/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "./av1_rtcd.h" #include "./aom_config.h" #include "./aom_dsp_rtcd.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/entropy.h" #include "aom/aom_codec.h" #include "aom/aom_integer.h" #include "aom_ports/mem.h" #include "aom_ports/msvc.h" // for round() using libaom_test::ACMRandom; namespace { const int kNumCoeffs = 1024; const double kPi = 3.141592653589793238462643383279502884; void reference_32x32_dct_1d(const double in[32], double out[32]) { const double kInvSqrt2 = 0.707106781186547524400844362104; for (int k = 0; k < 32; k++) { out[k] = 0.0; for (int n = 0; n < 32; n++) out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); if (k == 0) out[k] = out[k] * kInvSqrt2; } } void reference_32x32_dct_2d(const int16_t input[kNumCoeffs], double output[kNumCoeffs]) { // First transform columns for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i]; reference_32x32_dct_1d(temp_in, temp_out); for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j]; } // Then transform rows for (int i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32]; reference_32x32_dct_1d(temp_in, temp_out); // Scale by some magic number for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4; } } typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef std::tr1::tuple Trans32x32Param; class Trans32x32Test : public ::testing::TestWithParam { public: virtual ~Trans32x32Test() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); version_ = GET_PARAM(2); // 0: high precision forward transform // 1: low precision version for rd loop bit_depth_ = GET_PARAM(3); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: int version_; aom_bit_depth_t bit_depth_; int mask_; FwdTxfmFunc fwd_txfm_; InvTxfmFunc inv_txfm_; }; TEST_P(Trans32x32Test, AccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); #endif for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; #if CONFIG_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; test_input_block[j] = src16[j] - dst16[j]; #endif } } ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32)); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32)); #if CONFIG_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK( inv_txfm_(test_temp_block, CONVERT_TO_BYTEPTR(dst16), 32)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_HIGHBITDEPTH const int32_t diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int32_t diff = dst[j] - src[j]; #endif const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } if (version_ == 1) { max_error /= 2; total_error /= 45; } EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error) << "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1"; EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error) << "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block"; } TEST_P(Trans32x32Test, CoeffCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); for (int i = 0; i < count_test_block; ++i) { for (int j = 0; j < kNumCoeffs; ++j) input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_); const int stride = 32; aom_fdct32x32_c(input_block, output_ref_block, stride); ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride)); if (version_ == 0) { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(output_block[j], output_ref_block[j]) << "Error: 32x32 FDCT versions have mismatched coefficients"; } else { for (int j = 0; j < kNumCoeffs; ++j) EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) << "Error: 32x32 FDCT rd has mismatched coefficients"; } } } TEST_P(Trans32x32Test, MemCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 2000; DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-mask_, mask_]. for (int j = 0; j < kNumCoeffs; ++j) { input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_; } if (i == 0) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_; } else if (i == 1) { for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_; } const int stride = 32; aom_fdct32x32_c(input_extreme_block, output_ref_block, stride); ASM_REGISTER_STATE_CHECK( fwd_txfm_(input_extreme_block, output_block, stride)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) { if (version_ == 0) { EXPECT_EQ(output_block[j], output_ref_block[j]) << "Error: 32x32 FDCT versions have mismatched coefficients"; } else { EXPECT_GE(6, abs(output_block[j] - output_ref_block[j])) << "Error: 32x32 FDCT rd has mismatched coefficients"; } EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j])) << "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE"; EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j])) << "Error: 32x32 FDCT has coefficient larger than " << "4*DCT_MAX_VALUE"; } } } TEST_P(Trans32x32Test, InverseAccuracy) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); #endif for (int i = 0; i < count_test_block; ++i) { double out_r[kNumCoeffs]; // Initialize a test block with input range [-255, 255] for (int j = 0; j < kNumCoeffs; ++j) { if (bit_depth_ == AOM_BITS_8) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; #if CONFIG_HIGHBITDEPTH } else { src16[j] = rnd.Rand16() & mask_; dst16[j] = rnd.Rand16() & mask_; in[j] = src16[j] - dst16[j]; #endif } } reference_32x32_dct_2d(in, out_r); for (int j = 0; j < kNumCoeffs; ++j) coeff[j] = static_cast(round(out_r[j])); if (bit_depth_ == AOM_BITS_8) { ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32)); #if CONFIG_HIGHBITDEPTH } else { ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CONVERT_TO_BYTEPTR(dst16), 32)); #endif } for (int j = 0; j < kNumCoeffs; ++j) { #if CONFIG_HIGHBITDEPTH const int diff = bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; #else const int diff = dst[j] - src[j]; #endif const int error = diff * diff; EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error << " at index " << j; } } } class PartialTrans32x32Test : public ::testing::TestWithParam< std::tr1::tuple > { public: virtual ~PartialTrans32x32Test() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); bit_depth_ = GET_PARAM(1); } virtual void TearDown() { libaom_test::ClearSystemState(); } protected: aom_bit_depth_t bit_depth_; FwdTxfmFunc fwd_txfm_; }; TEST_P(PartialTrans32x32Test, Extremes) { #if CONFIG_HIGHBITDEPTH const int16_t maxval = static_cast(clip_pixel_highbd(1 << 30, bit_depth_)); #else const int16_t maxval = 255; #endif const int minval = -maxval; DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval; output[0] = 0; ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); EXPECT_EQ((maxval * kNumCoeffs) >> 3, output[0]); for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval; output[0] = 0; ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); EXPECT_EQ((minval * kNumCoeffs) >> 3, output[0]); } TEST_P(PartialTrans32x32Test, Random) { #if CONFIG_HIGHBITDEPTH const int16_t maxval = static_cast(clip_pixel_highbd(1 << 30, bit_depth_)); #else const int16_t maxval = 255; #endif DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]); DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]); ACMRandom rnd(ACMRandom::DeterministicSeed()); int sum = 0; for (int i = 0; i < kNumCoeffs; ++i) { const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1); input[i] = val; sum += val; } output[0] = 0; ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32)); EXPECT_EQ(sum >> 3, output[0]); } using std::tr1::make_tuple; #if CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( C, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, 1, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P( C, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_8), make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_10), make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_12))); #else INSTANTIATE_TEST_CASE_P( C, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, 1, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P(C, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_1_c, AOM_BITS_8))); #endif // CONFIG_HIGHBITDEPTH #if HAVE_NEON && !CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( NEON, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_neon, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_neon, 1, AOM_BITS_8))); #endif // HAVE_NEON && !CONFIG_HIGHBITDEPTH #if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( SSE2, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_sse2, &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_sse2, &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_1_sse2, AOM_BITS_8))); #endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH #if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_1_avx2, AOM_BITS_8))); #endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH #if HAVE_SSE2 && CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( SSE2, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_sse2, &aom_idct32x32_1024_add_c, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_sse2, &aom_idct32x32_1024_add_c, 1, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_1_sse2, AOM_BITS_8))); #endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH #if HAVE_AVX2 && !CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( AVX2, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_avx2, &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_avx2, &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); #endif // HAVE_AVX2 && !CONFIG_HIGHBITDEPTH #if HAVE_AVX2 && CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( AVX2, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_avx2, &aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_avx2, &aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8))); #endif // HAVE_AVX2 && CONFIG_HIGHBITDEPTH #if HAVE_MSA && !CONFIG_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( MSA, Trans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_msa, &aom_idct32x32_1024_add_msa, 0, AOM_BITS_8), make_tuple(&aom_fdct32x32_rd_msa, &aom_idct32x32_1024_add_msa, 1, AOM_BITS_8))); INSTANTIATE_TEST_CASE_P(MSA, PartialTrans32x32Test, ::testing::Values(make_tuple(&aom_fdct32x32_1_msa, AOM_BITS_8))); #endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH } // namespace