/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom_ports/aom_timer.h" #include "test/warp_filter_test_util.h" using ::testing::make_tuple; using ::testing::tuple; namespace libaom_test { int32_t random_warped_param(libaom_test::ACMRandom *rnd, int bits) { // 1 in 8 chance of generating zero (arbitrarily chosen) if (((rnd->Rand8()) & 7) == 0) return 0; // Otherwise, enerate uniform values in the range // [-(1 << bits), 1] U [1, 1<Rand16() & ((1 << bits) - 1)); if ((rnd->Rand8()) & 1) return -v; return v; } void generate_warped_model(libaom_test::ACMRandom *rnd, int32_t *mat, int16_t *alpha, int16_t *beta, int16_t *gamma, int16_t *delta, const int is_alpha_zero, const int is_beta_zero, const int is_gamma_zero, const int is_delta_zero) { while (1) { int rnd8 = rnd->Rand8() & 3; mat[0] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS + 6); mat[1] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS + 6); mat[2] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) + (1 << WARPEDMODEL_PREC_BITS); mat[3] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3); if (rnd8 <= 1) { // AFFINE mat[4] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3); mat[5] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) + (1 << WARPEDMODEL_PREC_BITS); } else if (rnd8 == 2) { mat[4] = -mat[3]; mat[5] = mat[2]; } else { mat[4] = random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3); mat[5] = (random_warped_param(rnd, WARPEDMODEL_PREC_BITS - 3)) + (1 << WARPEDMODEL_PREC_BITS); if (is_alpha_zero == 1) mat[2] = 1 << WARPEDMODEL_PREC_BITS; if (is_beta_zero == 1) mat[3] = 0; if (is_gamma_zero == 1) mat[4] = 0; if (is_delta_zero == 1) mat[5] = (((int64_t)mat[3] * mat[4] + (mat[2] / 2)) / mat[2]) + (1 << WARPEDMODEL_PREC_BITS); } // Calculate the derived parameters and check that they are suitable // for the warp filter. assert(mat[2] != 0); *alpha = clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX); *beta = clamp(mat[3], INT16_MIN, INT16_MAX); *gamma = clamp(((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) / mat[2], INT16_MIN, INT16_MAX); *delta = clamp(mat[5] - (((int64_t)mat[3] * mat[4] + (mat[2] / 2)) / mat[2]) - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX); if ((4 * abs(*alpha) + 7 * abs(*beta) >= (1 << WARPEDMODEL_PREC_BITS)) || (4 * abs(*gamma) + 4 * abs(*delta) >= (1 << WARPEDMODEL_PREC_BITS))) continue; *alpha = ROUND_POWER_OF_TWO_SIGNED(*alpha, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *beta = ROUND_POWER_OF_TWO_SIGNED(*beta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *gamma = ROUND_POWER_OF_TWO_SIGNED(*gamma, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); *delta = ROUND_POWER_OF_TWO_SIGNED(*delta, WARP_PARAM_REDUCE_BITS) * (1 << WARP_PARAM_REDUCE_BITS); // We have a valid model, so finish return; } } namespace AV1WarpFilter { ::testing::internal::ParamGenerator BuildParams( warp_affine_func filter) { WarpTestParam params[] = { make_tuple(4, 4, 50000, filter), make_tuple(8, 8, 50000, filter), make_tuple(64, 64, 1000, filter), make_tuple(4, 16, 20000, filter), make_tuple(32, 8, 10000, filter), }; return ::testing::Combine(::testing::ValuesIn(params), ::testing::Values(0, 1), ::testing::Values(0, 1), ::testing::Values(0, 1), ::testing::Values(0, 1)); } AV1WarpFilterTest::~AV1WarpFilterTest() {} void AV1WarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1WarpFilterTest::TearDown() { libaom_test::ClearSystemState(); } void AV1WarpFilterTest::RunSpeedTest(warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; WarpTestParam params = GET_PARAM(0); const int out_w = ::testing::get<0>(params), out_h = ::testing::get<1>(params); const int is_alpha_zero = GET_PARAM(1); const int is_beta_zero = GET_PARAM(2); const int is_gamma_zero = GET_PARAM(3); const int is_delta_zero = GET_PARAM(4); int sub_x, sub_y; const int bd = 8; uint8_t *input_ = new uint8_t[h * stride]; uint8_t *input = input_ + border; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint8_t *output = new uint8_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, bd); CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n]; generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, is_alpha_zero, is_beta_zero, is_gamma_zero, is_delta_zero); for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8(); for (int r = 0; r < h; ++r) { memset(input + r * stride - border, input[r * stride], border); memset(input + r * stride + w, input[r * stride + (w - 1)], border); } sub_x = 0; sub_y = 0; int do_average = 0; conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd); conv_params.use_jnt_comp_avg = 0; const int num_loops = 1000000000 / (out_w + out_h); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("warp %3dx%-3d: %7.2f ns\n", out_w, out_h, 1000.0 * elapsed_time / num_loops); delete[] input_; delete[] output; delete[] dsta; } void AV1WarpFilterTest::RunCheckOutput(warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; WarpTestParam params = GET_PARAM(0); const int is_alpha_zero = GET_PARAM(1); const int is_beta_zero = GET_PARAM(2); const int is_gamma_zero = GET_PARAM(3); const int is_delta_zero = GET_PARAM(4); const int out_w = ::testing::get<0>(params), out_h = ::testing::get<1>(params); const int num_iters = ::testing::get<2>(params); int i, j, sub_x, sub_y; const int bd = 8; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint8_t *input_ = new uint8_t[h * stride]; uint8_t *input = input_ + border; uint8_t *output = new uint8_t[output_n]; uint8_t *output2 = new uint8_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, bd); CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n]; CONV_BUF_TYPE *dstb = new CONV_BUF_TYPE[output_n]; for (int i = 0; i < output_n; ++i) output[i] = output2[i] = rnd_.Rand8(); for (i = 0; i < num_iters; ++i) { // Generate an input block and extend its borders horizontally for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand8(); for (int r = 0; r < h; ++r) { memset(input + r * stride - border, input[r * stride], border); memset(input + r * stride + w, input[r * stride + (w - 1)], border); } const int use_no_round = rnd_.Rand8() & 1; for (sub_x = 0; sub_x < 2; ++sub_x) for (sub_y = 0; sub_y < 2; ++sub_y) { generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, is_alpha_zero, is_beta_zero, is_gamma_zero, is_delta_zero); for (int ii = 0; ii < 2; ++ii) { for (int jj = 0; jj < 5; ++jj) { for (int do_average = 0; do_average <= 1; ++do_average) { if (use_no_round) { conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd); } else { conv_params = get_conv_params(0, 0, bd); } if (jj >= 4) { conv_params.use_jnt_comp_avg = 0; } else { conv_params.use_jnt_comp_avg = 1; conv_params.fwd_offset = quant_dist_lookup_table[ii][jj][0]; conv_params.bck_offset = quant_dist_lookup_table[ii][jj][1]; } av1_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); if (use_no_round) { conv_params = get_conv_params_no_round(do_average, 0, dstb, out_w, 1, bd); } if (jj >= 4) { conv_params.use_jnt_comp_avg = 0; } else { conv_params.use_jnt_comp_avg = 1; conv_params.fwd_offset = quant_dist_lookup_table[ii][jj][0]; conv_params.bck_offset = quant_dist_lookup_table[ii][jj][1]; } test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h, out_w, sub_x, sub_y, &conv_params, alpha, beta, gamma, delta); if (use_no_round) { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(dsta[j], dstb[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } else { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } } } } } } delete[] input_; delete[] output; delete[] output2; delete[] dsta; delete[] dstb; } } // namespace AV1WarpFilter namespace AV1HighbdWarpFilter { ::testing::internal::ParamGenerator BuildParams( highbd_warp_affine_func filter) { const HighbdWarpTestParam params[] = { make_tuple(4, 4, 100, 8, filter), make_tuple(8, 8, 100, 8, filter), make_tuple(64, 64, 100, 8, filter), make_tuple(4, 16, 100, 8, filter), make_tuple(32, 8, 100, 8, filter), make_tuple(4, 4, 100, 10, filter), make_tuple(8, 8, 100, 10, filter), make_tuple(64, 64, 100, 10, filter), make_tuple(4, 16, 100, 10, filter), make_tuple(32, 8, 100, 10, filter), make_tuple(4, 4, 100, 12, filter), make_tuple(8, 8, 100, 12, filter), make_tuple(64, 64, 100, 12, filter), make_tuple(4, 16, 100, 12, filter), make_tuple(32, 8, 100, 12, filter), }; return ::testing::Combine(::testing::ValuesIn(params), ::testing::Values(0, 1), ::testing::Values(0, 1), ::testing::Values(0, 1), ::testing::Values(0, 1)); } AV1HighbdWarpFilterTest::~AV1HighbdWarpFilterTest() {} void AV1HighbdWarpFilterTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HighbdWarpFilterTest::TearDown() { libaom_test::ClearSystemState(); } void AV1HighbdWarpFilterTest::RunSpeedTest(highbd_warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; HighbdWarpTestParam param = GET_PARAM(0); const int is_alpha_zero = GET_PARAM(1); const int is_beta_zero = GET_PARAM(2); const int is_gamma_zero = GET_PARAM(3); const int is_delta_zero = GET_PARAM(4); const int out_w = ::testing::get<0>(param), out_h = ::testing::get<1>(param); const int bd = ::testing::get<3>(param); const int mask = (1 << bd) - 1; int sub_x, sub_y; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint16_t *input_ = new uint16_t[h * stride]; uint16_t *input = input_ + border; uint16_t *output = new uint16_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, bd); CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n]; generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, is_alpha_zero, is_beta_zero, is_gamma_zero, is_delta_zero); // Generate an input block and extend its borders horizontally for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask; for (int r = 0; r < h; ++r) { for (int c = 0; c < border; ++c) { input[r * stride - border + c] = input[r * stride]; input[r * stride + w + c] = input[r * stride + (w - 1)]; } } sub_x = 0; sub_y = 0; int do_average = 0; conv_params.use_jnt_comp_avg = 0; conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd); const int num_loops = 1000000000 / (out_w + out_h); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) test_impl(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("highbd warp %3dx%-3d: %7.2f ns\n", out_w, out_h, 1000.0 * elapsed_time / num_loops); delete[] input_; delete[] output; delete[] dsta; } void AV1HighbdWarpFilterTest::RunCheckOutput( highbd_warp_affine_func test_impl) { const int w = 128, h = 128; const int border = 16; const int stride = w + 2 * border; HighbdWarpTestParam param = GET_PARAM(0); const int is_alpha_zero = GET_PARAM(1); const int is_beta_zero = GET_PARAM(2); const int is_gamma_zero = GET_PARAM(3); const int is_delta_zero = GET_PARAM(4); const int out_w = ::testing::get<0>(param), out_h = ::testing::get<1>(param); const int bd = ::testing::get<3>(param); const int num_iters = ::testing::get<2>(param); const int mask = (1 << bd) - 1; int i, j, sub_x, sub_y; // The warp functions always write rows with widths that are multiples of 8. // So to avoid a buffer overflow, we may need to pad rows to a multiple of 8. int output_n = ((out_w + 7) & ~7) * out_h; uint16_t *input_ = new uint16_t[h * stride]; uint16_t *input = input_ + border; uint16_t *output = new uint16_t[output_n]; uint16_t *output2 = new uint16_t[output_n]; int32_t mat[8]; int16_t alpha, beta, gamma, delta; ConvolveParams conv_params = get_conv_params(0, 0, bd); CONV_BUF_TYPE *dsta = new CONV_BUF_TYPE[output_n]; CONV_BUF_TYPE *dstb = new CONV_BUF_TYPE[output_n]; for (int i = 0; i < output_n; ++i) output[i] = output2[i] = rnd_.Rand16(); for (i = 0; i < num_iters; ++i) { // Generate an input block and extend its borders horizontally for (int r = 0; r < h; ++r) for (int c = 0; c < w; ++c) input[r * stride + c] = rnd_.Rand16() & mask; for (int r = 0; r < h; ++r) { for (int c = 0; c < border; ++c) { input[r * stride - border + c] = input[r * stride]; input[r * stride + w + c] = input[r * stride + (w - 1)]; } } const int use_no_round = rnd_.Rand8() & 1; for (sub_x = 0; sub_x < 2; ++sub_x) for (sub_y = 0; sub_y < 2; ++sub_y) { generate_warped_model(&rnd_, mat, &alpha, &beta, &gamma, &delta, is_alpha_zero, is_beta_zero, is_gamma_zero, is_delta_zero); for (int ii = 0; ii < 2; ++ii) { for (int jj = 0; jj < 5; ++jj) { for (int do_average = 0; do_average <= 1; ++do_average) { if (use_no_round) { conv_params = get_conv_params_no_round(do_average, 0, dsta, out_w, 1, bd); } else { conv_params = get_conv_params(0, 0, bd); } if (jj >= 4) { conv_params.use_jnt_comp_avg = 0; } else { conv_params.use_jnt_comp_avg = 1; conv_params.fwd_offset = quant_dist_lookup_table[ii][jj][0]; conv_params.bck_offset = quant_dist_lookup_table[ii][jj][1]; } av1_highbd_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w, out_h, out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta); if (use_no_round) { // TODO(angiebird): Change this to test_impl once we have SIMD // implementation conv_params = get_conv_params_no_round(do_average, 0, dstb, out_w, 1, bd); } if (jj >= 4) { conv_params.use_jnt_comp_avg = 0; } else { conv_params.use_jnt_comp_avg = 1; conv_params.fwd_offset = quant_dist_lookup_table[ii][jj][0]; conv_params.bck_offset = quant_dist_lookup_table[ii][jj][1]; } test_impl(mat, input, w, h, stride, output2, 32, 32, out_w, out_h, out_w, sub_x, sub_y, bd, &conv_params, alpha, beta, gamma, delta); if (use_no_round) { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(dsta[j], dstb[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } else { for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } } } } } } delete[] input_; delete[] output; delete[] output2; delete[] dsta; delete[] dstb; } } // namespace AV1HighbdWarpFilter } // namespace libaom_test