/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "./av1_rtcd.h" #include "./aom_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/blockd.h" #include "av1/common/scan.h" #include "aom/aom_integer.h" #include "aom_ports/aom_timer.h" using libaom_test::ACMRandom; namespace { typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*InvTxfmWithBdFunc)(const tran_low_t *in, uint8_t *out, int stride, int bd); template void wrapper(const tran_low_t *in, uint8_t *out, int stride, int bd) { (void)bd; fn(in, out, stride); } typedef std::tr1::tuple PartialInvTxfmParam; const int kMaxNumCoeffs = 1024; const int kCountTestBlock = 10000; class PartialIDctTest : public ::testing::TestWithParam { public: virtual ~PartialIDctTest() {} virtual void SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); ftxfm_ = GET_PARAM(0); full_itxfm_ = GET_PARAM(1); partial_itxfm_ = GET_PARAM(2); tx_size_ = GET_PARAM(3); last_nonzero_ = GET_PARAM(4); bit_depth_ = GET_PARAM(5); pixel_size_ = GET_PARAM(6); mask_ = (1 << bit_depth_) - 1; switch (tx_size_) { case TX_4X4: size_ = 4; break; case TX_8X8: size_ = 8; break; case TX_16X16: size_ = 16; break; case TX_32X32: size_ = 32; break; default: FAIL() << "Wrong Size!"; break; } // Randomize stride_ to a value less than or equal to 1024 stride_ = rnd_(1024) + 1; if (stride_ < size_) { stride_ = size_; } // Align stride_ to 16 if it's bigger than 16. if (stride_ > 16) { stride_ &= ~15; } input_block_size_ = size_ * size_; output_block_size_ = size_ * stride_; input_block_ = reinterpret_cast( aom_memalign(16, sizeof(*input_block_) * input_block_size_)); output_block_ = reinterpret_cast( aom_memalign(16, pixel_size_ * output_block_size_)); output_block_ref_ = reinterpret_cast( aom_memalign(16, pixel_size_ * output_block_size_)); } virtual void TearDown() { aom_free(input_block_); input_block_ = NULL; aom_free(output_block_); output_block_ = NULL; aom_free(output_block_ref_); output_block_ref_ = NULL; libaom_test::ClearSystemState(); } void InitMem() { memset(input_block_, 0, sizeof(*input_block_) * input_block_size_); if (pixel_size_ == 1) { for (int j = 0; j < output_block_size_; ++j) { output_block_[j] = output_block_ref_[j] = rnd_.Rand16() & mask_; } } else { ASSERT_EQ(2, pixel_size_); uint16_t *const output = reinterpret_cast(output_block_); uint16_t *const output_ref = reinterpret_cast(output_block_ref_); for (int j = 0; j < output_block_size_; ++j) { output[j] = output_ref[j] = rnd_.Rand16() & mask_; } } } void InitInput() { const int max_coeff = 32766 / 4; int max_energy_leftover = max_coeff * max_coeff; for (int j = 0; j < last_nonzero_; ++j) { int16_t coeff = static_cast(sqrt(1.0 * max_energy_leftover) * (rnd_.Rand16() - 32768) / 65536); max_energy_leftover -= coeff * coeff; if (max_energy_leftover < 0) { max_energy_leftover = 0; coeff = 0; } input_block_[av1_default_scan_orders[tx_size_].scan[j]] = coeff; } } protected: int last_nonzero_; TX_SIZE tx_size_; tran_low_t *input_block_; uint8_t *output_block_; uint8_t *output_block_ref_; int size_; int stride_; int pixel_size_; int input_block_size_; int output_block_size_; int bit_depth_; int mask_; FwdTxfmFunc ftxfm_; InvTxfmWithBdFunc full_itxfm_; InvTxfmWithBdFunc partial_itxfm_; ACMRandom rnd_; }; TEST_P(PartialIDctTest, RunQuantCheck) { DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); InitMem(); for (int i = 0; i < kCountTestBlock; ++i) { // Initialize a test block with input range [-mask_, mask_]. if (i == 0) { for (int k = 0; k < input_block_size_; ++k) { input_extreme_block[k] = mask_; } } else if (i == 1) { for (int k = 0; k < input_block_size_; ++k) { input_extreme_block[k] = -mask_; } } else { for (int k = 0; k < input_block_size_; ++k) { input_extreme_block[k] = rnd_.Rand8() % 2 ? mask_ : -mask_; } } ftxfm_(input_extreme_block, output_ref_block, size_); // quantization with minimum allowed step sizes input_block_[0] = (output_ref_block[0] / 4) * 4; for (int k = 1; k < last_nonzero_; ++k) { const int pos = av1_default_scan_orders[tx_size_].scan[k]; input_block_[pos] = (output_ref_block[pos] / 4) * 4; } ASM_REGISTER_STATE_CHECK( full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_)); ASM_REGISTER_STATE_CHECK( partial_itxfm_(input_block_, output_block_, stride_, bit_depth_)); ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, pixel_size_ * output_block_size_)) << "Error: partial inverse transform produces different results"; } } TEST_P(PartialIDctTest, ResultsMatch) { for (int i = 0; i < kCountTestBlock; ++i) { InitMem(); InitInput(); ASM_REGISTER_STATE_CHECK( full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_)); ASM_REGISTER_STATE_CHECK( partial_itxfm_(input_block_, output_block_, stride_, bit_depth_)); ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, pixel_size_ * output_block_size_)) << "Error: partial inverse transform produces different results"; } } TEST_P(PartialIDctTest, AddOutputBlock) { for (int i = 0; i < kCountTestBlock; ++i) { InitMem(); for (int j = 0; j < last_nonzero_; ++j) { input_block_[av1_default_scan_orders[tx_size_].scan[j]] = 10; } ASM_REGISTER_STATE_CHECK( full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_)); ASM_REGISTER_STATE_CHECK( partial_itxfm_(input_block_, output_block_, stride_, bit_depth_)); ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, pixel_size_ * output_block_size_)) << "Error: Transform results are not correctly added to output."; } } TEST_P(PartialIDctTest, SingleExtremeCoeff) { const int16_t max_coeff = INT16_MAX; const int16_t min_coeff = INT16_MIN; for (int i = 0; i < last_nonzero_; ++i) { memset(input_block_, 0, sizeof(*input_block_) * input_block_size_); // Run once for min and once for max. for (int j = 0; j < 2; ++j) { const int coeff = j ? min_coeff : max_coeff; memset(output_block_, 0, pixel_size_ * output_block_size_); memset(output_block_ref_, 0, pixel_size_ * output_block_size_); input_block_[av1_default_scan_orders[tx_size_].scan[i]] = coeff; ASM_REGISTER_STATE_CHECK( full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_)); ASM_REGISTER_STATE_CHECK( partial_itxfm_(input_block_, output_block_, stride_, bit_depth_)); ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, pixel_size_ * output_block_size_)) << "Error: Fails with single coeff of " << coeff << " at " << i << "."; } } } TEST_P(PartialIDctTest, DISABLED_Speed) { // Keep runtime stable with transform size. const int kCountSpeedTestBlock = 500000000 / input_block_size_; InitMem(); InitInput(); for (int i = 0; i < kCountSpeedTestBlock; ++i) { ASM_REGISTER_STATE_CHECK( full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_)); } aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < kCountSpeedTestBlock; ++i) { partial_itxfm_(input_block_, output_block_, stride_, bit_depth_); } libaom_test::ClearSystemState(); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer) / 1000); printf("idct%dx%d_%d (bitdepth %d) time: %5d ms\n", size_, size_, last_nonzero_, bit_depth_, elapsed_time); ASSERT_EQ(0, memcmp(output_block_ref_, output_block_, pixel_size_ * output_block_size_)) << "Error: partial inverse transform produces different results"; } using std::tr1::make_tuple; const PartialInvTxfmParam c_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 256, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 38, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 64, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 1, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 16, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 1, 8, 1) }; INSTANTIATE_TEST_CASE_P(C, PartialIDctTest, ::testing::ValuesIn(c_partial_idct_tests)); #if HAVE_NEON && !CONFIG_HIGHBITDEPTH const PartialInvTxfmParam neon_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 1, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 1, 8, 1) }; INSTANTIATE_TEST_CASE_P(NEON, PartialIDctTest, ::testing::ValuesIn(neon_partial_idct_tests)); #endif // HAVE_NEON && !CONFIG_HIGHBITDEPTH #if HAVE_SSE2 const PartialInvTxfmParam sse2_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 256, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 64, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 1, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 16, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 1, 8, 1) }; INSTANTIATE_TEST_CASE_P(SSE2, PartialIDctTest, ::testing::ValuesIn(sse2_partial_idct_tests)); #endif // HAVE_SSE2 #if HAVE_SSSE3 const PartialInvTxfmParam ssse3_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 64, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1) }; INSTANTIATE_TEST_CASE_P(SSSE3, PartialIDctTest, ::testing::ValuesIn(ssse3_partial_idct_tests)); #endif // HAVE_SSSE3 #if HAVE_AVX2 const PartialInvTxfmParam avx2_partial_idct_tests[] = { make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 256, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 38, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), }; INSTANTIATE_TEST_CASE_P(AVX2, PartialIDctTest, ::testing::ValuesIn(avx2_partial_idct_tests)); #endif // HAVE_AVX2 #if HAVE_DSPR2 && !CONFIG_HIGHBITDEPTH const PartialInvTxfmParam dspr2_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 256, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 64, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 1, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 16, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 1, 8, 1) }; INSTANTIATE_TEST_CASE_P(DSPR2, PartialIDctTest, ::testing::ValuesIn(dspr2_partial_idct_tests)); #endif // HAVE_DSPR2 && !CONFIG_HIGHBITDEPTH #if HAVE_MSA && !CONFIG_HIGHBITDEPTH const PartialInvTxfmParam msa_partial_idct_tests[] = { make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1024, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 135, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 34, 8, 1), make_tuple(&aom_fdct32x32_c, &wrapper, &wrapper, TX_32X32, 1, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 256, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 10, 8, 1), make_tuple(&aom_fdct16x16_c, &wrapper, &wrapper, TX_16X16, 1, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 64, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 12, 8, 1), make_tuple(&aom_fdct8x8_c, &wrapper, &wrapper, TX_8X8, 1, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 16, 8, 1), make_tuple(&aom_fdct4x4_c, &wrapper, &wrapper, TX_4X4, 1, 8, 1) }; INSTANTIATE_TEST_CASE_P(MSA, PartialIDctTest, ::testing::ValuesIn(msa_partial_idct_tests)); #endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH } // namespace