/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "test/av1_txfm_test.h" #include "test/util.h" #include "av1/common/av1_fwd_txfm1d.h" #include "av1/common/av1_inv_txfm1d.h" using libaom_test::ACMRandom; using libaom_test::input_base; namespace { const int txfm_type_num = 2; const int txfm_size_ls[5] = { 4, 8, 16, 32, 64 }; const TxfmFunc fwd_txfm_func_ls[][2] = { { av1_fdct4_new, av1_fadst4_new }, { av1_fdct8_new, av1_fadst8_new }, { av1_fdct16_new, av1_fadst16_new }, { av1_fdct32_new, av1_fadst32_new }, #if CONFIG_TX64X64 { av1_fdct64_new, NULL }, #endif }; const TxfmFunc inv_txfm_func_ls[][2] = { { av1_idct4_new, av1_iadst4_new }, { av1_idct8_new, av1_iadst8_new }, { av1_idct16_new, av1_iadst16_new }, { av1_idct32_new, av1_iadst32_new }, #if CONFIG_TX64X64 { av1_idct64_new, NULL }, #endif }; // the maximum stage number of fwd/inv 1d dct/adst txfm is 12 const int8_t cos_bit[12] = { 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 }; const int8_t range_bit[12] = { 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 }; void reference_idct_1d_int(const int32_t *in, int32_t *out, int size) { double input[64]; for (int i = 0; i < size; ++i) input[i] = in[i]; double output[64]; libaom_test::reference_idct_1d(input, output, size); for (int i = 0; i < size; ++i) out[i] = static_cast(round(output[i])); } void random_matrix(int32_t *dst, int len, ACMRandom *rnd) { const int bits = 16; const int maxVal = (1 << (bits - 1)) - 1; const int minVal = -(1 << (bits - 1)); for (int i = 0; i < len; ++i) { if (rnd->Rand8() % 10) dst[i] = minVal + rnd->Rand16() % (1 << bits); else dst[i] = rnd->Rand8() % 2 ? minVal : maxVal; } } TEST(av1_inv_txfm1d, InvAccuracyCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 20000; const int max_error[] = { 6, 10, 19, 28 }; for (int k = 0; k < count_test_block; ++k) { // choose a random transform to test const int txfm_type = rnd.Rand8() % NELEMENTS(inv_txfm_func_ls); const int txfm_size = txfm_size_ls[txfm_type]; const TxfmFunc txfm_func = inv_txfm_func_ls[txfm_type][0]; int32_t input[64]; random_matrix(input, txfm_size, &rnd); int32_t ref_output[64]; reference_idct_1d_int(input, ref_output, txfm_size); int32_t output[64]; txfm_func(input, output, cos_bit, range_bit); for (int i = 0; i < txfm_size; ++i) { EXPECT_LE(abs(output[i] - ref_output[i]), max_error[txfm_type]); } } } static INLINE int get_max_bit(int x) { int max_bit = -1; while (x) { x = x >> 1; max_bit++; } return max_bit; } TEST(av1_inv_txfm1d, get_max_bit) { int max_bit = get_max_bit(8); EXPECT_EQ(max_bit, 3); } TEST(av1_inv_txfm1d, round_trip) { ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int si = 0; si < NELEMENTS(fwd_txfm_func_ls); ++si) { int txfm_size = txfm_size_ls[si]; for (int ti = 0; ti < txfm_type_num; ++ti) { TxfmFunc fwd_txfm_func = fwd_txfm_func_ls[si][ti]; TxfmFunc inv_txfm_func = inv_txfm_func_ls[si][ti]; int max_error = 2; if (!fwd_txfm_func) continue; const int count_test_block = 5000; for (int ci = 0; ci < count_test_block; ++ci) { int32_t input[64]; int32_t output[64]; int32_t round_trip_output[64]; ASSERT_LE(txfm_size, NELEMENTS(input)); for (int ni = 0; ni < txfm_size; ++ni) { input[ni] = rnd.Rand16() % input_base - rnd.Rand16() % input_base; } fwd_txfm_func(input, output, cos_bit, range_bit); inv_txfm_func(output, round_trip_output, cos_bit, range_bit); for (int ni = 0; ni < txfm_size; ++ni) { int node_err = abs(input[ni] - round_shift(round_trip_output[ni], get_max_bit(txfm_size) - 1)); EXPECT_LE(node_err, max_error); } } } } } } // namespace