, int node_num) { for (int si = 0; si < stage_num; si++) { for (int ni = 0; ni < node_num; ni++) { int outIdx = get_idx(si, ni, node_num); node[outIdx].stageIdx = si; node[outIdx].nodeIdx = ni; node[outIdx].value = 0; node[outIdx].inNodeNum = 0; if (si >= 1) { connect_node(node, stage_num, node_num, si, ni, ni, 1, ni, 0); } } } } void gen_B_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N, int star) { for (int i = 0; i < N / 2; i++) { int out = node_idx + i; int in1 = node_idx + N - 1 - i; if (star == 1) { connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1, 1); } else { connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1, 1); } } for (int i = N / 2; i < N; i++) { int out = node_idx + i; int in1 = node_idx + N - 1 - i; if (star == 1) { connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1, 1); } else { connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1, 1); } } } void gen_P_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N) { int max_bit = get_max_bit(N - 1); for (int i = 0; i < N; i++) { int out = node_idx + bitwise_reverse(i, max_bit); int in = node_idx + i; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } void gen_type1_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N) { int max_bit = get_max_bit(N); for (int ni = 0; ni < N / 2; ni++) { int ai = bitwise_reverse(N + ni, max_bit); int out = node_idx + ni; int in1 = node_idx + N - ni - 1; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, sin(PI * ai / (2 * 2 * N)), in1, cos(PI * ai / (2 * 2 * N))); } for (int ni = N / 2; ni < N; ni++) { int ai = bitwise_reverse(N + ni, max_bit); int out = node_idx + ni; int in1 = node_idx + N - ni - 1; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, cos(PI * ai / (2 * 2 * N)), in1, -sin(PI * ai / (2 * 2 * N))); } } void gen_type2_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N) { for (int ni = 0; ni < N / 4; ni++) { int out = node_idx + ni; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0); } for (int ni = N / 4; ni < N / 2; ni++) { int out = node_idx + ni; int in1 = node_idx + N - ni - 1; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -cos(PI / 4), in1, cos(-PI / 4)); } for (int ni = N / 2; ni < N * 3 / 4; ni++) { int out = node_idx + ni; int in1 = node_idx + N - ni - 1; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, cos(-PI / 4), in1, cos(PI / 4)); } for (int ni = N * 3 / 4; ni < N; ni++) { int out = node_idx + ni; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0); } } void gen_type3_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int idx, int N) { // TODO(angiebird): Simplify and clarify this function int i = 2 * N / (1 << (idx / 2)); int max_bit = get_max_bit(i / 2) - 1; // the max_bit counts on i/2 instead of N here int N_over_i = 2 << (idx / 2); for (int nj = 0; nj < N / 2; nj += N_over_i) { int j = nj / (N_over_i); int kj = bitwise_reverse(i / 4 + j, max_bit); // printf("kj = %d\n", kj); // I_N/2i --- 0 int offset = nj; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in = out; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } // -C_Kj/i --- S_Kj/i offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in0 = out; double w0 = -cos(kj * PI / i); int in1 = N - (offset + ni) - 1 + node_idx; double w1 = sin(kj * PI / i); connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, w1); } // S_kj/i --- -C_Kj/i offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in0 = out; double w0 = -sin(kj * PI / i); int in1 = N - (offset + ni) - 1 + node_idx; double w1 = -cos(kj * PI / i); connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, w1); } // I_N/2i --- 0 offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in = out; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } for (int nj = N / 2; nj < N; nj += N_over_i) { int j = nj / N_over_i; int kj = bitwise_reverse(i / 4 + j, max_bit); // I_N/2i --- 0 int offset = nj; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in = out; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } // C_kj/i --- -S_Kj/i offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in0 = out; double w0 = cos(kj * PI / i); int in1 = N - (offset + ni) - 1 + node_idx; double w1 = -sin(kj * PI / i); connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, w1); } // S_kj/i --- C_Kj/i offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in0 = out; double w0 = sin(kj * PI / i); int in1 = N - (offset + ni) - 1 + node_idx; double w1 = cos(kj * PI / i); connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1, w1); } // I_N/2i --- 0 offset += N_over_i / 4; for (int ni = 0; ni < N_over_i / 4; ni++) { int out = node_idx + offset + ni; int in = out; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } } void gen_type4_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int idx, int N) { int B_size = 1 << ((idx + 1) / 2); for (int ni = 0; ni < N; ni += B_size) { gen_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, B_size, (ni / B_size) % 2); } } void gen_R_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N) { int max_idx = 2 * (get_max_bit(N) + 1) - 3; for (int idx = 0; idx < max_idx; idx++) { int s = stage_idx + max_idx - idx - 1; if (idx == 0) { // type 1 gen_type1_graph(node, stage_num, node_num, s, node_idx, N); } else if (idx == max_idx - 1) { // type 2 gen_type2_graph(node, stage_num, node_num, s, node_idx, N); } else if ((idx + 1) % 2 == 0) { // type 4 gen_type4_graph(node, stage_num, node_num, s, node_idx, idx, N); } else if ((idx + 1) % 2 == 1) { // type 3 gen_type3_graph(node, stage_num, node_num, s, node_idx, idx, N); } else { printf("check gen_R_graph()\n"); } } } void gen_DCT_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int N) { if (N > 2) { gen_B_graph(node, stage_num, node_num, stage_idx, node_idx, N, 0); gen_DCT_graph(node, stage_num, node_num, stage_idx + 1, node_idx, N / 2); gen_R_graph(node, stage_num, node_num, stage_idx + 1, node_idx + N / 2, N / 2); } else { // generate dct_2 connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx, cos(PI / 4), node_idx + 1, cos(PI / 4)); connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1, node_idx + 1, -cos(PI / 4), node_idx, cos(PI / 4)); } } int get_dct_stage_num(int size) { return 2 * get_max_bit(size); } void gen_DCT_graph_1d(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int dct_node_num) { gen_DCT_graph(node, stage_num, node_num, stage_idx, node_idx, dct_node_num); int dct_stage_num = get_dct_stage_num(dct_node_num); gen_P_graph(node, stage_num, node_num, stage_idx + dct_stage_num - 2, node_idx, dct_node_num); } void gen_adst_B_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_idx) { int size = 1 << (adst_idx + 1); for (int ni = 0; ni < size / 2; ni++) { int nOut = node_idx + ni; int nIn = nOut + size / 2; connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, 1, nIn, 1); // printf("nOut: %d nIn: %d\n", nOut, nIn); } for (int ni = size / 2; ni < size; ni++) { int nOut = node_idx + ni; int nIn = nOut - size / 2; connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, -1, nIn, 1); // printf("ndctOut: %d nIn: %d\n", nOut, nIn); } } void gen_adst_U_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_idx, int adst_node_num) { int size = 1 << (adst_idx + 1); for (int ni = 0; ni < adst_node_num; ni += size) { gen_adst_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, adst_idx); } } void gen_adst_T_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, double freq) { connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx, cos(freq * PI), node_idx + 1, sin(freq * PI)); connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1, node_idx + 1, -cos(freq * PI), node_idx, sin(freq * PI)); } void gen_adst_E_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_idx) { int size = 1 << (adst_idx); for (int i = 0; i < size / 2; i++) { int ni = i * 2; double fi = (1 + 4 * i) * 1.0 / (1 << (adst_idx + 1)); gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi); } } void gen_adst_V_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_idx, int adst_node_num) { int size = 1 << (adst_idx); for (int i = 0; i < adst_node_num / size; i++) { if (i % 2 == 1) { int ni = i * size; gen_adst_E_graph(node, stage_num, node_num, stage_idx, node_idx + ni, adst_idx); } } } void gen_adst_VJ_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { for (int i = 0; i < adst_node_num / 2; i++) { int ni = i * 2; double fi = (1 + 4 * i) * 1.0 / (4 * adst_node_num); gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi); } } void gen_adst_Q_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { // reverse order when idx is 1, 3, 5, 7 ... // example of adst_node_num = 8: // 0 1 2 3 4 5 6 7 // --> 0 7 2 5 4 3 6 1 for (int ni = 0; ni < adst_node_num; ni++) { if (ni % 2 == 0) { int out = node_idx + ni; connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0); } else { int out = node_idx + ni; int in = node_idx + adst_node_num - ni; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } } void gen_adst_Ibar_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { // reverse order // 0 1 2 3 --> 3 2 1 0 for (int ni = 0; ni < adst_node_num; ni++) { int out = node_idx + ni; int in = node_idx + adst_node_num - ni - 1; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } int get_Q_out2in(int adst_node_num, int out) { int in; if (out % 2 == 0) { in = out; } else { in = adst_node_num - out; } return in; } int get_Ibar_out2in(int adst_node_num, int out) { return adst_node_num - out - 1; } void gen_adst_IbarQ_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { // in -> Ibar -> Q -> out for (int ni = 0; ni < adst_node_num; ni++) { int out = node_idx + ni; int in = node_idx + get_Ibar_out2in(adst_node_num, get_Q_out2in(adst_node_num, ni)); connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } void gen_adst_D_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { // reverse order for (int ni = 0; ni < adst_node_num; ni++) { int out = node_idx + ni; int in = out; if (ni % 2 == 0) { connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } else { connect_node(node, stage_num, node_num, stage_idx + 1, out, in, -1, in, 0); } } } int get_hadamard_idx(int x, int adst_node_num) { int max_bit = get_max_bit(adst_node_num - 1); x = bitwise_reverse(x, max_bit); // gray code int c = x & 1; int p = x & 1; int y = c; for (int i = 1; i <= max_bit; i++) { p = c; c = (x >> i) & 1; y += (c ^ p) << i; } return y; } void gen_adst_Ht_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { for (int ni = 0; ni < adst_node_num; ni++) { int out = node_idx + ni; int in = node_idx + get_hadamard_idx(ni, adst_node_num); connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0); } } void gen_adst_HtD_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { for (int ni = 0; ni < adst_node_num; ni++) { int out = node_idx + ni; int in = node_idx + get_hadamard_idx(ni, adst_node_num); double inW; if (ni % 2 == 0) inW = 1; else inW = -1; connect_node(node, stage_num, node_num, stage_idx + 1, out, in, inW, in, 0); } } int get_adst_stage_num(int adst_node_num) { return 2 * get_max_bit(adst_node_num) + 2; } int gen_iadst_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { int max_bit = get_max_bit(adst_node_num); int si = 0; gen_adst_IbarQ_graph(node, stage_num, node_num, stage_idx + si, node_idx, adst_node_num); si++; gen_adst_VJ_graph(node, stage_num, node_num, stage_idx + si, node_idx, adst_node_num); si++; for (int adst_idx = max_bit - 1; adst_idx >= 1; adst_idx--) { gen_adst_U_graph(node, stage_num, node_num, stage_idx + si, node_idx, adst_idx, adst_node_num); si++; gen_adst_V_graph(node, stage_num, node_num, stage_idx + si, node_idx, adst_idx, adst_node_num); si++; } gen_adst_HtD_graph(node, stage_num, node_num, stage_idx + si, node_idx, adst_node_num); si++; return si + 1; } int gen_adst_graph(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int adst_node_num) { int hybrid_stage_num = get_hybrid_stage_num(TYPE_ADST, adst_node_num); // generate a adst tempNode Node *tempNode = new Node[hybrid_stage_num * adst_node_num]; init_graph(tempNode, hybrid_stage_num, adst_node_num); int si = gen_iadst_graph(tempNode, hybrid_stage_num, adst_node_num, 0, 0, adst_node_num); // tempNode's inverse graph to node[stage_idx][node_idx] gen_inv_graph(tempNode, hybrid_stage_num, adst_node_num, node, stage_num, node_num, stage_idx, node_idx); delete[] tempNode; return si; } void connect_layer_2d(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int dct_node_num) { for (int first = 0; first < dct_node_num; first++) { for (int second = 0; second < dct_node_num; second++) { // int sIn = stage_idx; int sOut = stage_idx + 1; int nIn = node_idx + first * dct_node_num + second; int nOut = node_idx + second * dct_node_num + first; // printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut); connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0); } } } void connect_layer_2d_new(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int dct_node_num0, int dct_node_num1) { for (int i = 0; i < dct_node_num1; i++) { for (int j = 0; j < dct_node_num0; j++) { // int sIn = stage_idx; int sOut = stage_idx + 1; int nIn = node_idx + i * dct_node_num0 + j; int nOut = node_idx + j * dct_node_num1 + i; // printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut); connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0); } } } void gen_DCT_graph_2d(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int dct_node_num) { int dct_stage_num = get_dct_stage_num(dct_node_num); // put 2 layers of dct_node_num DCTs on the graph for (int ni = 0; ni < dct_node_num; ni++) { gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, node_idx + ni * dct_node_num, dct_node_num); gen_DCT_graph_1d(node, stage_num, node_num, stage_idx + dct_stage_num, node_idx + ni * dct_node_num, dct_node_num); } // connect first layer and second layer connect_layer_2d(node, stage_num, node_num, stage_idx + dct_stage_num - 1, node_idx, dct_node_num); } int get_hybrid_stage_num(int type, int hybrid_node_num) { if (type == TYPE_DCT || type == TYPE_IDCT) { return get_dct_stage_num(hybrid_node_num); } else if (type == TYPE_ADST || type == TYPE_IADST) { return get_adst_stage_num(hybrid_node_num); } return 0; } int get_hybrid_2d_stage_num(int type0, int type1, int hybrid_node_num) { int stage_num = 0; stage_num += get_hybrid_stage_num(type0, hybrid_node_num); stage_num += get_hybrid_stage_num(type1, hybrid_node_num); return stage_num; } int get_hybrid_2d_stage_num_new(int type0, int type1, int hybrid_node_num0, int hybrid_node_num1) { int stage_num = 0; stage_num += get_hybrid_stage_num(type0, hybrid_node_num0); stage_num += get_hybrid_stage_num(type1, hybrid_node_num1); return stage_num; } int get_hybrid_amplify_factor(int type, int hybrid_node_num) { return get_max_bit(hybrid_node_num) - 1; } void gen_hybrid_graph_1d(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int hybrid_node_num, int type) { if (type == TYPE_DCT) { gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, node_idx, hybrid_node_num); } else if (type == TYPE_ADST) { gen_adst_graph(node, stage_num, node_num, stage_idx, node_idx, hybrid_node_num); } else if (type == TYPE_IDCT) { int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num); // generate a dct tempNode Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num]; init_graph(tempNode, hybrid_stage_num, hybrid_node_num); gen_DCT_graph_1d(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0, hybrid_node_num); // tempNode's inverse graph to node[stage_idx][node_idx] gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num, node_num, stage_idx, node_idx); delete[] tempNode; } else if (type == TYPE_IADST) { int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num); // generate a adst tempNode Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num]; init_graph(tempNode, hybrid_stage_num, hybrid_node_num); gen_adst_graph(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0, hybrid_node_num); // tempNode's inverse graph to node[stage_idx][node_idx] gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num, node_num, stage_idx, node_idx); delete[] tempNode; } } void gen_hybrid_graph_2d(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int hybrid_node_num, int type0, int type1) { int hybrid_stage_num = get_hybrid_stage_num(type0, hybrid_node_num); for (int ni = 0; ni < hybrid_node_num; ni++) { gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx, node_idx + ni * hybrid_node_num, hybrid_node_num, type0); gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx + hybrid_stage_num, node_idx + ni * hybrid_node_num, hybrid_node_num, type1); } // connect first layer and second layer connect_layer_2d(node, stage_num, node_num, stage_idx + hybrid_stage_num - 1, node_idx, hybrid_node_num); } void gen_hybrid_graph_2d_new(Node *node, int stage_num, int node_num, int stage_idx, int node_idx, int hybrid_node_num0, int hybrid_node_num1, int type0, int type1) { int hybrid_stage_num0 = get_hybrid_stage_num(type0, hybrid_node_num0); for (int ni = 0; ni < hybrid_node_num1; ni++) { gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx, node_idx + ni * hybrid_node_num0, hybrid_node_num0, type0); } for (int ni = 0; ni < hybrid_node_num0; ni++) { gen_hybrid_graph_1d( node, stage_num, node_num, stage_idx + hybrid_stage_num0, node_idx + ni * hybrid_node_num1, hybrid_node_num1, type1); } // connect first layer and second layer connect_layer_2d_new(node, stage_num, node_num, stage_idx + hybrid_stage_num0 - 1, node_idx, hybrid_node_num0, hybrid_node_num1); } void gen_inv_graph(Node *node, int stage_num, int node_num, Node *invNode, int inv_stage_num, int inv_node_num, int inv_stage_idx, int inv_node_idx) { // clean up inNodeNum in invNode because of add_node for (int si = 1 + inv_stage_idx; si < inv_stage_idx + stage_num; si++) { for (int ni = inv_node_idx; ni < inv_node_idx + node_num; ni++) { int idx = get_idx(si, ni, inv_node_num); invNode[idx].inNodeNum = 0; } } // generate inverse graph of node on invNode for (int si = 1; si < stage_num; si++) { for (int ni = 0; ni < node_num; ni++) { int invSi = stage_num - si; int idx = get_idx(si, ni, node_num); for (int k = 0; k < node[idx].inNodeNum; k++) { int invNi = node[idx].inNodeIdx[k]; add_node(invNode, inv_stage_num, inv_node_num, invSi + inv_stage_idx, invNi + inv_node_idx, ni + inv_node_idx, node[idx].inWeight[k]); } } } }